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Abstract 
A theoretical “drift-flux based thermal-hydraulic mixture-fluid coolant channel model” is pre-
sented. It is the basis to a corresponding digital “Coolant Channel Module (CCM)”. For this purpose 
derived “Separate-Region Mixture Fluid Approach” should yield an alternative platform to the 
currently dominant “Separate-Phase Models” where each phase is treated separately. Contrary to 
it, a direct procedure could be established with the objective to simulate in an as general as possi-
ble way the steady state and transient behaviour of characteristic parameters of single- and/or 
(now non-separated) two-phase fluids flowing within any type of heated or non-heated coolant 
channels. Their validity could be confirmed by a wide range of verification and validation runs, 
showing very satisfactory results. The resulting universally applicable code package CCM should 
provide a fundamental element for the simulation of thermal-hydraulic situations over a wide 
range of complex systems (such as different types of heat exchangers and steam generators as be-
ing applied in both conventional but also nuclear power stations, 1D and 3D nuclear reactor cores 
etc). Thereby the derived set of equations for different coolant channels (distinguished by their 
key numbers) as appearing in these systems can be combined with other ODE-s and non-linear al-
gebraic relations from additional parts of such an overall model. And these can then to be solved 
by applying an appropriate integration routine. Within the solution procedure, however, mathe-
matical discontinuities can arise. This due to the fact that along such a coolant channel transitions 
from single- to two-phase flow regimes and vice versa could take place. To circumvent these diffi-
culties it will in the presented approach be proposed that the basic coolant channel (BC) is subdi-
vided into a number of sub-channels (SC-s), each of them being occupied exclusively by only a sin-
gle or a two-phase flow regime. After an appropriate nodalization of the BC (and thus its SC-s) and 
after applying a “modified finite volume method” together with other special activities the funda-
mental set of non-linear thermal-hydraulic partial differential equations together with correspond-
ing constitutive relations can be solved for each SC separately. As a result of such a spatial discre-
tization for each SC type (and thus the entire BC) the wanted set of non-linear ordinary differential 
equations of 1st order could be established. Obviously, special attention had to be given to the 
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varying SC entrance or outlet positions, describing the movement of boiling boundaries or mixture 
levels along the channel. Including even the possibility of SC-s to disappear or be created anew 
during a transient. 
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1. Introduction 
A large number of thermal-hydraulic (TH) models and, based on them, effective computer codes have been de-
veloped and are still in development being needed for the theoretical and computational description of heat and 
fluid transport along different types of sometimes very complex technical systems. Their objective is to describe 
both the steady state and transient behaviour of characteristic key parameters of a single- or two-phase fluid 
flowing along different types of loops of such a system in an adequate way. Various forms of heated or non- 
heated coolant channels play an important part within these loops. As, for example, being demanded in the most 
nuclear but also conventional power plants. 

Due to the presence of discontinuities in the first principle of mass conservation of a two-phase flow model, 
caused at the transition from single- to two-phase flow and vice versa, it was obvious that the direct solution of 
the basic conservation equations for single and mixture fluid along such a coolant channel could get very com-
plicated. Obviously many discussions have and will continue to take place among experts as to which sort of 
theoretical approach should be chosen for the correct description of such thermal-hydraulic two-phase problems 
when looking at the wide range of applications. What is thus the most appropriate way to deal with such a spe-
cial thermal-hydraulic problem? 

1.1. Separate-Phase Model Concept 
With the introduction of a “Separate-Phase Model Concept” already very early an efficient way has been found 
how to circumvent such upcoming difficulties. This by proposing a solution method with the intention to sepa-
rate the two-phases within the basic equations of such a mixture-flow either partially or even completely from 
each other. Hence, approaches where each phase is treated separately. This yields a system of 4, 5 or sometimes 
even 6 equations by splitting each of the conservation equations into two so-called “field equations”. Compared 
to the four independent parameters characterising the mixture fluid the separate-phase systems demand a much 
higher number of additional variables and often very speculative assumptions. This has the additional conse-
quence that a number of very complex relations had to be incorporated into the theoretical description of such a 
module. An enormous amount of CPU-time has to be expended for the solution of the resulting sets of differen-
tial and analytical equations in a computer code.  

Obviously, based on such assumptions, the interfacial relations both between the (heated or cooled) wall but 
also between each of the two phases have to be completely rearranged too. This raises the difficult question of 
how to describe in a realistic way the direct heat input into and between the phases and the movement resp. the 
friction of the phases between them. In such separate-phase approaches this problem is solved by introducing 
corresponding exchange (=closure) terms between the equations based on special transfer (=closure) laws. Since 
they can, however, not be based on fundamental laws or at least on experimental measurements this approach 
requires a significant effort to find an adequate formulation of the exchange terms between the phases. It must 
therefore be recognised that the quality of these basic equations (and especially their boundary conditions) will 
be intimately related to the (rather artificial and possibly speculative) assumptions adopted if comparing them 
with the original conservation laws of the basic 3-equation system and their constitutive equations as well. The 
problem of a correct description of the interfacial reaction between the phases and the wall remains. Hence, very 
often when comparing diverse separate-phase models with each other due to their underlying differing assump-
tions only very poor consistency between them can be stated. 

Another problem arises from the fact that special methods have to be foreseen to describe the moving boiling 
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boundary or mixture level (or at least to estimate their “condensed” levels) in such a mixture fluid (see, for ex-
ample, the “Level Tracking” method in TRAC [1]). Additionally, these methods show often deficiencies in de-
scribing extreme situations such as the treatment of single- and two-phase flow at the ceasing of natural circula-
tion, the power situations if decreasing to zero etc. The codes are sometimes very inflexible, especially if they 
have to provide to a very complex physical system also elements which belong not to the usual class of “ther-
mal-hydraulic coolant channels”. These can, for example, be nuclear kinetic considerations, heat transfer out 
of a fuel rod or through a tube wall, pressure build-up within a compartment, time delay during the movement 
of an enthalpy front along a downcomer, natural circulation along a closed loop, parallel channels, inner loops 
etc. 

However, the “Separate-Phase Models” have become (despite of these difficulties) increasingly fashionable 
and dominant in the last decades of thermal-hydraulics as demonstrated by the widely-used codes TRAC [1] [2], 
CATHENA [3], RELAP [4] [5], CATHARE [6], ATHLET [7] [8]. 

1.2. Separate-Region Mixture Fluid Model Concept 
Obviously among other international institutes also at the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) 
at Garching/Munich very early activities within the scope of reactor safety research have been started with the 
aim to develop thermal-hydraulic models and digital codes which could have the potential to describe in a de-
tailed way the overall transient and accidental behaviour of fluids flowing along a reactor core but also within 
the main components of different Nuclear Power Plant (NPP) types. For one of these components, namely the 
natural circulation U-tube steam generator together with its feedwater and main steam system an own theoretical 
model and a first version of the digital code UTSG [9] has been derived. Based on the experience of many years 
of application both at the GRS and a number of other institutes in different countries but also due to the rising 
demands coming from the safety-related research studies this UTSG theory and code has been continuously ex-
tended, ending finally in the establishment of a very satisfactory and mature code version UTSG-2 [10]. This 
could be used both in a stand-alone way but also as part of more comprehensive transient codes, such as the 
thermal-hydraulic GRS system code ATHLET [11]. Together with a high level simulation language GCSM 
(General Control Simulation Module) it could be taken care of a manifold of balance-of-plant (BOP) actions 
too.  

During the research work for the development of an enhanced version of the code UTSG-2 it arose finally the 
idea to establish an own basic module which makes it possible to simulate the thermal-hydraulic mixture-fluid 
situation within any geometrical set-up of cooled or heated channels in an as general as possible way. This with 
the aim to be applicable for any modular construction of complex thermal-hydraulic assemblies of pipes and 
junctions. Thereby, in contrast to the above mentioned class of “separate-phase” modular codes and instead of 
separating the phases of a mixture fluid within the entire coolant channel an alternative theoretical approach has 
been foreseen, differing both in its form of application but also in its theoretical background.  

Thereby a special and unique concept could be found how to circumvent the above mentioned difficulties due 
to discontinuities resulting from the spatial discretization of a coolant channel, arising eventually from nodes 
where a transition from single- to two-phase flow and vice versa can take place. By assuming each coolant 
channel to be seen as a (basic) channel (BC) which can, according to their different flow regimes, be subdivided 
into a number of sub-channels (SC-s). It is clear that each of these SC-s can consist of only two types of flow 
regimes. A SC with just a single-phase fluid, containing exclusively either sub-cooled water, superheated steam 
or supercritical fluid, or a SC with a two-phase mixture. The theoretical considerations of this “Separate-Region 
Approach” can then (within the class of mixture-fluid models) be appointed to only these two regimes. Hence, 
for each SC type, the “classical” three conservation equations for mass, energy and momentum can be treated in 
a direct way (and now without mathematical restrictions). In the case of a SC with mixture flow these basic 
equations had to be supported by a drift flux correlation (which should, however, also take care of stagnant or 
counter-current flow situations), yielding an additional relation for the appearing fourth variable, namely the 
steam mass flow.  

The problem of the application of such an approach has thus shifted to the fact that now also varying SC en-
trance and outlet boundaries (marking the time-varying phase boundary positions) have to be considered. And 
causing in special situations the additional difficulty that along a channel such a SC can even disappear or be 
created anew. The solution procedure is based on the fact that after an appropriate nodalization of such a BC 
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(and thus also it’s SC-s) a “modified finite volume method” (among others based on the Leibniz Integration 
Rule) had to be derived for the spatial discretization of the fundamental (non-linear) partial differential equations 
(PDE-s) of first order which represent the basic conservation equations of thermal-hydraulics for each SC.  

Additionally, to link within the integration procedure the resulting mean nodal with their nodal boundary 
function values an adequate quadratic polygon approximation method (PAX) had to be established. 

This special PAX method represents a central part of the here presented “Separate-Region Approach”. And 
this besides the suggestion to subdivide a (basic) channel into regions of different flow type, together with the 
very thoroughly tested packages for drift flux and single- and two-phase friction factors. Thus yielding an ele-
gant method how to solve this essential thermal-hydraulic problem in a direct way.  

The procedure should establish at the start of a calculation for each SC (and finally also the entire BC) a set of 
steady state non-linear algebraic equations and then for the following case of thermal-hydraulic transients at 
each time step the wanted set of non-linear ordinary differential equations (ODE-s) of 1-st order. All of them 
supported with their algebraic constitutive relations. 

For more details see Section 8, comparing there these two approaches with each of them. 

1.3. Remarks 
The here presented article is part and the continuation of a publication series of three papers being already pub-
lished in two INTECH Open Access Books ([12]-[14]). It is, according to a continuous research work, updated 
to the newest status in this field and concentrated in an advanced and very condensed form mainly to the theo-
retical background of this basic coolant channel model and to the special (and generally applicable) mathemati-
cal methods to solve this sort of resulting system of equations in a corresponding digital module.  

2. Fundamental Equations for a Thermal-Hydraulic Drift-Flux Based Mixture Fluid  
Approach  

Thermal-hydraulic single-phase or mixture-fluid models for coolant channels or their sub-channels are based on 
a number of fundamental physical laws, i.e., they obey genuine conservation equations for mass, energy and 
momentum. They are controlled at single-phase flow conditions by the three independent parameters: total mass 
flow G, temperature T and pressure P′ . For two-phase flow one more variable is asked, namely the total and 
steam mass flow G and GS, void fraction α and pressure P′ . And they are supported by adequate constitutive 
equations, such as packages for thermo-dynamic and transport properties of water and steam, for single- and 
two-phase friction coefficients and (in case of two-phase flow) for drift flux. 

2.1. Thermal-Hydraulic Conservation Equations 
2.1.1. Mass Balance (Single- and Two-Phase Flow) 

( ){ }1 0W S z
G

t
A α ρ αρ− + + = 

∂
∂

∂
∂

                            (1) 

containing density terms Wρ  for sub-cooled or saturated water and Sρ  for saturated or superheated steam, 
the void fraction α and the cross flow area A which can (as discussed in Section 7) eventually be changing along 
the coolant channel. It determines, after a nodalization, the total mass flow W SG G G= +  at node outlet in de-
pendence of its node entrance values.  

2.1.2. Energy Balance (Single- and Two-Phase Flow) 
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qα ρ αρ− + − + = = =
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=
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           (2) 

with enthalpy terms hW for sub-cooled or saturated water and hS for saturated or superheated steam. As boundary 
values either the “linear power TWLq′ ”, the “heat flux TWFq′ ” along the heated (or cooled) tube wall (with its 
heated perimeter UTW) or the local “power density term Dq′ ” (transferred into the coolant channel with its cross 
Section A) are demanded to be known. The power terms having a positive sign if they are directed into the 
coolant (See also Sections 6.1, 6.4.2 and 9.1). 
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2.1.3. Momentum Balance (Single- and Two-Phase Flow) 
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                     (3) 

describing either the pressure differences (at steady state) or (in the transient case) the change in total mass flux 

F A
G G = 
 
 

 along a channel (See Section 6.5). 

The general pressure gradient P
z

 
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 can be determined in dependence of terms for 

• mass acceleration  
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with vS and vW denoting steam and water velocities (definition see nomenclature) 
• static head 
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with ZGΦ  representing the angle between z-axis and flow direction. Hence ( )cos G EL Lz zΖΦ = ±∆ ∆ , with ΔzL 
denoting the nodal length and ΔzEL the nodal elevation height (having a positive sign at upwards flow).  
• the single- and/or two-phase friction relation 

2
F F

R
F HW

G GP f
z d ρ

∂
= − 

 
 ∂

                                  (6) 

with a friction factor derived from corresponding constitutive equations (see Section 2.2.2) and finally  

• the direct perturbations 
x

P
z

 
 
 

∂
∂

 from outside, arising either by starting an external pump or considering a 

pressure adjustment due to mass exchange between parallel channels. 

2.2. Constitutive Equations 
For the exact description of the steady state and the transient behaviour of single- or two-phase fluids a number 
of mostly empirical constitutive correlations are, besides the above mentioned conservation equations, de-
manded. To bring a structure into the manifold of existing correlations established by various authors, to find the 
best fitting ones for the different fields of application and to get a smooth transfer from one to another of them 
special and effective correlation packages had to be developed. Their validities can be and has been tested 
out-of-pile by means of adequate driver codes. Obviously, by means of this method improved correlations can 
easily be incorporated into the existing theory.  

2.2.1. Thermodynamic and Transport Properties of Water and Steam 
The different thermodynamic properties for water and steam (and their derivatives with respect to P and T, but 
also P and h) as demanded by the conservation and constitutive equations have to be determined by applying 
adequate water/steam tables. Additionally, since from the constitutive equations also the time-derivatives of 
these thermodynamic properties are asked which can be represented as 

( ) ( ) ( ) ( ) ( )d d d d
d d

, , , , ,
d d

,T Ph z t h T z t P z t
t t t t

h T z t h P z t  = +=                  (7) 

Corresponding thermodynamic transport properties such as the “dynamic viscosity” and “thermal heat con-
ductivity” (and thus the “Prantl number”) are needed too. This is, for light-water systems, realized in the code 
packages MPP ([15], see also [12]) containing the code packages MPPWS and MPPETA. All of them have been 
derived on the basis of tables given by [16] and [17]. 
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Obviously, the CCM code is also applicable for other coolant systems (heavy water, gas, oil) if adequate 
thermodynamic tables for this type of fluids are available. 

2.2.2. Single- and Two-Phase Friction Factors 
The friction factor fR needed in (6) can in case of single-phase flow be set, as proposed by [18], equal to the 
Darcy-Weisbach single-phase friction factor.  

The corresponding (Martinelli-Nelson) coefficient for two-phase flow has to be extended by means of a 
two-phase multiplier 2

2PFΦ  as recommended by [19]. 

2.2.3. Drift Flux Correlation 
Due to an additional independent variable appearing in the conservation Equations (1)-(3) for two-phase flow 
the set has to be completed by an additional relation. This can be achieved by any two-phase correlation, acting 
thereby as a “bridge” between GS and α. For example, by a slip correlation. However, to take care of stagnant or 
counter-current flow situations too an effective drift-flux correlation seemed here to be more appropriate. For 
this purpose an own package has been established, named MDS (see [20]-[23]). 

Regarding the different requirements in the application of CCM it turned out that it has many advantages to 
choose the Sonnenburg “flooding-based full-range” correlation [20] as applied for MDS. This correlation com-
bines the common drift-flux procedure being formulated by Zuber-Findlay [24] and expanded by Ishii-Mishima 
[25] and (Ishii [26]) etc. with the modern envelope theory. The correlation in the final package MDS had, how-
ever, to be rearranged in such a way that also the special cases of 0α →  or 1α →  are included and that, be-
sides their absolute values and corresponding slopes, also the gradients of the approximation function can be 
made available for CCM. Additionally, an inverse form had to be installed (needed, for example, for steady state 
conditions) and, eventually, also considerations with respect to possible entrainment effects must be taken care.  

The resulting package MDS presents in case of a vertical non-heated or, for the case of low void fractions, 
heated wall (LHEATB = 0 or =1) a relation for the drift velocity vD with respect to the void fraction α 

( ) ( )

( ) ( )

( )

2 23 2

0

0 00 0/

1 1

with if 0 and if 0 or 0 if 1

and if 1 and 1 independently if th

1.5 1 1.5

e wall is heated or n t

 

o

WLIM

F
HEATB D

D VD VD VD VD

D D HD W

D D

EATB

D

v v C

G L

C C C C

v v

v

v Lv v

vv

α
ρ

α

 
  

→ → =

= + − +

= − =

=

− = =

→ →

       (8) 

with respect to the (dimensionless) coefficient  

0
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v C
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α
−

=                                   (9) 

and in combination with   
• adequate correlations for the phase distribution parameter C0 with their limit values if 0α → , 0 0C →  or 

( )1 if 1 or 0HEATBL =→ =  or, if 1α → , 0 1C →  (both for heated or non-heated walls) 
and  

• relations for the limit velocities vSLIM and vWLIM dependent on α (independently of the total mass flow G, a 
fact which is important for the theory below) 

All of them are also dependent on the input values “system pressure P”, the “hydraulic diameter HYd ′ ” (with 
respect to the wetted surface ATW and its inclination angle ΦZG), and specifications about the geometry type 
(LGTYPE) and, for low void fractions, the information whether the channel is heated or not (LHEATB = 1 or =0).  

From the drift flux theory above finally also interrelations between different two-phase parameters can be es-
tablished (now already in dependence of G) by starting from their definition equations. The steam mass flow (or 
flux) can, for example, be represented by 

( )0

/ /
/

/  S D FS
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G C G A v AG XG
G

ρ α ρ
ρ

= + = =                          (10) 

the steam velocity by 
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The relations of all the other characteristic two-phase parameters are given in more detail in [22] [23]. These 
could be the “phase distribution parameter 0C′ ”, the “water and steam mass flows GW and SG′ ”, the “drift, wa-
ter, steam and relative velocities vD, vW ,vS and Rv′  with special values for 0 S Sv v→ ” (if 0α → ) and 

1 W Wv v→  (if 1α → ) and eventually the “steam quality X ′ ”. Their interrelations are presented, for example, 
in the corresponding tables. Especially the determination of the steam mass flow gradient  
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will play (as shown, for example, in (57)) an important part, if looking to the special situation that the entrance 
or outlet position of a SC can cross a BC node boundary (with 0α →  or 1→ ). This possibility makes the 
drift-flux package MDS to an indispensable part in the nodalization procedure of the mixture-fluid mass and en-
ergy balance.  

For some application cases it seems to be reasonable to have the possibility to avoid counter-current flow 
(CCF) situations. This can be achieved by limiting within the general drift-flux theory the steam quality value of 
the X-α curve by a value XLIM which remains within the range 0 1LIMX≤ ≤ . This means that according to (10) 
also either vD or C0 are restricted. The phase distribution parameter C0 can, however, be also limited directly, for 
example by choosing as the limit function to C0 

( ) ( )

( )

2
00 00

00 0

0 1 if setting 1 at the input

with representing the slope of at 0

LIM NOCCFC C C L

C C

α α

α

α α

α

= + − =

=
               (14) 

In a steady state situation then with respect to the solution possibilities of the basic (algebraic) set of equations 
the steam mass flow term GS has to act as an independent variable (instead of the void fraction α). The same is 
the case after an injection of a two-phase mixture coming from a “porous” channel or an abrupt change in steam 
mass flux GFS, as this can take place after a change in total mass flow or in the cross flow area at the entrance of 
a following BC. Then the total and the steam mass flow terms G and GS have to be taken as the basis for further 
two-phase considerations. The void fraction α and other two-phase parameters (vD, C0) can now be determined 
from an inverse (INV) form of this drift-flux correlation (with GS now as input). 

3. Coolant Channel Geometry Data (BC and SC-s) 
A “basic” coolant channel (BC) will be assumed to consists, as sketched in Figure 1, of a cylindrical tube of an 
as general as possible geometrical form, with its total length BT BA BEz z z= − . For discretization purposes the 
entire BC will be subdivided into a number of (not necessarily equidistant) NBT nodes. Their nodal positions are 
zBE, zBk (with k = 1, NBT), the elevation heights zELBE, zELk, the nodal length 1Bk Bk Bkz z z −∆ = − , the nodal eleva- 
tions 1ELBk ELBk ELBkz z z −∆ = − , with eventually also locally varying cross flow and average areas ABk and 

( )10.5BMk Bk BkA A A −= + and their slopes ( )1
Z
Bk Bk Bk BkA A A z− ∆−= , a hydraulic diameter dHYBk and corresponding 

nodal volumes BMk Bk BMkV z A= ∆ .  
The theoretical considerations will, as already pointed-out, take advantage of the fact that, as sketched in 

Figure 1, a “basic” coolant channel (BC) can according to their flow regimes and (characterized by the logical 
LFTYPE) be subdivided into a number (NSCT) of sub-channels (SC-s). Each of these SC-s will be distinguished by 
their characteristic key numbers (NSC). Thereby it has, obviously, to be taken into account that their entrance and 
outlet SC-s can now have variable entrance and/or outlet positions. 
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Figure 1. Subdivision of a “basic channel (BC)” into “sub-channels 
(SC-s)” according to their flow regimes and their discretization. 

 
As a consequence of the discretization of the BC each of the sub-channels (SC-s) is then subdivided too, now 

into a number of NCT SC nodes. Their geometry data are identical to the corresponding BC values, except, of 
course, at their entrance and outlet positions. The SC entrance position CEz  and their function CEf  are either 
identical with the BC entrance values BEz  and BEf  or equal to the outlet values of the SC before. The SC  
outlet position ( )CAz  is either limited by the BC outlet ( )BAz  or characterized by the fact that the corre-

sponding outlet function has reached an upper or lower limit ( )LIMCAf . This term represents then either a func- 
tion at the boiling boundary, a mixture level or the start position of a supercritical flow. Such a function follows 
from the given BC limit values and will, in the case of single-phase flow, be equal to the saturation temperature 
TSATCA or saturation enthalpies ( h′  or h′′  if LFTYPE = 1 or 2). In the case of two-phase flow (LFTYPE = 0) it has to 
be set equal to a void fraction of α = 1 or =0. The moving SC inlet and outlet positions CEz  and CAz  can (to-
gether with their corresponding BC nodes BCEN  and BCA BCE CTN N N= + ) be determined according to the 
conditions ( 1BNk CE BNkz z z− < <  at BCEk N= ) and ( 1BNk CA BNkz z z− < <  at   BCAk N= ). Then also the total num-
ber of SC nodes ( CT BCA BCEN N N= − ) is given, the connection between n and k ( BCEn k N= −  with n = 1, NCT), 
the corresponding positions (zNn, zELCE, zELNn), their lengths ( 1Nn Nn Nnz z z −∆ = − ), elevations  
( 1ELNn ELNn ELNnz z z −∆ = − ), volumes ( Mn Nn MnV =z A ), nodal boundaries and mean nodal flow areas (ANn, AMn).  

4. Mathematical Tools Needed for the Solution of (Non-Linear) PDE-s of 1st Order  
along a SC with Varying Entrance and Outlet Positions 

For the realization of the theoretical thermal-hydraulic model in a corresponding digital code (module CCM) a 
special generally applicable integration procedures had to be derived.  

4.1. Spatial Discretization of PDE-s of 1st Order (Modified Finite Element Method)  
Based on the above presented nodalization the spatial discretization of the fundamental Equations (1)-(3) can be 
performed by means of a “modified finite element method”. This means that if a partial differential equation 
(PDE) of 1-st order having the general form with respect to a general solution function ( ),f z t  

( ) ( ) ( ), , ,z t H f z tf
z

R f t
t

z∂ ∂
    ∂

= ∂
+                           (15) 

is integrated over the length of a SC node three types of discretization elements can be expected:  
• Integrating a function ( ),f z t  over a SC node n yields the nodal mean function values Mnf , 
• Integrating over the gradient of a function ( ),f z t  yields a difference of functions values ( )1 Nn Nnf f −−  at 
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their node boundaries  
and, finally, 
• Integrating over a time-derivative of a function (by applying the “Leibniz” rule) 

( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

-1 1

d
d

d d d , 1,

,

d d d

d
Nn

Nn

Nn Mn Nn Mn Nn Mn Nn Nn

z t

z t

CT

z

n N
z z

f z t z

z t f t f t f t z t f t f t t
z

z

−

− =      = ∆ − − − −

∫
 (16) 

This last rule plays for the here presented “separate-region mixture-fluid approach” an outstanding part. It al-
lows (in combination with PAX) to determine in a direct way the time-derivatives of parameters which represent 
either a boiling boundary, mixture or a supercritical level. This procedure differs considerably from some of the 
“separate-phase methods” where, as already pointed out, very often only the collapsed levels of a mixture fluid 
can be calculated.  

4.2. Quadratic Polygon Approximation Procedure PAX 
According to the above described three different types of possible discretization elements the solution of the set 
of algebraic equations will in the steady state case yield directly function values (fNn) at node boundaries (zNn). 
On the basis of these values the also needed mean nodal functions (fMn) have then to be estimated by means of 
an adequate approximation procedure. On the other hand, the solution of the set of ordinary differential equa-
tions will (in the transient case) now yield the mean nodal functions fMn as a result of the integration. The also 
needed nodal boundary values fNn will then have to be estimated by the same procedure, now on the basis of fMn. 

It is thus obvious that appropriate methods had to be developed which can help to establish relations between 
such mean nodal (fMn) and node boundary (fNn) function values. This is different to the “separate-phase” model 
approach where mostly a method is applied (called “upwind or donor cell differencing scheme”) with the mean 
parameter values to be shifted (in flow direction) to the node boundaries. In CCM a more ambitious approxima-
tion method is asked, giving to the entire procedure also a better “fine structure”. This is also demanded because, 
as to be seen later-on with regard to the relations of the Sections 6.2 to 6.4, not only absolute nodal SC boundary 
or mean SC nodal function values are required but as well also their nodal slopes s

Nnf  and s
Mnf  together with 

their gradients z
Nnf . They are needed for situations where the length of a SC node could eventually tend to zero 

so that slopes have to be replaced by their gradients   

( ) ( ) ( )1
1  at 1 input or at 01 ifNn Nns z z

Nn CEI Nn C NT n
Nn

f f
f f N zf n n

z
−

− ∆
−

= → = = → = > →
∆

         (17) 

( ) ( ) ( )1
12 at 1 input or at 1 i 0fMn Nns z z

Mn CEI Nn CT
Nn

Nn

f f
zf f n f n N

z
−

− ∆
−

= → = = → = > →
∆

       (18) 

Hence, for this purpose a special “quadratic polygon approximation” procedure, named “PAX”, had to be 
developed. It plays (together with the above presented Leibniz rule) an outstanding part in the development of 
the here presented “mixture-fluid model” and helps, in particular, to solve the difficult task of how to take care 
of varying SC boundaries (which can eventually cross BC node boundaries) in an appropriate and exact way.  

4.2.1. Construction of an Adequate Approximation Function 
The PAX procedure is based on the assumption that the solution function f(z) of a PDE (for example tempera-
ture or void fraction) along the SC part of a basic (=BC) coolant channel is split into a number of NCT nodal SC 
functions ( ),nf z t . Each of them has then to be approximated by a specially constructed quadratic polygon. 
Thereby, such an effective and adequate approximation function has to fulfil the following requirements: 
• The node entrance functions ( )1Nnf −  must be either equal to the SC entrance function ( 1Nn CEf f− =  if n = 1) 

or to the outlet function of the node before (if n > 1). 
• The mean function values fMn over each of the SC nodes have to be preserved (otherwise the balance equa-

tions could be hurt).  
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• It is obvious that the gradients of the nodal entrance functions must not necessarily be equal to the gradients 
of the SC node outlets before (except for the last node entrance, i.e. at n = NCT). However, with the objective 
to guarantee stable behaviour of the approximated functions (for example in order to exclude “saw tooth-like 
behaviour” of them) it will, as a speciality of this approach, in an additional assumption be demanded that 
the outlet gradients of the first NCT − 1 nodes should be set equal to the slopes between their neighbour mean 
function values. The entrance gradient of the last node (n = NCT) should be either equal to the outlet gradient 
of the node before (if n = NCT > 1) or equal to a given SC input gradient (for the special case n = NCT = 1).  

Thus one gets (together with relations resulting from the rearrangement of the definition equations) 

( ) ( )

( ) ( )

( )( )

1

1

1-

1

1

2 1, 1, if 1

2 or if 0 or 0 and 12 3  

3 2 if2 0, 1 and 1 or 1

Mn Mnz
Nn CT CT

Nn Nn

z
Nn CT
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z z
N

N
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Nn

f fff n N N
z z z

nf f f f z z

f f f z

N
z

f f n N
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+

−

−

−∂ = = = − > ∂ ∆ + ∆ 

= > ≈ = >
∆

= =

− +

= − > = >
∆

∆ ∆

− ∆ =

=         (19) 

This means, the corresponding approximation function do not reach only over the node n, its next higher one 
(n + 1) is included into the considerations. Except, of course, for the last one. There (in the case of NCT > 1) the 
quadratic approximation function (and thus also its corresponding approximation coefficients) are valid for both 
(the last and last but one) node.  

The procedure has to take care also of the possibility that a SC can consist of only a single node (NCT = 1), 
with the (quadratic) approximation function having then to turn into a straight line. Hence, a special solution for 
such a single-node SC function is proposed, having the form 

( ) ( ) ( ) ( ) ( ) ( )1 with 1 and 1s z z s sz CA CA LIMCA CE
CE Nn CA CEI BCA BCA CT

BA BA BA

z z f f
f f f f f f n N

z z z
 ∆ ∆ −

= = = − + = = = ∆ ∆ ∆ 
     (20) 

Thereby a variable slope is assumed which should) reflect two characteristic aspects. Namely to be, for the 
case that ΔzCA → ΔzBA, equal to the slope (=gradient) ( )z

BCAf at the corresponding BC outlet node. And, secondly, 
for the special case that ΔzCA → 0 and thus for situations where during a transient either the first or last SC of a 
BC starts to disappear or to be created anew (i.e. zCA → zBE or zCE → zBA), to demand as an additional input to 
PAX (instead of the now not anymore or not yet available term fMn) the gradient z

CEIf  at SC entrance. Repre-
senting thereby either (at single-phase flow conditions) the coolant temperature BC entrance gradient z

CEIT  or 
(for two-phase flow) the void fraction entrance gradient z

CEIα . Since these parameters are usually not directly 
available they can, for example, be estimated by combining the mass and energy balance equations at SC en-
trance in an adequate way (See [10] [33]).  

These generally valid assumptions make the PAX procedure very effective (and stable). It is a conclusive on-
set in this method which helps to smooth the curve, guarantees that the gradients at the upper or lower SC 
boundary do not show abrupt changes for the case that a SC node boundary cross a BC one, avoids “saw-tooth” 
like behaviour of the parameters along the coolant channel and has the effect that perturbations at channel en-
trance do not directly affect corresponding parameters of the upper BC nodes. 

4.2.2. Nodal Parameters Due to PAX 
Mean nodal parameters resulting from PAX for the steady state case:  

After having solved the basic set of non-linear algebraic equations (as presented later-on in the Sections 6.2 to 
6.4) it is expected that as input to PAX the following nodal boundary parameters will have to be provided: 
• Geometry data such as the SC entrance (zCE) and node boundary positions (zNn) and thus also the SC outlet 

boundary zCA (as explained in Section 3) determining then in PAX the number of SC nodes (NCT),  
• The SC entrance function fN0 = fCE and (at least for the special case n = NCT = 1) its gradient ( ) ,z

CEIf  
and 
• Finally the nodal boundary functions fNn (n = 1, NCT) with fCA = fNn at n = NCT (Note: fCA = fLIMCA if zCA < zBA). 

Hence, with regard of inputs from steady state considerations the procedure PAX yields the wanted mean 
nodal function values  
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( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )
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z z

n N Nz
z z

z f f z f

f f f z f f f z z n N N

+ +

− −

+

∆ + ∆ + −

∆
= + + − = >
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     (21) 

These functions can, in turn, then be applied as initial values for the transient case. 
Nodal boundary parameters resulting from PAX as needed in the transient case:  
After the integration of the set of non-linear ordinary differential equations (ODE-s) (as presented in the Sec-

tions 6.2 to 6.4) it can be expected that as input to PAX the SC outlet position (zCA = zNn) and thus also the total 
number NCT of SC nodes are directly available. Thereby it has to be distinguished (with regard to the transient 
situation) between two cases of possible input data sets available for PAX: 

If this known SC outlet position is identical with the BC outlet (zCA = zBA) as input to PAX the mean nodal 
function values fMn for all NCT nodes (n = 1, NCT) are available 
• If this known SC outlet position is identical with the BC outlet (zCA = zBA) as input to PAX the mean nodal 

function values fMn for all NCT nodes (n = 1, NCT) are available 
• If this known SC outlet position is identical with the BC outlet (zCA = zBA) as input to PAX the mean nodal 

function values fMn for all NCT nodes (n = 1, NCT) are available 
or, on the other hand, 
• if (due to the transient conditions) the SC outlet is moving within the BC (zCA < zBA) the corresponding SC 

outlet function is known, since restricted by a limit function, i.e.   Nn CA LIMCAf f f= =  at n = NCT. This limit 
is usually the saturation temperature at single-phase flow resp. void fraction equal to 1 or 0 at mixture flow. 
The last mean nodal function value fMn (n = NCT) is thus interconnected to the movement of the SC outlet po-
sition zCA. Hence only one of them is needed to be determined by the integration procedure. Hence it can be 
expected that besides the first NCT − 1 mean nodal function values fMn (at n = 1, NCT − 1) instead of the last 
one now the (transient) outlet position zCA will be directly available from the integration procedure. The 
missing last SC mean nodal function fMn (at n = NCT and zCA < zBA) can then be determined from a relation as 
presented already in (21) above for a steady state input situation. 

Hence, it follows for the transient case if the SC outlet is either moving within the BC 

( ) ( ) ( )
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or, if not (and thus only for the last SC within the BC) 

( ) ( ) ( )
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      (23) 

with fMn (n = 1, NCT) known from the integration procedure (except at n = NCT if zCA < zBA) 
Final results for both cases: 
All these nodal input function values can together with its input parameters fCE and the nodal positions zCE and 

zNn (at n = 1, NCT) then (in both cases) be applied as basic points for the PAX procedure. Yielding now, after 
rearranging the definition equations for the approximation functions in an adequate way, all the other not direct-
ly known nodal SC function parameters. 

The slopes and gradients can finally be determined from (17), (18) and (20). They are indispensable for the 
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special finite element method where they can due to the moving SC entrance or outlet boundaries cross BC  
boundaries, i.e., their intervals can go to zero ( CEz∆  or 0CAz∆ → ).  

The corresponding time-derivative of the last mean node function which is needed for the determination of 
the SC boundary time-derivative (see Section 6.4) follows (as long as zCA < zBA) by differentiating (22)  

( )d d if
d d

t z
PXCA PXMn CA CT CA BACAf zf f n N z z

t t
= + = <                      (24) 

with the coefficients  
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The time-derivative functions 1
d
d Mnt

f − , d
d CAz

t
, d

d LIMCAf
t

 are directly from the thermal-hydraulic model 

(e.g., CCM) available and, if NCT = 2, the term 2
d d
d dNn CEf

t t
f− =  from input too. For the case that a SC con-

tains more than two nodes only their corresponding mean values are known, the needed term 2
d
d Nnf

t −  has thus  

to be estimated by establishing the time-derivatives of all the boundary functions at the nodes below NCT < 2. 
following a recursion procedure based on (22b). 

4.2.3. Code Package PAX 
Based on the above established set of equations a routine PAX had to be developed. Its objective was to calcu-
late automatically either the nodal mean or nodal boundary values (in case of an either steady state or transient 
situation). The procedure should allow also determining the gradients and slopes at SC entrance and outlet (and 
thus also outlet values characterizing the entrance parameters of an eventually subsequent SC). Additionally, 
contributions needed for the calculation of the time-derivatives of the boiling boundary or mixture level can be 
gained (See later-on (70) and (71)).  

Before incorporating the subroutine into the overall coolant channel module the validity of the presented PAX 
procedure has been thoroughly tested. By means of a special driver code (PAXDRI) different characteristic and 
extreme cases have been calculated. The resulting curves of such a characteristic example are plotted in Figure 
2. It presents the two approximation curves of an artificially constructed void fraction distribution f(z) = α(z) 
along a SC with two-phase flow both for the steady state but also transient situation. The curves (on the basis of 
fMn and fNn) should be (and are) identical. 

4.3. Decoupling of Mass and Energy Balance from Momentum Balance Equations 
Treating the three conservation equations in a direct way would produce a set of “stiff” ODE-s. This is due to 
elements with fast pressure wave propagation (and thus being responsible for very small time constants). It has 
the consequence that their solution turns out to be enormously CPU-time consuming.  

Hence, to avoid this costly procedure CCM has been developed with the aim to decouple the mass and energy 
from their momentum balance equations. This can be achieved by determining the thermodynamic properties of 
water and steam in the energy and mass balance equations on the basis of an estimated pressure profile P(z, t). 
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Figure 2. Approximation function f(z) along a SC for both steady state and transient conditions after 
applying PAX (example). 

 
Thereby the pressure difference terms from a recursive (or a prior computational time step) will be added to an 
eventually time-varying system pressure PSYS(t), known from boundary conditions (See Section 6.5). After hav-
ing solved the two conservation equations for mass and energy (now separately from and not simultaneously 
with the momentum balance) the different nodal pressure gradient terms can (by the then following momentum 
balance considerations) be determined according to (4)-(6).  

It can additionally be assumed that according to the very fast (acoustical) pressure wave propagation along a 
coolant channel all the local pressure time-derivatives can be replaced by a given external system pressure 
time-derivative, i.e., 

( )d d
d

,
d SYSz t
t

P P
t

≅                                   (27) 

By applying the above explained “intelligent” (since physically justified) simplification in CCM the small, 
practically negligible, error in establishing the thermodynamic properties on the basis of such an estimated 
pressure profile can be outweighed by the enormous benefit substantiated by two facts:  
• Avoidance of the very time-consuming solution of stiff equations,  
• The calculation of the mass flow distribution into different channels resulting from pressure balance con-

siderations can, in a recursive way, be adapted already within each integration time step, i.e. there is no 
need to solve the entire set of differential equations for this purpose (See “closed channel” concept in Sec-
tion 9.3).  

5. BC Input Data Demanded by CCM 
Besides the BC geometry data (as described in Section 3) obviously additional mostly BC function values are 
needed as inputs to CCM. Selected with the intention to apply only easily available BC values. They will then, 
within CCM, be automatically translated into corresponding SC values. 

5.1. Initial Conditions 
For the start of the transient calculations adequate steady state parameters have to be available as initial condi-
tions. 

5.2. Boundary Conditions and (Perturbation) Parameters at BC Entrance and/or Outlet 
In the steady state case and especially (as boundary conditions) for transient calculations the following input pa-
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rameters are expected to be known:  
• BC power profile. This means that either the nodal heat flux terms qFBE and qFBk (at BC entrance and each 

node k (=1, NBT). 
or  
• qFBE and the nodal power terms QBMk are expected to be known, either directly from input or (as explained in 

Section 9.1) by solving the appropriate “Fourier heat conduction equation”. From the relation 

( ) ( ) ( )1 1 1 1,
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− − −∆ = ∆ + =

= =

= + =
      (28) 

then the other BC nodal terms (qFBk or QBMk, qLBk and qDBk) can be determined too [27]-[29]. 
• For normalization purposes at the starting calculation (i.e., at the steady state situation) as an additional pa-

rameter the total nominal (steady state) heat power QNOM,0 is asked.  
• Channel entrance temperature TBEIN (or enthalpy hBEIN) 
• System pressure PSYS and its time-derivative (dPSYS/dt), situated at a fixed position either along the BC (en-

trance, outlet) or even outside of the ensemble. Due to the fast pressure wave propagation each local pressure 
time-derivative can then be set equal to the change in system pressure (as described in Section 9.3).  

• Total mass flow GBEIN at BC entrance together with pressure terms at BC entrance PBEIN and outlet PBAIN. 
These three parameters are needed for steady state considerations (and partially used for normalization pur-
poses). In the transient case only two of them are demanded as input. The third one will be determined 
automatically by the model. These allows then to distinguish between the situation of an “open” or “closed 
channel” concept as this will be explained in more detail in Section 9.3.  

• Steam mass flow GSBEIN at BC entrance (=0 or =GBEIN at single- or 0 < GSBEIN < GBEIN at two-phase flow con-
ditions). The corresponding entrance void fraction αBE will then be determined automatically within the code 
by applying the inverse drift-flux correlation. 

• Eventually needed time-derivatives of such (perturbation) entrance functions can either be expected to be 
known directly from input or be estimated from their absolute values. 

By choosing adequate boundary conditions then also thermal-hydraulic conditions of special situations can be 
simulated. For example, that of several channel assembles (of nuclear power plants, test loops etc.) which can 
consist of a complex web of pipes and branches (represented by different BC-s, all of them distinguished by 
their key numbers KEYBC). Obviously, also the case of an ensemble consisting of inner loops (as this is needed 
if describing parallel channels in a reactor core) can be treated in an adequate way by applying the concept of a 
“closed channel” procedure (see Section 9.3). 

6. Theoretical Thermal-Hydraulic Separate-Region Approach  
6.1. Power Profile along a SC 
Knowing from input (as explained in Section 5.2) the nodal BC power QBMk together with the linear power term 
qLBE at BC entrance then also the corresponding power profile along each of the SC-s can be determined. 

Hence, if assuming linear behaviour of the “linear nodal BC power terms” within the corresponding BC nodes 
it follows for the  
“nodal linear SC power” term 
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and the “nodal SC power term” 
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In the transient case the SC outlet position zCA (and thus the length ΔzCA of its last node) is (for the case zCA < 
zBA) directly known from the integration procedure, i.e., QMCA follows then directly from the relation above. For 
steady state conditions it follows, on the other hand, now the term QMCA,0 directly from energy balance consid-
erations ((44) and (63)) and the term ΔzCA,0 can now, in a reverse manner, be calculated as shown in (69)).  

And finally one gets for the 
“mean nodal” and “nodal boundary SC power density” terms 

( ) ( ) ( )1
1and independently of the node length 1,

2
Mn

CT
Mn

Mn LN L n
M

n N
n

Q
n N

V A
q q q− += ==         (31) 

( ) ( )
( )

of the last node of the SC before

1

or 0 if or 

12 ,

  CENn CE BE BECA

Mn N CTn

q q q q

q q

n z z

n N−

= = >

=

= = =

= −
           (32) 

This terms are, since independent of ΔzNn, very useful for the solution of special relations where ΔzNn→ 0 (as 
demanded later-on by (36) and (53)). 

Hence, the “total SC power” can be presented as 

1
 CT

CTN

Mn
n

QQ
=

= ∑                                      (33) 

6.2. SC with Single-Phase Fluid (LFTYPE > 0)  
Transient situation 

The spatial integration of the two PDE-s of the conservation Equation (1) and Equation (2) over a (sin-
gle-phase) SC node n yields (by taking into account the rules from Section 4.1, the relations from (7) and (27), 
the possibility of a locally changing nodal cross flow area along the BC and the fact that eventually VMn → 0) for 
the transient case relations for 
• the total nodal mass flow 

( )

( ) ( )

1

1 1 1

d d d
d d d

d 1, ,
d

 

0

Nn Nn Mn Mn SYS Nn Mn Nn Nn

Mn N

T P
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n Nn
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CTN F Pn TY E

G G V T P A z
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t t t

n N L
t

ρ ρ ρ ρ

ρ ρ

−

− − −

 
 
 

= − + + −

− = >+

              (34) 

and, if eliminating by inserting from the equation above the term GNn into the discretized energy balance equa-
tion  
• the time-derivative of the mean nodal coolant temperature: 

( ) ( )
 

d d d dwith or 0 if or
d d d d

1, and or 1, 1 and , 0

t z
Tn TCA CT CT

C

Mn Nn Nn

T CA BA CT CA BA FTY

CA

PE

n N N
t
T T

t t t
T z z z

n N z z n N z z L

= = = <

= = = − <

=

>

+
            (35) 

containing the (also for the special situation of 0CAz∆ →  resp. 0MnV →  valid) part 
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( )

( )

1
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1 d
d

d d dwith or 0 if 1 or 1
d d d

1  

Mn Nn

Mn GMn

t z
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P t

n
V P t t t

z

−
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      (36) 

and the coefficients 

( )     1wit 1h
T T

T Mn Nn Mn M
TMn Mn TMn TMn N

n
Mn T n Mn

Mn MnMn

h
P

h
C C T T

h
h

ρ ρ
ρ

ρ
ρ

−
= − = − −=              (37) 

( ) ( )1
1 1 wi   th sNn

Nn
Mn

GMn Nn Nn Nn Mn Gn GnQ G h h V q
A

h
G

q−
−

−= =− =                   (38) 
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d

  PMn Mn Gn Pn RHPn SYSQ V q C
t

q P= =                                (39) 

( )1 P P
MnR MHPn Mn Nn MnnC h h hρ ρ= −+−                           (40) 

( ) ( )

( )
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1
2

s sz zCE CE CE
TCE Mn Nn TCEI t

Mn Mn TMn FCE CE
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 
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                (41) 

( ) ( )

( )

1 with if
2

and or and , 0

s sz zNn
TCA Nn Nn CA CE CA

Mn TMn

CT CA BA CT CA BA FTYPE

A
T T T T z z

A C
n N z z n N z z L
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                (42) 

In the transient case the mean nodal coolant temperature value TMn is at the begin of each (intermediate) time 
step known. This either from steady state considerations (in combination with PAX) or as a result of the integra-
tion procedure. Hence, other characteristic parameters needed in the relations above can be determined too. 
From the PAX procedure it follow also the SC nodal terms NnT  and the slopes ( )s

NnT  and ( )s
MnT  resp., for the 

case that 0Nnz∆ → , their gradients. Finally, using the water/steam tables [15] also their nodal enthalpies are 
fixed.  

Among other results also the SC outlet position zCA is provided by the integration procedure, allowing then to 
determine the total number of SC nodes (NCT) too. The situation that zCA = zBA means the SC nodal boundary 
temperature values have, within the entire BC, not yet reached their limit values (TLIMNn = TSATNn) and NCT = NBCA 
with NBCA = NBT − NBCE. Otherwise, if zCA < zBA, this limit is reached (at node n), then NCT = n. Obviously, the 
procedure above yields also the time-derivative of the SC outlet position moving within this channel (As de-
scribed in Section 6.4). 

Steady state 
The steady state part of the total nodal mass flow (charaterized by the index 0) follows from the basic 

non-linear algebraic Equation (34) if setting there the time-derivative equal to 0:  

( ),0 ,0 ,0 ,0 ,0 1, , 0Nn CA CE BA BE CT FTYPEn NG G G G LG= = == = >                  (43) 

Treating (35) in a similar way and multiplying the resulting relation by VMn,0 yields the steady state nodal 
temperature resp. enthalpy terms 

( )

( )
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,0 ,0 1,0 ,0

,

/ / /
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if 1 or 2 at 1,
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Nn Nn Nn CNn Nn E
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FTYPE BT BCE

Q
h h h n

G

L n N

h h h

N

−− < ≥ = =

= = = −

= +
             (44) 

restricted by their saturation values. Then, as needed in (30) which results from energy balance considerations, 
the nodal power term for the last SC node has to obey the relation 
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( ) ( )
( ) ( )

,0 ,0 1,0 ,0

1,0 ,0
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if at 2–
CT BCA FTMCA Mn Nn BE
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CT BCA FTn B YPEE

Q Q h h G

h h G
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n N N L
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             (45) 

Thus, for the steady state case, NCT is fixed too: 

( ) ( )
( )

/
,0 ,0 ,0 ,0

/
,0 ,0 ,0

1 and if at 1

and if at 1

CT BCA BT BCE CA Nn BA Nn Nn FTYPE
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N n N N N z z z h h L

N n N z z h h L

= < = − + = < = =

= = = < =
      (46) 

with similar relations for the case LFTYPE = 2.  
From the resulting steady state enthalpy value hNn,0 then (by using the thermodynamic water/steam tables) the 

corresponding coolant temperature value TNn,0 follows (with TNn,0 = TSATNn,0 if n = NCT and zCA < zBA) and, by ap-
plying the PAX procedure, their mean nodal temperature and enthalpy values TMn,0 and hMn,0, parameters which 
are needed as start values for the transient calculations. Obviously, due to the non-linearity of the basic steady 
state equations, this procedure has to be performed in a recursive way. 

It can additionally be stated that both the steady state and transient two-phase mass flow parameters get the 
trivial form 

( )
( )

,0 ,0 ,0

,0 ,0 ,0

  0 resp. and 1, , if 1

and resp. 0 1, , if 2
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M NX

h h
n N L

h
α α α α

−
== = == = = ==    (48) 

6.3. SC with Mixture Fluid (LFTYPE = 0) 
The spatial integration of the two PDE-s of the conservation) Equation (1) and Equation (2) (now over the mix-
ture-phase SC nodes n) can be performed by again taking into account the rules from Section 4.1, the relations 
from (7) and (27), by considering the possibility of locally changing nodal cross flow areas along the BC) and 
the fact that eventually VMn → 0. This yields then relations for 
• the total nodal mass flow term 

( ) ( ) ( )/ / /
1 1, ,  0t t

Nn Nn Mn Mn GPn GZnMn CT FTYPEn NG G V Lρ ρ α α α−= + − =− =−             (49) 

with the coefficients (by neglecting thereby the small differences between mean and nodal saturation thermody-
namic values)  
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• the mean nodal void fraction time-derivative 

( )d d d d or 0 if or and 0
d d d d

  witht z
Mn An ACA Nn N Cn T CT FT EC YPAz z z n N N L

t t t t
α α α= + = = = < =     (52) 

and the coefficients 
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1   d
d
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                       (53) 
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( ) ( )if 0 at 1 or 1 atNn CE Nn
s z zSNn
SNn SNn SNn Nn
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CA CTa a n a a
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G G G n

z
Nα α

∆
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It can also be expected that at begin of each (intermediate) time step the mean nodal void fraction values 
  Mnα  are known. This again either from steady state considerations (at the start of the transient calculations) or 
as a result of the integration procedure. Hence, the additional parameters needed in the relations above can be 
determined too. From the PAX procedure it follow their nodal boundary void fraction terms Nνα  together with 
their slopes   s

Nnα  and ( )  s
Mnα  resp. gradient ( )  z

Nnα  and thus, as shown both in Section 2.2.3 but also in the tables 
given in [22] [23], all the other characteristic two-phase parameters (steam, water or relative velocities, steam 
qualities etc). Obviously, due to the non-linearity of the basic equations the steady state solution procedure has 
to be performed in a recursive way. 

If, in the transient case, the SC nodal boundary void fraction αNn does (within the entire BC) not reach its limit 
value (αLIMNn = 1 or 0) the total number of SC nodes is given as NCT = NBT − NBCE and zNn (at n = NCT) = zCA= zBT. 
Otherwise, if this limit is reached (at node n) then NCT = n and αNn = 1 (or =0) with zCA (<zBT) resulting from the 
integration. Then, from the procedure above also the time-derivative of the boiling boundary, moving within the 
BC, can be established (as this will be discussed in Section 6.4 too).  

With regard to the drift-flux package [21] a relation for the steam mass flow gradient (as already derived in 
(13)) is required. It is based on the form 

( ) ( ) ( )
( ) ( )

/ /
0 0

/
1 1

with at 0 1 and 0

with at 1 and 1
SNn CE S Nn S S Nn Nn CE

CA W Nn W W Nn CT Nn CA
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A v v v n N

α ρ α α α

ρ α α α

= = = = → =

= = = = → =
           (57) 

Eliminating in (49) the term d
d Mnt
α  by inserting from (52) yields a relation between GSNn and GNn  

( ) ( )
/

/ / 1 1, , 0Nn SNn XNn CT FTYPE
Mn

G G G n N Lρ
ρ

−
 

+ = = = 
 

                  (58) 

The resulting “auxiliary” mass flow term GXn refers only to already known values (for example the power 
profile or parameters from the node before) and is thus directly available  

( ) ( ) ( ) ( )
/

/ / /
1 1/ / 1 1, , 0Mn

SWMn

Q t t
Xn Nn SNn Mn APn GPn CT FTYPEh Mn

Mn
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 
  (59) 

A similar relation can be established from the drift flux correlation (10) by taking advantage of the fact that 
the needed drift velocity vDNn and the phase distribution parameter C0Nn are independent from the total mass flow 
GNn (and can thus be determined before knowing GNn). This term (GNn) results then by combining (58) and (10)  

( )
( ) ( )

/
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1,
1

Xn D DC Nn
Nn CT
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α ρ
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−
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                      (60) 

using the coefficient  
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/ / /

/ / /1DCNn
GCMn Nn

C
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ρ ρ
ρ ρ

  
= −   
   

                             (61) 

All other characteristic two-phase parameters follow then from the drift flux correlation package [22] and [23]. 
These are especially the nodal steam mass flow GSNn and, eventually, the slope ( )z

Nnα  resp., according to (56),  
( )s
SNnG . Then, finally, from (52) (or (49)) the mean nodal void fraction time-derivative d

d Mnt
α  will result, needed 

for the next integration step. 
Obviously, at a mixture flow situation the mean nodal temperature and enthalpy terms are equal to their satu-

ration values 

( ) ( ) ( ) ( )/ / / / / /resp. or 1, and 0Mn SAT Mn Mn Mn Mn Mn CT FTYPET T P h h P h h P n N L= = = = =          (62) 

and are only dependent on their local pressure value.  
Relations for the steady state case follow by setting in (49) and (52) (resp. (53)) the time-derivatives equal to 

0. For the total mass flow parameters a similar relation as already given for the single-phase flow (see (52)) is 
valid, yielding GNn,0 = GBE,0. 

Hence, one obtains a relation for the (steady state) nodal steam mass flow  

( ),0
,0 1,0 ,0?

,0

  1, and 0BMk
SNn SNn Nn BE BT BCE FTYP

S
E

WMk

n N
Q

G LG G G N
h− = −= + ≤ ==            (63) 

if knowing the term QMCA,0 = QMn,0 at n = NCT (see (30)). 
Thus the total number (NCT) of SC nodes can be determinrd too: 

( ) ( )
( )

,0 ,0 ,0 ,0

,0 ,0 ,0

and if and 0

and if and 0
CT BT BCE CA Nn BA SNn BE FTYPE

CT BT BCE CA BA SNn BE FTYPE

N n N N z z z G G L

N N N z z G G L

= < − = < = =

= − = < =
         (64) 

and also the corresponding steam quality parameter  

( ),0
,0

,0

  1, if 0SNn
Nn CT FTYPE

Nn

G
X n N L

G
= ==                        (65) 

The nodal boundary void fraction values αNn,0 can now be determined by applying the inverse drift-flux cor-
relation. The mean nodal void fraction value αMn,0 from the PAX procedure. All of them are needed as starting 
values for the transient calculation. 

6.4. SC Entrance and Outlet Boundaries 
6.4.1. SC Entrance Position 
The SC entrance position zCE (=zNn at n = 0) is (for both the steady state but also transient case) either equal to 
BC entrance zBE (for the first SC within the BC) or equal to the outlet boundary of the SC before (See also Sec-
tion 3).  

6.4.2. SC Outlet Position 
Steady state: 

The SC (steady state) outlet position zCA,0 (=zNn at n = NCT), i.e. the boiling boundary zBB,0 or mixture level 
zML,0, can for the trivial case of ,0CA BAz z≥  be represented as  

( ),0 ,0andCA BA CT CA BAz z n N z z= = =                           (66) 

Otherwise, the length of the last (SC) node (ΔzCA,0) and thus also 

( ),0 1 ,0 ,0    andCA Nn CA CT CA BAz z Dz n N z z−= + = =                      (67) 

can be determined if taking into account that the corresponding steady state total number NCT of nodes of a (sin-
gle- or two-phase) SC is already determined by (46) or (64). The nodal power term QMCA,0 of the last SC node 
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are then given by (45) or (63). Hence, if dividing (30) by ΔzBkqLBk − 1,0 yields an algebraic quadratic equation of 
the form  

( )
2

,0 1,0 ,0 ,0 ,0

1,0 1,0

1 0 and if
2   
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CT BCA CT BT
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q z z z q
−

− −

− ∆ ∆ 
+ − = = = = ∆ ∆ ∆ 

    (68) 

yielding finally as solution 
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 −
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

∆




=

,0 1,0f LBk LBkq q −→

     (69) 

Then, from the relations in Section 6.1, also the other characteristic steady state power terms can be calcu-
lated.  

Transient situation: 
The transient SC outlet boundary zCA (=boiling boundary or mixture level) follows, as already pointed-out, 

directly from the integration procedure. Thus also ΔzCA and NCT are determined. A boundary which can move 
along the entire BC (and thereby also cross BC node boundaries). A SC can even shrink to a single node (NCT = 
1), start to disappear or to be created anew. Then, if ΔzCA → 0, in the relations above the slope in the vicinity of 
such a boundary has to be replaced by a gradient (determined in PAX). 

The mean nodal coolant temperature or, if LFTYPE = 0, void fraction of the last SC node is interrelated by the 
PAX procedure with the locally varying SC outlet boundary zCA. Hence, in a transient situation the time-derivative 
of only one of these parameters is demanded. The second one follows then after the integration from the PAX 
procedure.  

If combining (in case of single-phase flow) (24) and (35) the wanted relation for the SC boundary time de-
rivative can be expressed by  

( )
 

d d or 0 , or if 0
d d

t t
TCA PXCA

CA BB CT CA BA CA BA FTYPEz z
TCA PXCA

T T
z z n N z z z z L

t t T T
−

= = − = = < = >
−

       (70) 

and if taking for the case of a mixture flow in a similar way (24) and (52) into account  

( )d d or 0 , or if 0
d d

t t
TCA PXCA

CA ML CT CA BA CA BA FTYPEz z
TCA PXCA

z z n N z z z z L
t t

α α
α α

−
= = − = = < = =

−
       (71) 

If zCA < zBA, the corresponding time-derivatives d
d MnT

t
 or d

d Mnt
α  of the last SC node (at n = NCT) follow by  

inserting the terms above into (35) or (52). After the integration procedure then the SC outlet boundary zCA 
(=boiling boundary zBB or mixture level zML) and thus also the total number NCT of SC nodes are given. 

Similar considerations can thus yield alkso corresponding relations for the time-behaviour of a supercritical 
fluid. 

6.5. Pressure Profile along a SC (and thus also BC) 
After having solved the mass and energy balance equations, separately and not simultaneously with the momen-
tum balance, the now exact nodal SC and BC pressure difference terms ( 1Nn Nn NnP P P −∆ = −  and ΔPBNn) can be 
determined for both single- or two-phase flow situations by discretizing the momentum balance equation (13) 
and. if applying a modified “finite element method”, integrating (4) to (6) over the corresponding SC nodes. The 
total BC pressure difference BT BA BEP P P∆ = −  between BC outlet and entrance follows then from the relation  

( ),0with 0 at steady state conditionsBT PBT GBT GBTP P P P∆ = ∆ −∆ ∆ =                (72) 
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and the part  

( ),0 ,0?with at steady state conditionsPBT SBT ABT XBT FBT DBT PBT BTINP P P P P P P P∆ = ∆ + ∆ + ∆ + ∆ + ∆ ∆ = ∆     (73) 

comprising, as described in Section 2.1.3, terms from static head (ΔPSBT), mass acceleration (ΔPABT), wall fric-
tion (ΔPFBT) and external pressure accelerations (ΔPXBT due to pumps or other perturbations from outside) and an 
(only for transient situations needed) term, ΔPGBT, being represented as 

( ) 
0

d d, d at transient onditions
d d

0 at steady state

BTz

GBT FB BT FB MTP G z t z z G
t t

∆ = =

=

∫                  (74) 

This last term describes the influence of time-dependent changes in total mass flux along a BC (caused by the 
direct influence of changing nodal mass fluxes) and can be estimated by introducing a “fictive” mean mass flux 
term GFBMT (averaged over all NSCT SC-s of the entire BC) with 

( )1
1 1 1

1 1 1
2

SCT CT BTN N N
Bk

FBMT Nn FBMT Bk Bk
n kBT BT BMk

z
G z G G G

z z A −
= =

∆ = +∑ ∑ ∑                   (75) 

Its time derivative can then be represented by 

( )d d if 0 Index B begin of time-step
d d

B

FBMT FBMTB
FBMT FBMT B

t t

G GG G t t t
t t t =

−  ≅ = ∆ = − = = ∆  
    (76) 

Looking at the available friction correlations, there arises the problem how to consider correctly contributions 
from spacers, tube bends, abrupt changes in cross sections etc. as well. The entire friction pressure decrease 
(ΔPFBT) along a BC can thus never be described in a satisfactory manner solely by analytical expressions. To 
minimize these uncertainties a further friction term, ΔPDBT, had to be included into these considerations.  

Since the total steady state BC pressure difference ΔPBT,0 = ΔPPBT,0 is known from input the corresponding 
steady state additive pressure difference term ΔPDBT,0 is (according to (73) and (74)) fixed. It seems, however, to 
be reasonable to treat this term as a “friction” (or at least the sum with ΔPFBT) and not as a “driving” force. Thus 
it must be demanded that these terms should remain negative. Otherwise, input terms such as the entire pressure 
difference along the BC or corresponding friction factors have to be adjusted in an adequate way. 

Describing the general additive pressure difference term ΔPDBT as to have the form  

( ),0 1DBT FMP FBT FADDP f P P∆ = − ∆ + ∆                             (77) 

means that ΔPDBT is either supplemented with a direct additive term (index FADD) or the friction part is pro-
vided with a multiplicative factor (fFMP,0 − 1). For the additive part it will be assumed to be the (1 − εDPZ)-th part 
of the total additional pressure difference term and to be proportional to the square of the total coolant mass flow, 
e.g., at BC entrance 
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with the input coefficient εDPZ = εDPZI governing from outside which of them should prevail.  
From the known steady state total “additional” term ΔPDBT,0 the corresponding additive friction factor fADD,0 

follows then directly from the equation above. From (77) then the multiplicative one  
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There arises now the question how the validity of both correction factors could be expanded to the transient 
case too. In the here presented approach this is done by assuming that these factors should remain time-inde- 
pendent, i.e., that fADD = fADD,0 and fFMP = fFMP,0. This allows finally also to determine the wanted nodal pressure 
decrease term ΔPDBT of (73) for the transient case. 

By adding the resulting nodal BC pressure difference terms to the (time-varying) system pressure PSYS(t), 
given from outside as boundary condition with respect to a certain position (in- or outside of the BC), then fi-
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nally also the absolute nodal pressure profile PBk along the BC can be established (This term is needed at the be-
gin of the next time step within the constitutive equations).  

7. Digital Coolant Channel Module CCM 
Starting from the above presented “drift-flux based mixture-fluid theory” an universally applicable (1D) ther-
mal-hydraulic coolant channel module, named CCM, could be established. It was derived with the intention to 
provide the authors of different and sometimes very complex multi-channel thermal-hydraulic codes with a gen-
eral and easily applicable tool needed for the simulation of the steady state and transient behaviours of the most 
important single- and two-phase parameters along any type of heated or cooled coolant channel.    

For the realization of the theoretical thermal-hydraulic model in the corresponding (digital) module CCM 
very specific methods had to be achieved by taking into account the following points: 
• The code has to be easily applicable, demanding only a limited amount of directly available input data. It 

should yield as output all the necessary time-derivatives and constitutive parameters of the basic coolant 
channels required for the establishment of an overall thermal-hydraulic code. 

• It was the intention of CCM to act as a complete system in its own right, requiring only BC (and not SC) re-
lated, and thus easily available input parameters (geometry data, initial and boundary conditions, parameters 
resulting from the integration etc.). The partitioning of BC-s into SC-s is done at the beginning of each re-
cursion or time-step automatically within CCM, so no special actions are required of the user.  

• The quality of such a model is very much dependent on the method by which the problem of the varying SC 
entrance and outlet boundaries can be solved. Especially if they cross BC node boundaries during their 
movement along a channel. For this purpose a special “modified finite element-method” has been developed 
which takes advantage of the “Leibniz” rule for integration. 

• For the support of the nodalized differential equations along different SC-s a “quadratic polygon approxima-
tion” procedure (PAX) was constructed in order to interrelate the mean nodal with the nodal boundary func-
tions. Providing additionally also nodal entrance gradients which are required for the calculation of varying 
SC entrance and outlet boundaries (See Section 4.2).  

• Several correlation packages such as, for example, packages for the thermodynamic properties of water and 
steam, single- and two-phase friction coefficients and drift flux correlations had to be developed and imple-
mented (See Sections 2.2.1 to 2.2.3). And, for the case that the power distribution along the channel is not 
directly available also a heat transfer correlation package (See Section 9.1). 

• Knowing the characteristic parameters at all SC nodes (within a BC) then the single- and two-phase parame-
ters at all node boundaries of the entire BC can be determined. And, in the transient case, also the corre-
sponding time-derivatives of the characteristic averaged parameters of coolant temperatures resp. void fraction 
over these nodes. This yields a final set of (steady-state) algebraic resp. ODE-s and constitutive equations. 

• In order to be able to describe also thermodynamic non-equilibrium situations it can be assumed that each 
phase is represented by an own with each other interacting BC. For these purpose in the model the possibil-
ity of a variable cross flow area along the entire channel had to be considered as well.  

Within the CCM procedure two further aspects play an important role. They are, however, not essential for 
the development of mixture-fluid models but can help enormously to enhance the computational speed and ap-
plicability of the resulting code when simulating natural circulation within a complex net of coolant pipes: 
• The solution of the energy and mass balance equations at each intermediate time step will be performed in-

dependently from momentum balance considerations (Section 4.3). Hence the heavy CPU-time consuming 
solution of stiff equations can be avoided.  

• The decoupling allows then also the introduction of an “open” and “closed channel” concept (see Section 
9.3). Such a special method can be very helpful in describing complex physical systems with eventually in-
ner loops. As an example see in [27] [28], the simulation of a 3D compartment by parallel channels. 

• It represents thus a valuable and very generally applicable tool for the establishment of complex ther-
mal-hydraulic computer codes. And this by being able to describe any physical system containing a variety 
of complicated single- and mixture fluid regions. Which can be represented by a number of different types of 
(basic) coolant channels. It provides automatically an overall set of nodal non-linear algebraic resp. ordinary 
differential equations and corresponding constitutive relations needed for each of these sub-channels and 
thus basic channels. Hence, this direct method can then be seen as a real counterpart to the currently pre-
ferred and dominant “separate-phase models”.  
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The application of a direct mixture-fluid technique follows a long tradition of research efforts. Ishii [26], a 
pioneer of two-fluid modelling, states with respect to the application of effective drift-flux correlation packages 
in thermal-hydraulic models: “In view of the limited data base presently available and difficulties associated 
with detailed measurements in two-phase flow, an advanced mixture-fluid model is probably the most reliable 
and accurate tool for standard two-phase flow problems”. There is no new knowledge available to indicate that 
this view is invalid.  

For more details about the construction of the module CCM see [29]-[34] and [13]. 

8. Comparison between the “Separate-Region” and “Separate-Phase” Concepts 
The here presented theoretical “separate-region” approach can thus disclose a new way in describing thermal- 
hydraulic problems. The resulting “mixture-fluid” technique can be regarded as a very appropriate way to cir-
cumvent the uncertainties apparent from the separation of the phases in a mixture flow. The starting equations 
are the direct consequence of the original fundamental physical laws for the conservation of mass, energy and 
momentum, supported by well-tested heat transfer and single- and two-phase friction correlation packages (and 
thus avoiding also the sometimes very speculative derivation of the “closure” terms). In a very comprehensive 
study [27], a variety of arguments for the here presented type of approach is given.  

Generally, the mixture-fluid approach is in line with Fabic [36] who names three strong points arguing in fa-
vour of this type of drift-flux based mixture-fluid models: 
• the application of (genuine) constitutive equations have the advantage that these relations are supported by a 

wealth of test data, 
• they do not require unknown or untested closure relations concerning mass, energy and momentum ex-

change between phases (they are mostly very speculative, influencing thus the reliability of the codes), 
• they are much simpler to apply,  

and, it can be added, 
• discontinuities during phase changes can be avoided by having to concentrate to SC-s with one fluid type 

only and by deriving special solution procedures for the simulation of the movement of the SC entrance and 
outlet boundaries, 

• the possibility to circumvent a set of “stiff” ODE-s saves an enormous amount of CPU time which means 
that the other parts of the code can be treated in much more detail. 

In contrast to the currently very dominant separate-phase models, the existing theoretical inconsistencies in 
describing a two-phase fluid flowing along a coolant channel if changing between single-phase and two-phase 
conditions and vice versa can be circumvented in the “separate-region” mixture-fluid approach presented here in 
a very elegant way. A very unique technique has been established built on the concept of subdividing a basic 
channel (BC) into different sub-channels (SC-s), thus yielding exact solutions of the basic drift-flux supported 
conservation equations. This type of approach shows, as discussed in [27], distinct advantages vs. “separate 
phase” codes, especially if being aware of  
• the quality of the fundamental equations with basic conservation equations on the one side following directly 

from physical laws supported by experimentally based constitutive equations vs. split “field” equations on 
the other side with artificial closure terms, 

• the special solution methods due to the detailed interpolation procedure from PAX allowing to calculate the 
exact movement of boiling boundaries and mixture (or dry-out) levels, different to the “donor-cell averaging” 
methods yielding mostly only “condensed” levels, 

• the easy replacement of new and improved correlations within the different packages without having to 
change the basic equations of the theory (for example the complicated exchange terms of a “separate-phase” 
approach) , 

• the possibility to take advantage of the “closed-channel concept” for an overall system (as explained in the 
next section), This concept can, for example, be needed for thermal-hydraulic 3D considerations, allowing 
thus to decouple a characteristic (“closed”) channel from other parts of a complex system of loops, 

• the speed of the computation, 
• the derivation of the theory in close and parallel connection with the establishment of the planned code by 

incorporating demands coming from both sides, 
• its easy applicability, 
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• thermal non-equilibrium situations can be taken care too because of the introduction of varying cross sec-
tions along the BC into the concept. Two separate phases of such a fluid can then be simulated by two with 
each other interacting basic channels (for example if injecting sub-cooled water rays into a steam dome). 

• the maturity of the module, which is continuously enhanced by new application cases. 
• taking advantage of the considerable effort that has been done in verifying and checking CCM (besides an 

extensive V & V procedure), with respect to the applicability and adjustment and also for very extreme 
situations 

• and the benefits coming from the fact that most of the development work for the coolant channel ther-
mal-hydraulics has already been shifted to establishment the here presented module, including the special 
provisions for extreme situations such as stagnant flow, zero power or zero sub-cooling, test calculations for 
the verification and validation of the code etc.). 

The existence of the resulting widely verified and validated module CCM represents an important basic ele-
ment for the construction of a variety of other comprehensive thermal-hydraulic models and codes as well. Such 
models and modules can be needed for the simulation of the steady state and transient behaviour of different 
types of steam generators, of 3D thermal-hydraulic compartments consisting of a number of parallel channels 
(reactor cores, VVER steam generators etc.). It shows special advantages in view of the determination of the 
mass flow distribution into different coolant channels after non-symmetric perturbations (see [27] [28]), a prob-
lem which is far from being solved in many of the newest 3D studies.  

It has, however, to be noted that there exist essential differences in applying these two types of approaches. 
The modular codes (such as TRAC, RELAP, ATHLET etc.) combine the different parts of a complex physical 
system by means of special input prescriptions. Being thus more susceptible to input errors. In the here pre-
sented separate-region approach the very well tested-out module CCM yields only for each compartment the 
needed characteristic algebraic and differential equations for the overall code (e.g. UTSG-3). Which allows 
more flexibility in describing a complicated physical system but demands also from the user that he is competent 
in establishing digital codes. 

9. Overall Thermal-Hydraulic Multi-Channel Model and Digital Code 
In order to be able to incorporate CCM in an overall thermal-hydraulic multi-channel code the interaction be-
tween the different compartments of the (sometimes very) complex physical system has to be defined. For ex-
ample the heat transfer by means of boundary conditions.  

And it has to be considered how the inner circles within this system work. For this purpose usually three more 
conservation laws have to be taken into account. They yield the necessary initial and boundary conditions to 
CCM with CCM providing, vice versa, the feedbacks in return.  

The first two laws, namely the volume and mass balance relations, allow then to calculate the transient be-
haviour of the water (and steam volume) and of the pressure (and thus also system pressure PSYS) within a fixed 
(but also even a changing) overall volume VT. 

The third physical law is based on the (trivial) fact that the sum of all pressure decrease terms along a closed 
loop must be zero. And thus in the transient case the entire pressure difference of at least one of the BC-s within 
this chain of loops is fixed. This allows then to determine the absolute values of the mass flow profile along the 
entire loop (for example at least at the entrance to this special BC to determine. 

9.1. Power Profile along a Coolant Channel (Heat Transport into and out of a BC)  
The nodal BC heat power terms QBMk (and the corresponding density qBCE at BC entrance) into or out of the 
coolant are needed (as explained in Section 6.1) as boundary condition for the energy balance equation (2) for 
each of the channels.  

These terms can either be directly available (as this is the case for electrically heated loops) or be provided 
from other parts of the overall system.  

In this later case the nodal power distribution (and the wall temperature TTW) have to be determined by solving 
the adequate Fourier heat conduction equations (a PDE of 2-nd order) at each BC node. Demanding thereby 
adequate boundary condition, such as, for example,  
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q Aq a T T q
U U

= − = =                            (80) 



A. Hoeld 
 

 
2038 

for the case of heat transfer out of a fuel rod resp. out or into a U-tube (with respect to a coolant having the tem-
perature T). Such a procedure is, for example, presented in [13] [30] for the case of heat conduction through a 
U-tube wall).  

For this purpose adequate heat transfer coefficients (αTW) are demanded. This means a method had to be found 
for getting these coefficients along a coolant channel at different flow regimes. In connection with the develop-
ment of the UTSG code (and thus also of CCM) an own very comprehensive heat transfer coefficient package, 
called HETRAC [37], has been established.  

Obviously, since the resulting set of heat transfer coefficients can never represent the reality in a correct way 
the wetted surface of the involved heat transfer elements has, in view of the given nominal total steady state 
power value QNOM,0, to be provided with a corresponding correction factor. A factor which will be assumed to 
remain unchanged also in the transient case. 

This classic method is different to a “separate-phase” concept where it has to be assumed that the heat is 
transferred both directly from the wall to each of the two possible phases but also exchanged between them. 
There arises then the question how the corresponding heat transfer coefficients for each phase should look like.  

9.2. Mass and Volume Balance along the Entire Overall System 
Calculating, as explaine above, the transient behaviour of the water (and steam volume) and of the system pres-
sure PSYS. Together with the local pressure difference termss then also the pressure profile along each corre-
sponding BC can be determined.  

9.3. BC Entrance Mass Flow (“Open and Closed Channel Concept”) 
It can be expected that at steady state conditions for each BC in a consecutive arrangement of BC-s the two 
pressure entrance and outlet values (PBE = PBEIN, PBA = PBAIN and the entrance mass flow GBE = GBEIN are known 
from input. The entire friction pressure decrease along a BC can, however, never be described in a satisfactory 
manner solely by analytical expressions as based only on the available friction correlations. Hence (as explained 
already in Section 6.3) in order to consider correctly contributions from spacers, tube bends, abrupt changes in 
cross sections etc. as well correction terms fFMP,0 and ΔPFADD,0 had to be introduced. In the case of parallel chan-
nels one of them will be taken as the representative one. Since it can usually be assumed that all these channels 
will have a common friction behaviour (otherwise a special procedure has to be foreseen), the correction factors 
for this channel can be assumed to be valid for all the other channels too This allows then to calculate also the 
different mass flow distribution into these channels (See for example [29]).  

In the transient case only two of the three characteristic variables (BC entrance mass flow, BC entrance and 
outlet pressure) can be expected to be known from input. Hence, in these considerations it will have to be dis-
tinguished between two special concepts. Is the mass flow at a BC entrance known as input, either as outside 
perturbation (resulting from a pump) or as an outlet value from a BC below) Yes or not? Assuming that in both 
cases the resulting (steady state) correction factors will remain unchanged then in the 1-st (“normal”) case 
(called the “Open Channel Concept”) the mass flow and pressure development along the channel (and thus also 
the missing pressure term at ether BC outlet or entrance) can be determined in the usual way (See Section 3). In 
the other case (named “Closed Channel Concept”) there has, however, to be found a method how to estimate an 
appropriate entrance mass flow value (or its time-derivative) by adjusting it to the given now fixed BC pressure 
difference. 

This last case plays an important role in the simulation of the natural circulation behaviour of masses within 
the closed loops of complex physical systems. Due to the fact that the sum of the entire pressure decrease terms 
along such a closed circuit must be zero. Then the pressure difference (and thus also the absolute entrance and 
outlet values) are at least of one of the BC channels are defined. And with special methods the needed coolant 
mass flow terms can be determined  

Usually, in the common thermal-hydraulic codes (see for example the “separate-phase” approaches) this 
problem is handled by solving the three (or more) fundamental equations for the entire complex system simul-
taneously. A procedure which affords mostly immense computational times and costs. In the here presented 
module (based on a separate treatment of momentum from mass and energy balance) a more elegant method 
could be established. Thus introducing an additional very efficient aspect into the theory of CCM.  

This last and still very provisional method has been applied within the UTSG-3 code [13] for the simulation 
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of the natural-circulation behaviour of the secondary steam generator loop. Similar considerations have been 
undertaken for a 3D case where the automatic mass flow distribution into different entrances of a set of parallel 
channels is asked (See e.g. [28] [29]). The experience of such calculations should help to decide which of the 
different possible procedures should finally be given preference. 

The “open/closed channel concept” makes sure that measures with regard to the entire closed loop do not need to 
be taken into account simultaneously but (for each channel) separately. Its application can be restricted to only one 
“characteristic” channel of a sequence of channels of a complex loop. This additional tool of CCM can in such 
cases help to handle the variety of closed loops within a complex physical system in a very comfortable way. 

10. Solution Procedure 
10.1. Steady State  
The characteristic steady state parameters are determined in a direct way, i.e. calculated by setting all the time- 
derivatives equal to zero and solving the resulting set of non-linear algebraic equations for SC-s (as being pre-
sented in the Sections 6.2, 6.3 and 6.4). Thereby, due to the nonlinearities in the set of the (steady state) consti-
tutive equations a recursive procedure in combination with and controlled by the main program has to be applied 
until a certain convergence in the solution vectors can be stated. The results are then combined to BC parameters 
and transferred again back to the main (=calling) program. 

The (seemingly trivial) demand that the solution vectors should remain unchanged at the begin of calculation 
and still zero-power conditions is a very valuable and important check of the quality of the set of transient basic 
equations.  

10.2. Transient Situation 
For the transient case, as a result of the integration (performed within the calling program and thus outside of 
CCM) the solution parameters of the set of ODE-s are transferred after each intermediate time step to CCM. 
These are (as described in detail also in Section 7) mainly the mean nodal SC and thus BC coolant temperatures, 
mean nodal void fractions and the resulting boiling or superheating boundaries. These last two parameters allow 
then to subdivide the BC into SC-s number (NCT) of SC nodes. Finally, the needed SC (and thus BC) 
time-derivatives can then be determined within CCM yielding the corresponding constitutive parameters and the 
total and nodal length (zNn and ΔzNn) of these SC-s and thus also their total (as described in the Sections 6.2 to 
6.4) and then transmitted again to the calling program where the integration for the next time step can take place.  

11. Natural-Circulation Thermal-Hydraulic U-Tube Steam Generator Code UTSG-3 
The construction of such an overall code has, for example, be exercised by establishing a new and advanced 
version of UTSG, now called UTSG-3, being based, similarly as in the previous code UTSG-2, on the same 
U-tube system layout (heat transfer through U-tubes, top plenum with the main steam system, downcomer (with 
feedwater injection) and natural circulation along the secondary loop included). But now replacing, among other 
essential improvements, the three characteristic channel elements of the code UTSG-2 (i.e. the primary and sec-
ondary side of the heat exchange zone and the riser) by adequate CCM modules.  

The very successful application of the “separate-region coolant channel concept” within the code combination 
UTSG-3/CCM demonstrates the ability to find an exact and direct solution for the basic equations of a “non- 
homogeneous drift-flux based thermal-hydraulic mixture-fluid coolant channel model”. And it allows to check 
the performance and validity of the code package CCM and to verify it. For more details see [13] [31] [33].  

12. Verification and Validation (V & V) Procedures 
During the course of development of the different versions of the code combination UTSG-3/CCM the module 
has gone through appropriate verification and validation (V & V) procedures (with continuous feedbacks being 
considered in the more and more advanced formulation of the theoretical model).  

CCM is (similar as done in the separate-phase models) constructed with the objective to be used only as an 
element within an overall code. Hence, further V&V steps could be performed only in an indirect way, i.e. in 
combination with such overall codes. This has been achieved, as already explained in the section above, in a 
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very successful way by means of the natural-circulation U-tube steam generator code UTSG-3. Thereby the 
module CCM could take advantage from the experiences been gained in decades of years work with the con-
struction of an effective non-linear one-dimensional theoretical model and, based on it, corresponding digital 
code UTSG-2 for vertical, natural-circulation U-tube steam generators [9]-[11] [33] [34] [38]-[40] and now also 
the new advanced code version UTSG-3 [27] [28].  

The good agreement of the test calculations with similar calculations of earlier versions applied to the same 
transient cases demonstrates that despite of the continuous improvements of the code UTSG and the incorpora-
tion of CCM into UTSG-3 the newest and advanced version has still preserved its validity. 

A more detailed description over these general V&V measures demonstrated on one characteristic test case 
can be found in [13].  

13. Conclusions 
The universally applicable coolant channel module CCM has been established with the aim to describe the 
thermal-hydraulic situation of a coolant flowing up-, horizontal or downwards along any channel with fluids 
changing between sub-cooled, saturated, superheated and supercritical conditions. It must be recognized that it 
represents a complete system in its own right, which requires only BC-related, and thus easily available input 
values (geometry data, initial and boundary conditions, resulting parameters from integration). The partitioning 
of a basic channel into SC-s is done automatically within the module, requiring no special actions on the part of 
the user. At the end of a time-step, the characteristic parameters of all SC-s are transferred to the corresponding 
BC positions, thus yielding the final set of ODE-s together with the parameters following from the constitutive 
equations of CCM. 

The resulting equations for different channels appearing in a complex physical system can be combined with 
other sets of algebraic equations and ODE-s coming from additional parts of such a complex model (heat trans-
fer or nuclear kinetics considerations, top plenum, main steam system and downcomer of a steam generator etc.). 
The final overall set of ODE-s can then be solved by applying an appropriate time-integration routine [13] [27] 
[33]-[35]. 

The enormous efforts already made in the verification and validation of the code UTSG-3, its application in a 
number of transient calculations at very extreme situations (fast opening of safety valves, dry out of the total 
channel with SC-s disappearing or created anew) brings the code and thus also CCM to a very mature and (what 
is important) easily applicable state. 

There is, however, not yet enough experience to judge how the potential of the mixture -fluid models and es-
pecially of CCM can be expanded to other extreme cases (e.g., water and steam hammer). Is it justified to prefer 
separate-phase models versus the drift-flux based (and thus non-homogeneous) mixture fluid models? This de-
pends, among other criteria, also on the quality of the special models and their exact derivation.  

Considering the arguments presented above it can, however, be stated that in general the here presented 
“Separate-Region Mixture Fluid” concept offers a very satisfactory alternative to the currently dominant “Sepa-
rate-Phase Model” concepts. 

A very detailed derivation in this paper established set of characteristic model equations for both the polygon 
approximation procedure PAX (as a part of CCM) but also of the Coolant Channel Module CCM is given in [41] 
[42]. 
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Nomenclature 
ABk m² BC cross sectional area (at BC node boundary k) 

ANn, AMn m² SC cross sectional area (at SC node boundary n, mean value) 
ATWMn m² Surface area of a (single) tube wall along a node n 

C 
C0, 00Cα  

- 
- 

Dimensionless constant 
Phase distribution parameter and its slope at α = 0 

dHY m Hydraulic diameter 
f(z, t), fNn, fMn - General and nodal (boundary and mean) solution functions 

fLIMCA - Upper or lower limit of the approx. function f(z,t) 

( )1W S W W S SG G G A v vα ρ αρ= + = − +    

F FW FS

GG v G G
A

ρ= = = +
 

kg
s

 

2

kg
s m⋅

 

Mass flow 
Mass flux 

h, hP, cP = hT 
3

3

J m 1, ,
kg kg m kg⋅  

Specific enthalpy and its partial derivatives with respect to pressure and 
temperature (=specific heat) 

hSW = h// − h/, h//, h/ J
kg  

Latent heat, saturation steam and water enthalpy 

KEYBC - Characteristic key number for each channel (BC) within an overall design 

LFTYPE = 0, 1, 2 or 3 - SC with saturated water/steam mixture, sub-cooled water, superheated or 
supercritical steam 

LFTBE (=LFTYPE of 1-st NSC) 
LHEATB = 0 or = 1 

- 
- 

LFTYPE of 1-st SC within BC 
Non-heated or heated wall 

LNOCCF = 0 or = 1 - Eventual CCF situation allowed or not allowed 
NBT = NBCA − NBCE + 1 - Total number of BC nodes 

NBCA = NCT + NBCE − 1, NBCE - BC node numbers containing BC outlet or entrance 
NCT = NCA − NCE + 1 

NCA, NCE, NCT = NCA − NCE + 1 - Total number of SC nodes BC node number containing SC outlet and 
entrance and total number of SC nodes 

NSC = NSCE, NSCA - Characteristic number of each SC, setting NSCE = 1, 2, 3 or 4 if LFTYPE = 0, 
1, 2 or 3. Then NSCA = NSCE + NSCT − 1 

P, ΔPT = PA − PE 2

kgPa
m s

=
⋅

 Pressure and pressure difference (in flow direction) 

QBT, QBMk W Total and nodal power into BC node k 

Bk
BMk LBMk

BMk

Uq q
A

=  
3

W
m

 Mean nodal BC power density into the fluid (=volumetric heat transfer 
rate) 

Bk LBk
FBk Bk

Bk TWBk

q qq A
U U

= =  
2

W
m

 Heat flux from (heated) wall to fluid at BC node k 

Bk
LBk Bk Bk

Bk

Qq A q
z

= =
∆

 
W
m

 Linear power along BC node k 

( )1

1
2

Mn
Mn LNn LNn

Mn Mn

Qq q q
V A −= = +  

3

W
m

 Mean nodal SC power density into fluid (=volumetric0 heat transfer rate) 

T, t C, s Temperature, time 
UTW m Perimeter of a heated (single) tube wall 

( )1

1
2Mn Nn Nn NnV A A z−= + ∆  m3 Mean nodal SC volume 

( ) ( )0 1
1

FW
W W

W

Gv v α
α ρ

= → →
−

 m
s

 Water velocity 

( )1 if 0FS
S S

S

Gv v α
αρ

= → →  m
s

 Steam velocity 

/

orS

SW

G h hX
G h

−
= =  - Steam quality (extended to single-phase flow too) 
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Continued 
z, ΔzNn = zNn − zNn−1 m Local position, SC node length (zNn−1 = zCE at n = 0) 

,BA BE BT CA CE CTz z z z z z− = − =  m BC and SC outlet and entrance positions, total length 

zBB, zML, zSPC m Boiling boundary, mixture level resp. supercritical boundary within a BC 
α - Void fraction 

αTWk 2

W
m C⋅

 Heat transfer coefficient along a BC wall surface 

Δ - Nodal differences 
εDPZ - Coefficient controlling the additional friction part 
εQTW - Correction factor with respect to QNOM,0 

εTW m Abs. roughness of tube wall (εTW/dHW = rel. value) 
2
2PFΦ  - Two-phase multiplier 

ΦZG - Angle between upwards and flow direction 

ρ, ρP, ρT 
3 3 3

kg J kg, ,
m m m C⋅

 Density and their partial derivatives with respect to (system) pressure and 
temperature 

Θ  s Time constant 
∂  - Partial derivative 

Subscripts 
0, 0 (=E or BE) Steady state or entrance to SC or BC (n or k =0) 
A, E, T (=AE) Outlet, entrance, total (i.e. from outlet to entrance) 

B, S Basic channel or sub-channel (=channel region) 

A, S, F, D, X (P = A + S + F + D + X) and G Acceleration, static head, direct and additional friction, external pressure differences (in 
connection with ΔP) and pressure differences due to changes in mass flux 

Mn, BMk Mean values over SC or BC nodes 
Nn, Bk SC or BC node boundaries (n = 0 or k = 0: Entrance) 

D Drift 
S, W Steam, water 
P, T Derivative at constant pressure or temperature 
TW Tube wall surface 

Superscripts 
/, // Saturated water or steam 
P, T Partial derivatives with respect to P or T 

(GS), (α), z, s Partial derivatives with respect to GS, α or z (=gradient), slope 

Acronyms 
ATHLET, CATHARE, CATHENA, 

RELAP, TRAC Well-known thermal-hydraulic codes (on the basis a separate-phase approach)  

BC, SC Basic(=coolant) channel subdivided into subchannels (=regions of different flow types) 
CCF Counter-current flow 
CCM Coolant channel model and module (established on the basis of a separate-region approach) 

GCSM General Control Simulation Module (Part of ATHLET) 
GRS Gesellschaft für Anlagen- und Reaktorsicherheit 

HETRAC Heat transfer coefficients package 
HTC Heat transfer coefficients 
MDS Drift flux code package 

MPPWS, MPPETA Thermodynamic and transport property package 
NPP Nuclear power plant 

PAX (PAXDRI) Quadratic polygon approximation procedure (with driver code) 
PDE, ODE Partial and ordinary differential equation 

UTSG U-tube steam generator code  
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