
Journal of Applied Mathematics and Physics, 2015, 3, 1367-1375 
Published Online November 2015 in SciRes. http://www.scirp.org/journal/jamp 
http://dx.doi.org/10.4236/jamp.2015.311164   

How to cite this paper: Elabbasy, E.M., Barsoum, M.Y. and Moaaz, O. (2015) Boundedness and Oscillation of Third Order 
Neutral Differential Equations with Deviating Arguments. Journal of Applied Mathematics and Physics, 3, 1367-1375.  
http://dx.doi.org/10.4236/jamp.2015.311164  

 
 

Boundedness and Oscillation of Third Order 
Neutral Differential Equations with 
Deviating Arguments 
Elmetwally M. Elabbasy, Magdy Y. Barsoum, Osama Moaaz 
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt 

 
 
Received 15 June 2015; accepted 16 November 2015; published 19 November 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
we consider the third-order neutral functional differential equations with deviating argu- 
ments. A new theorem is presented that improves a number of results reported in the 
literature. Examples are included to illustrate new results. 
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1. Introduction 
In this paper we consider third order neutral differential equations of the form 

( ) ( ) ( )( ) ( ) ( )( )( )2 1 0, , d ( ) 0, ,r t r t z t q t f x g t t t
β

α
ξ ξ σ ξ

′ ′′ + = ≥ 
  ∫                   (1) 

where ( ) ( ) ( ) ( )( )z t x t p t x tτ= ±  and the following conditions are satisfied 
(A1) ( ) ( ), ,0 1p C I p t p∈ < ≤ <  and [ )0 ,I t= ∞ , 
(A2) ( ) ( ), ,C I t tτ τ∈ < , τ  is strictly increasing, ( )lim

t
tτ

→∞
= ∞  and we define 

( ) ( ) ( )( )0 1, , 1, 2, ,j jt t t t jτ τ τ τ −= = =   

(A3) ( )( ) ( )
0

1, 0, , d , 1, 2,i it
r C I r t t i

∞ −∈ ∞ = ∞ =∫  

(A4) ( ),f C∈   , f is non-decreasing and ( ) 0uf u >  for 0u ≠ , 
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(A5) [ ] [ )( , , 0, ,q C I α β ∈ × ∞  and ( ),q t ξ  is not zero on any half line ) [ ] 0, , , ,t t tµ µα β ∞ × ≥  

(A6) [ ]( ), ,g C I α β∈ ×  , ( ),g t tξ ≤  for 0t t≥  and [ ],ξ α β∈ , ( ),g t ξ  is continuous, has positive 
partial derivative on [ ],I α β×  with respect to t, nondecreasing with respect to ξ  and ( )lim , ,

t
g t ξ

→∞
= ∞  

(A7) [ ]( ), ,Cσ α β∈  , σ  is nondecreasing and the integral of Equation (1) is in the sense Riemann-stieltijes. 
We mean by a solution of Equation (1) a function ( ) [ ): ,xx t t ∞ → , 0xt t≥  such that ( )z t , ( ) ( )1r t z t′ ,  

( ) ( ) ( )( )2 1r t r t z t ′′  and ( ) ( ) ( )( )2 1r t r t z t
′ ′′ 

 
 exist and are continuous on [ ),xt ∞ . A nontrivial solution of (1) 

is called oscillatory if it has arbitrarily large zeros, otherwise it is called non-oscillatory. 
Asymptotic properties of solutions of differential equations of the second and third order have been subject of 

intensive studying in the literature. This problem for neutral differential equations has received considerable 
attention in recent years (see [1]-[11]). 

Recently, in [12] by using Riccati technique, have established some general oscillation criteria for third-order 
neutral differential equation 

( ) ( ) ( ) ( )( ) ( ) ( )2 1 0.r t r t x t px t q t x tτ σ
′ ′ ′ + − + − =    

 

In [3], Candan presented several oscillation criteria for third order neutral delay differential equation 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 1 , , d 0.r t r t x t px t q t x g t
β

α
τ ξ ξ σ ξ

′ ′ ′ + − + =    
∫  

[9] and [13] obtained some oscillation criteria for study third order nonlinear neutral differential equations 

( ) ( ) ( ) ( )( ) ( ) ( )( )2 1 0r t r t x t px t q t f x tτ σ
′ ′ ′ + − + − =    

 

and 

( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )2 1 0.r t r t x t px t q t f x g tτ
′ ′ ′ − + =    

 

In this paper, we establish some oscillation criteria for Equation (1), which complement and extend the results 
in [3] [13]. 

We begin with analyzing of the asymptotic behavior of possible non-oscillatory solutions of the Equation (1) 
in the case when ( ) ( ) ( )( )z t x t px tτ= − . Let ( )x t  be a non-oscillatory solution of (1) on [ )0 ,t ∞ . From (1) it 
follows that the function ( )z t  has to be eventually of constant sign, so either 

(a) ( ) ( ) 0x t z t >  
or 
(b) ( ) ( ) 0x t z t <  
for all sufficiently large t. Denote by N +  [or N − ] the set of all non-oscillatory solutions ( )x t  of the 

Equation (1) such that (a) [or (b)] is satisfied. We begin with some useful lemmas. 
Lemma 1.1 Let ( ) ( ) ( )( )z t x t px tτ= − . Assume that (A1) and (A2) hold and x be continuous non-oscillatory 

solution of the functional inequality (a). Then 

( ) ( )lim 0   and   lim 0.
t t

x t z t
→∞ →∞

= =  

Lemma 1.2 Let ( ) ( ) ( )( )z t x t px tτ= − . Assume that (A1) and (A2) hold and x be continuous non-oscillatory 
solution of the functional inequality (b). If ( )lim 0,

t
z t

→∞
=  then 

( )lim 0.
t

x t
→∞

=  
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These lemmas are modifications of the Lemma 1 in the paper [14] and the Lemma 2 in the paper [13]. 

2. Main Results 
In this part, for the sake of convenience, we introduce the following notation: 

( ) ( ) ( ) ( ) ( )
0

1
2, d and d .

t

t
t q t R t r s s

β

α
ξ σ ξ −Θ = =∫ ∫  

2.1. Oscillation Criteria If ( ) ( ) ( )( )z t x t px tτ= −  
In this section, we will establish some oscillation criteria for Equation (1) in the case when 
( ) ( ) ( )( )z t x t px tτ= −  and ( )p t p= . 
Lemma 2.1 Let x be a bounded positive solution of Equation (1) on the interval I. Then there exists a 0 0T t≥  

such that ( )z t  has the following properties: 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 00, 0 and 0 forz t r t z t r t r t z t t T
′ ′ ′′ ′ ′< > ≤ ≥ 

 
                      (2) 

Proof. Let x be a bounded positive solution of Equation (1) on the interval I. From (A1), (A2) and (A6), there 
exists a 1 0t t≥  such that ( ) 0x t > , ( )( ) 0x tτ >  and ( )( ), 0x g t ξ >  for 1t t≥ . Then ( )z t  is bounded and 
non-oscillatory. Thus, Equation (1) implies that 

( ) ( ) ( )( ) ( ) ( )( )( ) ( )2 1 , , d 0.r t r t z t q t f x g t
β

α
ξ ξ σ ξ

′ ′′ = − ≤ 
  ∫  

Hence, the function ( ) ( ) ( )( )2 1r t r t z t ′′  is a non-increasing and of one sign. We claim that 

( ) ( ) ( )( )2 1 0r t r t z t ′′ >  for 1t t≥ . Suppose that ( ) ( ) ( )( )2 1 0r t r t z t ′′ <  for 2 1t t t≥ ≥ . Then there exists a 3 2t t≥  

and constant 1 0K >  such that 

( ) ( ) ( )( )2 1 1 3for .r t r t z t K t t′′ < − ≥  

By integrating the last inequality from 3t  to t, we get 

( ) ( ) ( ) ( ) ( )3
1 1 3 3 1

2

1 d .
t

t
r t z t r t z t K s

r s
′ ′< − ∫  

Letting t →∞ , from (A3), we have ( ) ( )1lim
t

r t z t
→∞

′ = −∞ . Then there exists a 4 3t t≥  and constant 2 0K >  

such that 

( ) ( )1 2 4forr t z t K t t′ < − ≥  

By integrating this inequality from 4t  to t and using (A3), we get ( )lim
t

z t
→∞

= −∞ . This yields that x N −∈  

and this contradicts the Lemma 1.1. Now we have ( ) ( ) ( )( )2 1 0r t r t z t ′′ >  for 2t t≥ . Hence ( ) ( )1r t z t′  is 

increasing function and we have two possible cases for ( ) ( )1r t z t′  either ( ) ( )1 0r t z t′ >  eventually or  
( ) ( )1 0r t z t′ <  eventually for 3 2t t t≥ ≥ . If ( ) ( )1 0r t z t′ >  for 3t t≥ , then there exist a 4 3t t≥  and a constant 

0L >  such that 

( ) ( )1 4forr t z t L t t′ > ≥  

By integrating this inequality from 4t  to t and using (A3), we get ( )lim
t

z t
→∞

= ∞ . This means that ( ) 0z t >  

and we get ( ) ( )x t z t≥  for all sufficiently large t. Then ( )lim
t

z t
→∞

= ∞ , which contradicts the boundedness of 

( )x t . Hence, ( ) 0z t′ <  for 3t t≥ .   
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Theorem 2.1 if 

( ) ( ) ( )
( )

( )
( )

( )
, ,

, ,
1 2

1 1limsup d d d 0.
t g t g t

g t g s ut
s v u s

r u r v
β β

β β→∞
Θ >∫ ∫ ∫                    (3) 

Then every bounded solution ( )x t  of Equation (1) is either oscillatory or tends to zero. 
Proof. Let x be a bounded non-oscillatory solution of Equation (1) on the interval I. Without loss of generality 

we may assume that ( ) 0x t > . From Lemma 2.1, we get that (2) holds. New, we have 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )2 2 ,x t z t px t z t pz t p x tτ τ τ= + = + +  

for all sufficiently large t. Repeating this procedure and the monotonicity of z , we obtain that there exists an  
integer 0n ≥  such that ( )( )1

0,n g t Tτ ξ+ ≥  and 

( )( ) ( )( )( ) ( )( )( ) ( )( )1 1

0
, , , , ,

n
r r n n

r
x g t p z g t p x g t z g tξ τ ξ τ ξ λ ξ+ +

=

= + ≥∑  

where 
1

0

1 1
1

n
n r
r

pp
p

λ
+

=

−
= = >

−∑ . Hence, we get 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ), , , , .f x g t f z g t f z g t f z g tξ λ ξ ξ β≥ ≥ ≥                        (4) 

Thus, from Equation (1), we obtain 

( ) ( ) ( )( ) ( )( )( ) ( )2 1 , .r t r t z t f z g t tβ
′ ′′ ≤ − Θ 

 
                     (5) 

Now, since ( )z t  is bounded decreasing function, then there exist γ  such that 

( )lim .
t

z t γ
→∞

=  

If ( ) 0z t <  for 1 0t T T≥ ≥ , then 0γ <  and which contradicts the Lemma 1.1. Therefore ( ) 0z t >  for 
1t T≥  and 0γ ≥ . We shall prove that 0γ = . Let 0γ > . For 1t u T T> > ≥ , we obtain 

( )

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ),
2 1 1 1

2

1 d , , .
g t

u
r v r v z v v r g t z g t r u z u

r v
β

β β ′′ ′ ′= −  ∫  

Thus, form Lemma 2.1, we get 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( )( ) ( )

( )

,
1 2 1

2

,
2 1

2

1 d

1, , , d .

g t

u

g t

u

r u z u r v r v z v v
r v

r g t r g t z g t v
r v

β

β
β β β

 ′′ ′≤ −   

 ′′≤ −   

∫

∫
               (6) 

So, for t u s T> > > , we have 

( )( ) ( )( ) ( )
( )

( ) ( ) ( ),
1,

1

1, , d .
g t

g s
z g t z g s r u z u u

r u
β

β
β β ′− =   ∫  

Hence, from (6), we get 

( )( ) ( )( ) ( )( ) ( )
( )

( )
( )

( )
, ,

,
1 2

1 1, , , d d
g t g t

g s u
z g t z g s G g t v u

r u r v
β β

β
β β β− ≤ − ∫ ∫                     (7) 

where ( ) ( ) ( ) ( )( )2 1G y r y r y z y ′′= . Let us define function 

( ) ( ) ( )( )( ) ( )( ) ( )
( )( )( )

, ,
, , d ,

,
t

s

z g u g u
F s t G s G g t u t s T

f z g u

β β
β

β

′ ′
= − ≥ ≥∫  
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We note that ( ) ( )( ), 0 , ,F t t F g t tβ= = . Deriving ( ),F s t  partially with respect to s and using Lemma 2.1, 
(A4) and (A6), we get 

( ) ( )
( )( ) ( )

( )( )( )

( )( ) ( )( ) ( )
( )( )( )

, ,
, d

,

, ,
,

,

t
s s

z g u g u
F s t G s u

f z g u

z g s g s
G g t

f z g s

β β

β

β β
β

β

′ ′
′ ′≥

′ ′
+

∫
 

From (5), we have ( ) ( )( )( ) ( ),G s f z g s sβ′ ≤ − Θ . Hence, we obtain 

( ) ( ) ( )( )( ) ( )( ) ( )
( )( )( )

( )( ) ( )( ) ( )
( )( )( )

, ,
, , d

,

, ,
,

,

t
s s

z g u g u
F s t s f z g s u

f z g u

z g s g s
G g t

f z g s

β β
β

β

β β
β

β

′ ′
′ ≥ −Θ

′ ′
+

∫
                   (8) 

By (A4) and (A6), we get 

( )( ) ( )
( )( )( ) ( )( )( ) ( )( )

( )( )( ) ( )( ) ( )( )( )

, , 1d d ,
, ,

1 , , 0
,

t t

s s

z g u g u
u z g u

f z g u f z g s

z g t z g s
f z g s

β β
β

β β

β β
β

′ ′
≤

= − ≤

∫ ∫
 

Thus, from (7), we have 

( )( ) ( )
( )( )( )

( )( )
( )( )( ) ( )

( )

( )
( )

( )
, ,

,
1 2

, , , 1 1d d d .
, ,

t g t g t

s g s u

z g u g u G g t
u v u

r u r vf z g u f z g s
β β

β

β β β

β β

′ ′ −
≤∫ ∫ ∫               (9) 

Then, substituting (8) in (9), it follows that 

( ) ( )( ) ( ) ( )
( )

( )
( )

( )
( )( ) ( )

( )( )( )
, ,

,
1 2

, ,1 1, , d d .
,

g t g t
s g s u

z g s g s
F s t G g t s v u

r u r v f z g s
β β

β

β β
β

β

′ ′
′ ≥ Θ +
 

∫ ∫  

By integrating this inequality from ( ),g t β  to t with respect to s, we obtain 

( ) ( ) ( )
( )

( )
( )

( ) ( )( )( )
( )( )

( )
, , ,

, , , ,
1 2

1 1 d0 d d d .
t g t g t z g t

g t g s u z g g t
s v u s

r u r v f
β β β

β β β β

ω
ω

≥ Θ +∫ ∫ ∫ ∫                 (10) 

where ( )( ), 0G g t β > . Since ( )lim 0
t

z t γ
→∞

= > , we get 

( )( )( )
( )( )

( )
,

, ,

dlim 0
z g t

z g g tt f
β

β β

ω
ω→∞

=∫  

Hence, from (10), we have 

( ) ( ) ( )
( )

( )
( )

( )
, ,

, ,
1 2

1 1limsup d d d 0,
t g t g t

g t g s ut
s v u s

r u r v
β β

β β→∞
Θ ≤∫ ∫ ∫  

which contradicts (3). Therefore, ( )lim 0
t

z t
→∞

=  and according to the Lemma 1.2 we have that ( )lim 0
t

x t
→∞

= .   

In the following Theorem, we establish some sufficient conditions for boundedness and oscillation of 
Equation (1) under the condition 

( )
0

liminf 0
u

f u
u→

>                                        (11) 
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Theorem 2.2 Let (11) holds. If there exist an integer 0n ≥  such that 

( ) ( ) ( )
( )

( )
( )

( ) ( )
, ,

1, , 01 2

1 1 1limsup d d d limsup ,
1

t g t g t

ng t g s ut u

p us v u s
r u r v f up

β β

β β +
→∞ →

−
Θ >

−∫ ∫ ∫                  (12) 

then every bounded solution ( )x t  of Equation (1) is oscillatory. 
Proof. Let x be a bounded non-oscillatory solution of Equation (1) on the interval I. Without loss of generality 

we may assume that ( ) 0x t > . We can proceed exactly as in the proof of Theorem 2.1 and we use the fact that 
(12) implies (3). Hence, we get a non-oscillatory solution with the properties ( ) 0x t > , ( ) 0z t > , ( ) 0z t′ <   

and ( ) ( )( )1 0r t z t ′′ >  for 0t T≥ , ( )lim 0
t

z t
→∞

=  and ( )lim 0
t

x t
→∞

= . New, from (4), there exists 1 0T T≥  such 

that 

( )( )( ) ( )( )( ) ( )( )( ) 1, , , for .f x g t f z g t f z g t t Tξ λ ξ λ β≥ ≥ ≥  

Thus, Equation (1) implies that 

( ) ( ) ( )( ) ( )( )( ) ( )2 1 , .r t r t z t f z g t tλ β
′ ′′ ≤ − Θ 

 
 

By integrating this inequality from ( ),g t β  to t, we get 

( ) ( )( ) ( ) ( )( )( ) ( )
,

, , d .
t

g t
G t G g t f z g s s s

β
β λ β≤ − Θ∫  

where ( ) ( ) ( ) ( )( )2 1 0G y r y r y z y ′′= > . Thus, we obtain 

( )( ) ( ) ( )( ) ( )
,

0 , , d .
t

g t
G g t M z g s s s

β
β λ β≤ − Θ∫                       (13) 

where ( ) ( )( )inf : 0 ,
f u

M u z g t
u

λ β
 

= ≤ ≤ 
 

. Since ( ) 0z t > , from the Inequality (7), we get 

( )( ) ( )( ) ( )
( )

( )
( )

( )
, ,

,
1 2

1 1, , d d .
g t g t

g s u
z g s G g t v u

r u r v
β β

β
β β− ≤ − ∫ ∫                    (14) 

Combining (13) and (14), we have 

( )( ) ( ) ( ) ( )
( )

( )
( )

( )
, ,

, ,
1 2

1 10 , 1 d d d .
t g t g t

g t g s u
G g t M s v u s

r u r v
β β

β β
β λ

 
< − Θ  

 
∫ ∫ ∫  

Hence, we get 

( ) ( ) ( )
( )

( )
( )

( )
, ,

, ,
1 2

1 1 1d d d ,
t g t g t

g t g s u
s v u s

r u r v M
β β

β β λ
Θ <∫ ∫ ∫  

for 1t s T≥ ≥  and this contradicts the condition (12). 
Corollary 2.1 Let (11) holds. If 

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
, ,

, , 01 2

1 1limsup d d d 1 limsup
t g t g t

g t g s ut u

us v u s p
r u r v f u

β β

β β→∞ →
Θ > −∫ ∫ ∫            (15) 

then every bounded solution ( )x t  of Equation (1) is oscillatory. 
Example 2.1 Consider the differential equation 

( ) ( ) ( )
22 21

0

1 31 1 d 0,
2

t t x t x t x t
t
ξ

ξ ξ

′ ′ ′      − − + − =             

∫  
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where 1t > . We have 

( ) ( ) ( )
( )

( )
( )

( )
, ,

, ,
1 2

1 1 4limsup d d d ,
3

t g t g t

g t g s ut
s v u s

r u r v
β β

β β→∞
Θ =∫ ∫ ∫  

and ( ) ( )0

1 41 limsup
2 3u

up
f u→

− = < . Thus, all conditions of Corollary 2.1 are satisfied then all bounded solutions  

of the above equation are oscillatory. 
Remark 2.1 If ( ) ( ) ( ) ( )0, 1, , , ,q t q t g t g tα β ξ ξ= = = =  and ( )σ ξ ξ=  then, our results extend the results 

in [13]. 

2.2. Oscillation Criteria If ( ) ( ) ( )( )z t x t px tτ= −  
In this section, we will present some oscillation criteria for Equation (1) under the case 
( ) ( ) ( ) ( )( )z t x t p t x tτ= +  and the condition 

( )
0> 0 for 0 and

f u
k u t t

u
≥ ≠ ≥                                  (16) 

Lemma 2.2 If ( )x t  is an eventually positive solution of (1), then for sufficiently large t, there are only two 
possible cases: 

(i) ( ) ( ) ( ) ( )( )10, 0 and 0z t z t r t z t ′′ ′> < >  

(ii) ( ) ( ) ( ) ( )( )10, 0 and 0.z t z t r t z t ′′ ′> > >  

Proof. The proof of this lemma is similar to the proof Lemma 1 in [9] and we omit the details.   
Theorem 2.3 Let (16) holds. If 

( ) ( ) ( )
0

1 2

1 1 d d d ,
t v u

s s u v
r v r u

∞ ∞ ∞
Θ = ∞∫ ∫ ∫                              (17) 

and there exist a positive real function ( )tρ  such that 

( )( ) ( )
( ) ( )( )

( ) ( )( ) ( )0

2'
1 ,

limsup 1 d .
4 , ,

t

tt

s r g s a
k s p s s

s R g s a g s a
ρ

ρ
ρ→∞

 
 − Θ − = ∞
 ′
 

∫               (18) 

Then every solution of Equation (1) is either oscillatory or tends to zero. 
Proof. Let x be a non-oscillatory solution of Equation (1) on the interval I. Without loss of generality we may 

assume that ( ) 0x t > . Then there exists a 1 0t t≥  such that ( ) 0x t > , ( )( ) 0x tτ >  and ( )( ), 0x g t ξ >  for 
1t t≥ . By Lemma 2.2, we have two cases for ( )z t . In the Case (i), since ( ) 0z t >  and ( ) 0z t′ < , we get  
( )lim 0

t
z t µ

→∞
= ≥ . Let 0µ > , then we have ( )z tµ µ ε< < +  for all 0ε >  and t enough large. Choosing 

1 p
p

ε µ
−

< , we obtain 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ).

x t z t p t x t

pz t L Lz t

τ

µ τ µ ε

= −

≥ − ≥ + ≥
 

where 
( ) 0

p
L

µ µ ε
µ ε

− +
= >

+
. Hence, from (1), (A6) and (16), we have 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 1 , , d .r t r t z t kL q t z g t kL t
β

α
ξ ξ σ ξ µ

′ ′′ ≤ − < − Θ 
  ∫  

By integrating two times from t to ∞ , we get 
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( ) ( ) ( ) ( )
1 2

1 1 d d .
t u

z t kL s s u
r t r u

µ
∞ ∞

′− > Θ∫ ∫  

Integrating the last inequality from 1t  to ∞ , we obtain 

( ) ( ) ( ) ( )
1

1
1 2

1 1 d d d .
t v u

z t kL s s u v
r v r u

µ
∞ ∞ ∞

> Θ∫ ∫ ∫  

This contradicts to the condition (17), then ( )lim 0
t

z t
→∞

= , which implies that ( )lim 0
t

x t
→∞

= . In the Case (ii),  

since ( ) 0z t >  and ( ) 0z t′ > . Then there exist a 1 0t t≥  such that 

( ) ( ) ( )1 ,x t p z t≥ −  

for 1t t≥ . Thus, from (1), (A4) and (A6), we get 

( ) ( ) ( )( ) ( ) ( )( ) ( )2 1 1 , .r t r t z t k p z g t a t
′ ′′ ≤ − − Θ 

 
                       (19) 

Also, we have 

( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )
2 1

1 1 1 1 2 1
1 12 2

1d d ,
t t

t t

r s r s z s
r t z t r t z t s r t r t z t s

r s r s

′′ ′′ ′ ′= + ≥∫ ∫  

Since ( ) ( ) ( )( )2 1 0r t r t z t
′ ′′ ≤ 

 
, we obtain 

( )( ) ( ) ( ) ( )( )
( )( ) ( )( )2 1

1

, , .
,

r t r t z t
z g t a R g t a

r g t a

′′
′ ≥                       (20) 

Now, we define 

( ) ( )
( ) ( ) ( )( )

( )( )
2 1 .

,
r t r t z t

t t
z g t a

ω ρ
′′

=  

By differentiating and using (19) and (20), we get 

( ) ( )( ) ( ) ( )
( ) ( )

( )( ) ( )
( ) ( )( ) ( )

( )( ) ( )
( ) ( )( )

( ) ( )( ) ( )

( )( ) ( )
( ) ( )( ) ( ) ( )

( )( )
( ) ( )( ) ( )

2

1

2
1

2

1

1

, ,
1

,

,
1

4 , ,

, , ,
.

, 4 , ,

R g t a g t at
t k t p t t t

t t r g t a

t r g t a
k t p t

t R g t a g t a

R g t a g t a r g t a
t t

t r g t a t R g t a g t a

ρ
ω ρ ω ω

ρ ρ

ρ
ρ

ρ

ω ρ
ρ ρ

′′
′ ≤ − − Θ + −

′
= − − Θ +

′

 ′
 ′− −

′ 
 

 

Hence, we obtain 

( ) ( )( ) ( )
( ) ( )( )

( ) ( )( ) ( )

2'
1 ,

1 .
4 , ,

t r g t a
t k t p t

t R g t a g t a
ρ

ω ρ
ρ

′ ≤ − − Θ +
′

 

By integrating the above inequality from 1t  to t we have 

( ) ( ) ( )( ) ( )
( ) ( )( )

( ) ( )( ) ( )1

2
1

1

,
1 d .

4 , ,
t

t

s r g s a
t t k s p s s

s R g s a g s a
ρ

ω ω ρ
ρ

 ′
≤ − − Θ −  ′ 

∫  
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Taking the superior limit as t →∞  and using (18), we get ( )tω → −∞  which contradicts that ( ) 0tω > . 
This completes the proof of Theorem 2.3.   

Remark 2.2 We can rewrite the condition (17) in the Theorem 2.3 as following 

( ) ( ) ( )
0 0

1 2

d d d .
r r

t t v

v u r r
r v r u

∞   
Θ = ∞      

∫ ∫ ∫  

Remark 2.3 If ( )t tτ τ= −  and ( )f x x= , then our results extend the results in [3]. 
Example 2.2 Consider the differential equation 

( ) ( )( ) ( )( )( )
2

2

2
1 2
0

1 1 e 1 1 2 d 0,
e 1

t

t

tz t x t x t
t t

ξ

ξ ξ ξ
′′  ′ + − − + =     − 
∫  

where 1t >  and ( ) ( ) ( )1 1
2

z t x t x t= + − . Choosing ( ) 1tρ =  and 2k = . Thus, all conditions of Theorem 

2 . 3  
are satisfied then every solutions of this equation is either oscillatory or tends to zero. 
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