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Abstract 
Differential method and homotopy analysis method are used for solving the two-dimensional 
reaction-diffusion model. And the structure of the solutions is analyzed. Finally, the homotopy se-
ries solutions are simulated with the mathematical software Matlab, so the Turing patterns will be 
produced. Overall analysis and experimental simulation of the model show that the different pa-
rameters lead to different Turing pattern structures. As time goes on, the structure of Turing pat-
terns changes, and the final solutions tend to stationary state. 
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1. Introduction 
In time or space, patterns have nonuniform macroscopic structure with regularity. From the thermodynamic 
point of view, the nature of the pattern formation can be divided into two categories. One is presenting in the 
thermodynamic equilibrium conditions, such as the crystal structure of inorganic chemistry, the self-organic pattern 
formation of organic polymers and so on. The other is the station far from the thermodynamic equilibrium con-
ditions, such as the ripples of the sea, the surface patterns of the animal, the strip clouds in the sky and so on. 

Reaction-diffusion system is one of the fundamental equations which describe the motion of the nature. It not 
only has a wide practical background, but also is used in many fields, for example, predator-prey model, spread 
of infectious diseases, migration of population and spread of forest fires. Its mathematical model is a special 
kind of parabolic partial differential equations. As for reaction-diffusion systems, the coupling of nonlinear dy-
namical and linear diffusion leads to spontaneously producing a variety of ordered or disordered pattern of the 
system. This is the pattern dynamics of the reaction-diffusion systems [1]. According to the pattern dynamics, 
the ordered patterns can be divided into two categories: stationary state (such as Turing patterns) and traveling 
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wave (such as spiral pattern). As for the Turing patterns of reaction-diffusion systems, in 1952, Turing [2] for 
the first time showed that the homogeneous system will be stable with little disturbance for the absence of proli-
feration, while it becomes unstable with the spatial disturbance for joining the steady-state diffusion. This is the 
Turing instability of reaction-diffusion equations. 

The classical method to study the Turing patterns of reaction-diffusion is the analysis of linear stability me-
thod [3]-[8]. Firstly, the nonlinear reaction-diffusion model is turned into linear model. Then, perturbation 
theory is utilized to study its solution which can be seen as the little perturbation of equilibrium state (i.e. uni-
form and stable state). And we can obtain the conditions of generating Turing pattern through studying the linear 
equations with perturbation by the analysis of stability method. Finally, through the numerical simulation, the 
reaction-diffusion model can obtain different Turing pattern structures. This method shows the relationship be-
tween the parameters of generating Turing pattern. But for the strong nonlinear problems, this method may not 
be applicable. 

The range of parameters of the Turing pattern can be obtained by the analysis of linear stability method. 
Based on the parameters which limit to the range, this article solves the reaction-diffusion model by the use of 
the combination of differential method and homotopy analysis method. Then the changes of the mechanism of 
Turing patterns can be under control by the simulation of experimental data and analysis of utilizing this method. 
Finally, the study of the concrete case shows the feasibility and effectiveness of this method. 

2. Homotopy Analysis Solution of Reaction-Diffusion Model 
The general mathematical representation of two-dimensional reaction-diffusion model is as follows, 

( )

( )

( ) ( )
( )

( ) ( ) ( ) ( )

2

2

, ,

1 2

, , ,

, , ,

0,                   ,

, ,0 , , , ,0 ,

u

v

x y x y

u f x y D u
t
v g x y D v
t
u v x y
n n

u x y x y v x y x y

µ

µ

µ µ

∂ = + ∇ ∂
∂ = + ∇∂
∂ ∂

= = ∈∂Γ∂ ∂
 = =

                          (1) 

Their definition are as follows: u and v are different reactant concentrations vector; µ  is a control parameter; 
f and g represent the nonlinear dynamics function of the system; uD  and vD  describe the diffusion coefficient; 

2∇  is Laplace operator; [ ] [ ], ,α β α βΓ = ×  describes the regional space of the research for the model. 
Discrete the reaction-diffusion model in discrete nodes ,i jx ih y jhα α= + = +   

( )( ), , 0,1, 2, ,h M i j Mβ α= − =  . The discretization of the model takes the following form, 
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And,
   

( ) ( ) ( ) ( ), , , ,, , , , ,i j i j i j i j i j i ju u t u x y t v v t v x y t= ≈ = ≈                         (3) 

( ) ( ), ,, , , , ,i j i j i j i jf f x y g g x yµ µ= =                              (4) 

According to the thought of homotopy analysis method, we take the value 
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and impose the initial guess solutions , ,0i ju  and , ,0i jv  according to the initial and boundary conditions. 
Therefore, , ,0i ju  and , ,0i jv  are called the zero-order approximate solution of problem (2). Introduce the em-
bedded variable [ ]0,1q∈ . Auxiliary adjusting parameters meet the conditions 0u ≠  and 0v ≠ , while aux-
iliary control functions meet the conditions ( )

,
0

i juH t ≠  and ( )
,

0
i jvH t ≠ . For any ( ), 0,1, 2, ,i j M=  , ze-

ro-order deformation equation is as follows: 
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The problem (8) shows that two cases. One is 0q = , that ( ) ( ) ( ) ( ), , ,0 , , ,0,0 , ,0i j i j i j i jt u t t v tϕ φ= = ; the other is 

1q = , that ( ) ( ) ( ) ( ), , , ,,1 , ,1i j i j i j i jt u t t v tϕ φ= = . The solutions of zero-order equations ( ), ,i j t qϕ  and ( ), ,i j t qφ   
are continuous from initial guess solutions ( ), ,0i ju t  and ( ), ,0i jv t  to the solutions (i.e. ( ),i ju t  and ( ),i jv t ) of 
problem (2), while embedded variable q is continuous changing from 0 to 1. 

( ), ,i j t qϕ  and ( ), ,i j t qφ  express the form of Taylor expansion as follows, 
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The two sides of zero-order Equations (8) are solved m-order derivative about q and divided !m  at the same 
time. Take 0q =  can obtain the m-order deformation equation as follows, 
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The solutions of problem (10) are, 
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Choose the auxiliary function ( ) ( )
, ,

e , e
i j i j

t t
u vH t H tλ λ− −= = , then 

( ) ( ) ( )( )
( ) ( ) ( )( )

, , , , 1 , , 10

, , , , 1 , , 10

e d

e d

tt
i j m m i j m u i j m

tt
i j m m i j m v i j m

u t u t R u

v t v t R v

λ

λ

χ τ τ

χ τ τ

−
− −

−
− −

= +

= +

∫

∫





                         (12) 

In order to make Taylor series are convergent at 1q = , we can choose the value of ,u vh . Obtain the solu-
tions of problem (2) as follows, 
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In summary, the m-order homotopy approximate solutions of problem (1) are 
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3. Solving of Example and Analysis 
3.1. Homotopy Analysis of Brusselator Reaction Diffusion Model 
The typical Brusselator reaction diffusion model is as follows, 
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where ,a b  are control parameters for the system; uD  and vD  represent the coefficient of diffusion and 

0 ,0x l y l≤ ≤ ≤ ≤ ; h describes the space step (i.e. the step of x and y are the same length h) and lM
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( )

( )

, ,0 1 2

, ,0 1 2

0 cos cos

0 cos cos

i j

i j

u a a k hi k hj

b bv k hi k hj
a a

δ

δ

= +

= +
                              (16) 

where δ  is a perturbation parameter

 

and 1k  and 2k  represent the wave number of x-direction and y-direc- 
tion, respectively. Base on the method above, three order approximate solution for the problem of two dimen-
sional reaction diffusion model is as follows, 
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where nc  and nd  are the functions which depend on the parameters 1 2, , , ,a b k kδ . 
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Brusselator model is a classical dissipative structure model, which has been studied by many researchers. The 
conditions for Turing bifurcation of Brusselator model is as follows, 
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3.2. The Effective Range of  
Parameters   have the ability to regulate and control the convergent region of series solution and the speed of 
convergence of the series solution. We can obtain an  appropriate   through the effective range about curve  

  of physical quantity ( )
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t = = =
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 . The Figures 1-4 show the effective 

ranges of   in different conditions. The effective ranges in Table 1 show that we will get different effective 
ranges under different condition of different parameters. 

 

 
Figure 1. The effective area about   of u, when 3, 9.5a b= = .            

 

 
Figure 2. The effective area about   of v, when 3, 9.5a b= = .              
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Figure 3. The effective area about   of u, when 4, 10a b= = .            

 

 
Figure 4. The effective area about   of v, when 4, 10a b= = .              

 
Table 1. The effective area about   under different parameters.                                                 

Parameters The effective area about   of u The effective area about   of v 

3, 9.5a b= =  [−3, 1] [−0.7, 0.5] 

4, 10a b= =  [−2.5, 1] [−0.5, 0.5] 

3.3. Simulation of Turing Patterns about Reaction-Diffusion 
Parameter   have the ability to regulate and control the convergent region of series solutions and the speed of 
convergence of the series solutions. The analysis of the basis function in the homotopy analysis method shows 
that when uh  and vh  are limited value, the homotopy series solutions are convergent. Choose the step 1h =  
and other parameters 1 2200, 3, 9.5, 3, 10, 0.1, 0.1, 0.1u vl a b D D k k δ= = = = = = = = . In this case, as time goes 
by, the changes of Turing patterns structures show as Figures 5-12. 
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Figure 5. The patterns in space of u(t), when t = 0.1.                                                      

 

   
Figure 6. The patterns in space of v(t), when t = 0.1.                                                   

 

   
Figure 7. The patterns in space of u(t), when t = 0.5.                                                  

 

   
Figure 8. The patterns in space of v(t), when t = 0.5.                                                  
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Figure 9. The patterns in space of u(t), when t = 1.                                                        

 

   
Figure 10. The patterns in space of v(t), when t = 1.                                                     

 

   
Figure 11. The patterns in space of u(t), when t = 10.                                                    

 

   
Figure 12. The patterns in space of v(t), when t = 10.                                                          
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The parameters , , , ,u va b D D δ  are constant and 1 25, 5k k= = . In this case, as time goes by, the changes of 
Turing patterns structures show as Figures 13-20. 

As time goes on, the final pattern structure will tend to a steady state. Turing patterns structure of homotopy 
series solutions are sensitive to the selection of initial guess solution and are affected by the wave number. In 
summary, in the range of parameter about Turing patterns, the system will appear striped patterns, point patterns 
and the coexistence of striped and point pattern with the time going on. 

 

  
Figure 13. The patterns in space of u(t), when t = 0.1.                                                               

 

  
Figure 14. The patterns in space of v(t), when t = 0.1.                                                              

 

  
Figure 15. The patterns in space of u(t), when t = 0.5.                                                            
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Figure 16. The patterns in space of v(t), when t = 0.5.                                                    

 

    
Figure 17. The patterns in space of u(t), when t = 1.                                                     

 

     
Figure 18. The patterns in space of v(t), when t = 1.                                                      

 

   
Figure 19. The patterns in space of u(t), when t = 10.                                                      
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Figure 20. The patterns in space of v(t), when t = 10.                                               

4. Conclusions 
In this paper, a new method based on differential method and homotopy analysis method is used to solve the 
typical two-dimensional reaction diffusion model. Different shapes of Turing pattern can be obtained through 
Matlab mathematical software on experimental data simulation of the structure of the solution. And it is proved 
that the proposed method which to solving nonlinear reaction diffusion problems is feasible and effective. The 
new method not only reduces the dimension about differential in space, but also gets the analytical expression 
with physical parameters through the homotopy in time. It will facilitate the analysis of the influence of parame-
ters variation on Turing pattern structure. The method which is differential in space and homotopy in time do-
main has enormous potential for solving definite solution of nonlinear partial differential, and it has great pro-
motional value. 

The innovation point of this article is making use of the new method to solve the two-dimensional reaction 
diffusion model. The new method is combining the differential method and homotopy analysis method. 
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