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Abstract 
We consider a set of continuous algebraic Riccati equations with indefinite quadratic parts that 
arise in H∞ control problems. It is well known that the approach for solving such type of equations 
is proposed in the literature. Two matrix sequences are constructed. Three effective methods are 
described for computing the matrices of the second sequence, where each matrix is the stabilizing 
solution of the set of Riccati equations with definite quadratic parts. The acceleration modifica-
tions of the described methods are presented and applied. Computer realizations of the presented 
methods are numerically compared. In addition, a second iterative method is proposed. It con-
structs one matrix sequence which converges to the stabilizing solution to the given set of Riccati 
equations with indefinite quadratic parts. The convergence properties of the second method are 
commented. The iterative methods are numerically compared and investigated. 
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1. Introduction 
Recently the algebraic Riccati equations with indefinite quadratic part have been investigated intensively. The 
paper of Lanzon et al. [1] is the first where is investigated an algebraic Riccati equation with an indefinite qua-
dratic part in the deterministic case. Further on, the Lanzon’s approach has been extended and applied to the al-
gebraic Riccati equations of different types [2]-[5] and for the stochastic case [6]. Many situations in manage-
ment, economics and finance [7]-[9] are characterized by multiple decision makers/players who can enforce the 
decisions that have enduring consequences. The similar game models lead us to the solution of the Riccati equa-
tions with an indefinite quadratic part. The findings in [8] show how to model economic and financial applica-
tions using a discrete-time H∞-approach to simulate optimal solutions under a flexible choice of system parame-
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ters. Here, a continuous H∞-approach to jump linear equations is studied and investigated. 
More precisely, how to find the stabilizing solution of the coupled algebraic Riccati equations of the optimal 

control problem for jump linear systems with indefinite quadratic part:  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )

T T
0 0

1 1

TT 2 T
2 2 1 1 0, 1, , ,

r N

k k ij
k j

A i X i X i A i A i X i A i X j

X i B i B i B i B i X i C i C i i N

λ

γ

= =

−

+ + +

− − + = =

∑ ∑



            (1) 

is considered. In the above equations the matrix coefficients ( ) ( ) ( )0 1, , , rA i A i A i  are n n×  real matrices, 
( ) ( )1 2,B i B i  are n m×  real matrices, ( )C i  is a p n×  real matrix and the unknown ( ) ( )( )T

X i X i=  is a 
symmetric n n×  matrix ( )1, ,i N=  . The considered set of Riccati Equation (1) is connected to the stochas-
tic controlled system with the continuous Markov process (see [2]), which is called a H∞  control problem. The 
parameter 0γ >  presents a level of attenuation of the corresponding H∞  control problem. In order to solve a 
given H∞  control problem, we have to find the control ( )u t  which is given by  

( ) ( )( ) ( ) ( )T
2 ,t tu t B X x tη η= − 

  

where { } 0t t
η

≥
 is a right continuous Markov process and ( ) ( )( )1 , ,X X N=X  

  is the stabilizing solution to 
(1) (see [2]). 

The stabilizing solution of the considered game theoretic Riccati equation is obtained as a limit of a sequence 
of approximations constructed based on stabilizing solutions of a sequence of algebraic Riccati equations of 
stochastic control with definite sign of the quadratic part. The main idea is to construct two matrix sequences 
such that the sum of corresponding matrices converges to the stabilizing solution of the set of Riccati Equation 
(1). Such approach is considered in [2]. The properties of this approach are considered in terms of the concept of 
mean square stabilizability and the assumption that the convex set ( )γ  is not empty (see Dragan and coau-
thors in [2]). 

Here we introduce the sufficient conditions for the existence of stabilizing solutions of the set of Riccati Equ-
ation (1). We will prove under these conditions some convergence properties of constructed matrix sequences in 
terms of perturbed Lyapunov matrix equations. In addition, we introduce a second iterative method where we 
construct one matrix sequence. We show that the second iterative method constructs a convergent matrix sequence. 
Moreover, if the sufficient conditions of the first approach are satisfied then the second iterative method converges. 

2. Preliminary Facts  
The notation n  stands for the linear space of symmetric matrices of size n over the field of real numbers. For 
any , nX Y ∈ , we write X Y>  or X Y≥  if X Y−  is positive definite or X Y−  is positive semidefinite.  
We use notation ( ) ( )( )1 , ,X X N=X  . The notations n∈X   and the inequality ≥X Z  mean that for 

( )1, , , ni N X i= ∈   and ( ) ( )X i Z i≥ , respectively. The linear space 
n  is a Hilbert space with the Fro-

benius inner product ( ),X Y XY= trace . A linear operator   on n  is called asymptotically stable if the  
eigenvalues to   lie in the open left half plane and almost asymptotically stable if the eigenvalues to   lie in 
the closed left half plane. 

We denote ( ) ( )( )1 , ,X X N=X   and define the matrix function ( )i X  as follows:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( ) ( )

T T
0 0

=1 1

T T2 T
2 2 1 1

:

, 1, , .

r N

i l l ij
l j

A i X i X i A i A i X i A i X j

X i B i B i B i B i X i C i C i i N

λ

γ

=

−

= + + +

− − + =

∑ ∑X




        (2) 

We will rewrite the function ( ) , 1, ,i i N=X   in the form:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( ) ( )

T T

T T2
2 2 1 1

:

, 1, , .

i iA i X i X i A i X C i C i

X i B i B i B i B i X i i Nγ −

= + +Π +

− − =

X




            (3) 
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where ( ) ( )0 0.5 ii nA i A i Iλ= +  and ( ) ( ) ( ) ( ) ( )T
1 .r

i l l ijl j iX A i X i A i X jλ
= ≠

Π = +∑ ∑  

Note that transition coefficients 0ijλ ≥  if i j≠  and 0ijjλ =∑  for all i. Thus if ( ) 0X j ≥ , we have 

( ) 0, 1, ,i X i NΠ ≥ =  . 
We introduce the following perturbed Lyapunov operator  

( ) ( )( ) ( ) ( ) ( ) ( )T
( ); , 1, , ,

iA i iA i X i X i A i i NΠ = + +Π =X X   

and will present the solvability of (1) through properties if the perturbed Lyapunov operator. 
Proposition 1: [10] The following are equivalent: 
1) The matrix ( ) ( )( )1 , ,X X N=X   is the stabilizing solution to (1); 
2) The perturbed Lyapunov operator ; , 1, ,

i iA i NΠ =


  is asymptotically stable where:  

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

T T2
1 1 2 2

1 1 2 2

, ,

.i

F i B i X i F i B i X i

A A i B i F i B i F i

γ − = = −


= + +


 

The above proposition presents a deterministic characterization of a stabilizing solution to set of Riccati Equ-
ation (1). 

A matrix n∈X   is called stabilizing for ; , 1, ,
i iA i NΠ =


  if eigenvalues of ( ); , 1, ,
i iA i NΠ =X


  lie 

in the open left half plane. In order words the stabilizing X  to (1) stabilizes the operators ; , 1, ,
i iA i NΠ =


 . 

Knowing the stabilizing solution ( ) ( )( )1 , ,X X N=X  

  to (1) we consider ( ) ( )( ) ( )T2
1 1F i B i X iγ −=   and 

( ) ( )( ) ( )T
2 2F i B i X i= −   and therefore the matrix ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2A i A i B i F i B i F i= + +    builds a perturbed 

Lyapunov operator which is asymptotically stable. 
Dragan et al. [2] have introduced the following iteration scheme for finding the stabilizing solution to set of 

algebraic Riccati Equation (1). They construct two matrix sequences ( ){ }kX  and ( ){ } , 0,1,k k =Z   as fol-

lows:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0, with 0, 1, , , 0,1, 2, .k k kX i X i Z i X i i N k+ = + = = =               (4) 

Each matrix ( ) ( ) , 1, , , 0,1, 2,kZ i i N k= =   is computed as the stabilizing solution of the algebraic Riccati 
equation with definite quadratic part:  

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

T

T
2 2 0, 1, , .

k k k k k k k
i i i

k k

Z A i Z i Z i A i

Z i B i B i Z i i N

+ +Π +

− = =

Z X



 
                 (5) 

where  
( ) ( )( ) ( )( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

T2
1 1

T
2 2

( )
1 1 2 2

,

,

.

k k

k k

k kk

F X i B i X i

F X i B i X i

A i A i B i F X i B i F X i

γ − =

 = −

 = + +


 

However, it is not explained in [2] how Equation (5) has to be solved. 
In our investigation we present a few iterative methods for finding the stabilizing solution to (5). Convergence  

properties of the matrix sequence ( ){ } , 0,1,k k =X   will be derived. A second iterative method is derived. The  

second aim of the paper is to provide a short numerically survey on iterative methods for computing the stabi-
lizing solution to the given set of Riccati equations. Results from the numerical comparison are given on a fam-
ily of numerical examples. 
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Lemma 1. For the map ( ) , 1, ,i i N=X   the following identities are valid:  

i) 

( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )

T

T T2
1 1 2 2

1 1 2 2

T T2
1 1 2 2

, 1, ,

where ,

, ,

i i i i i

i

A X i Z i Z i A X i

Z i B i B i Z i Z i B i B i Z i i N

A X i A i B i F X i B i F X i

F X i B i X i F X i B i X i

γ

γ

−

−

+ = + + +Π

+ − =

= + +

= = −

X Z X Z



 

        (6) 

for any symmetric matrices ,X Z .  

ii) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )( ) ( )( )( ) ( )

( )( )( ) ( )( )( )

T T 2 T T

T

2 2

T2
1 1

, , , ,i i i

i

W V A W V X i X i A W V C i C i W W V V

F X i V F X i V

F X i W F X i W

γ

γ

= + + − +

− − − +Π

+ − −

X

X



           (7) 

with ( ) ( ) ( ) ( )1 2, , , .m n m n
iA W V A i B i W B i V W V× ×= + + ∈ ∈    

Proof. The statements of Lemma 1 are verified by direct manipulations.                            □ 
Lemma 2. Assume there exist positive definite symmetric matrices ˆ, ,X Z X  with  

( ) ( )ˆ ˆ, 0, 1, ,i i N≥ ≤ =X X X   and Z  is the stabilizing solution to  

( )( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )
T T

2 20 , 1, , .i i i iA X i Z i Z i A X i Z i B i B i Z i i N= + +Π + − =Z X   

Then 
i) if ( ) ( )( )ˆ, ;i iA X i X i Π

  is asymptotically stable for 1, ,i N= 
 with  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 2
ˆ ˆ,iA X i X i A i B i F X i B i F X i= + +  then ˆ 0− − ≥X X Z ; 

ii) if ( ) ( ) ( )ˆ 0, 1, ,X i X i Z i i N− − ≥ =   then the Lyapunov operator ( )ˆ, ;i iA + ΠX Z X
  is asymptotically stable 

for 1, ,i N= 
. 

Proof. Assume the index i is fixed. We have ( )( )ˆ 0Q i ≥  ( ) ( )ˆˆ 0i Q i+ =X . Applying some matrix manipu-
lations we obtain the equation:  

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

ˆ, ;

T
2 2

T2
1 1

ˆˆ0

ˆ ˆ

ˆ ˆ .

i iA X i X i
Q i

X i X i Z i B i B i X i X i Z i

X i X i B i B i X i X iγ

Π

−

= − − +

   + − − − −   

+ − −

X X Z




 

Thus ˆ 0− − ≥X X Z . The statement 1) is proved. 
In order to prove the statement 2) we derive:  

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

ˆ, ;

T
2 2

T2
1 1

T2
1 1

ˆ0

ˆ ˆ

ˆ

ˆ ˆ .

i iA

X i X i Z i B i B i X i X i Z i

Q i Z i B i B i Z i

X i X i Z i B i B i X i X i Z i

γ

γ

+ Π

−

−

= − −

   + − − − −   

+ +

+ − − − −

X Z X
X X Z

                 (8) 

Since the matrices ( ) ( ) ( )X̂ i X i Z i− −  and ( ) ( ) ( ) ( ) ( )T2
1 1

ˆ , 1, ,Q i Z i B i B i Z i i Nγ −+ =   are positive defi-
nite then the Lyapunov operator ( )ˆ, ;i iA + ΠX Z X

  is asymptotically stable for 1, ,i N= 
 because Riccati Equa-

tion (8) has the stabilizing positive semidefinte solution. 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 2,
ˆ ˆ,i iA A i B i F X i Z i B i F X+ = + + +X Z X



. 
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The lemma is proved.  

3. Iterative Methods  

In this section we are proving the some convergence properties of the matrix sequences ( ){ }kX  and  

( ){ } , 0,1,k k =Z   defined by iterative loop (4)-(5). We present the main theorem where the convergence prop-

erties for matrix sequences are derived. 
Theorem 1. Assume there exist symmetric matrices X̂  and ( )0X  such that ( )( )0 0i ≥X  and 

( )ˆ 0i ≤X  and ( )0 ˆ≤X X , and the Lyapunov operator ( )0 ( );
, 1, ,

iA i
i N

Π
=   is asymptotically stable. Then 

for the matrix sequences ( ){ } ( ){ }
0 0

,k k

k k

∞ ∞

= =
X Z  defined as the stabilizing solution of (5) satisfy 

i) The Lyapunov operator ( ) ( );k
iA i Π

  is asymptotically stable 1, ,i N= 
; 

ii) ( )( ) ( ) ( ) ( ) ( )( ) ( )T1 2
1 1 ( ) 0, 1, ,k k k

i Z i B i B i Z i i Nγ+ −= ≥ =X  ; 

iii) The Lyapunov operator ( ) ( );k
iA i Π

  is asymptotically stable where  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
1 1 2 2 , 1, , , 0,1,k k kA i A i B i F X i B i F X i i N k+= + + = =

  ; 

iv) ( ) ( )1ˆ 0k k+≥ ≥ ≥X X X  for 0,1,k =  .  

Proof. The algorithm begins with ( ) ( )0 0, 1, ,X i i N= =  . Then ( )( ) ( ) ( )T0 0i C i C i= ≥X . The matrix 
( ) ( )0Z i  is a solution of the Riccati equation:  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

T T0 0 0

0 0T
2 2 0, 1, , .

iA i Z i Z i A i C i C i

Z i B i B i Z i i N

+ +Π +

− = =

Z



                     (9) 

Under the assumption the Lyapunov operator ( ) ( )0 ;
, 1, ,

iA i
i N

Π
=   is asymptotically stable  

( ) ( ) ( )( )0A i A i= . Thus, ( ) ( )0Z i  is the unique stabilizing solution of the above Riccati equation and  
( ) ( )0 0, 1, ,Z i i N≥ =  . 

Using Lemma 1 1) and the fact that ( ) ( )0Z i  is a solution to (9) we have  
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )T0 0 0 02

1 1i Z i B i B i Z iγ −+ =X Z . In addition, the operator  

( ) ( ) ( ) ( ) ( ) ( )0 0T
2 2 ;

, 1, ,
iA i B i B i Z i

i N
− Π

=   

is asymptotically stable and  

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

T0 0
2 2

T 0(0) (0)
1 1 2 2 2 2

0 0 0
1 1 2 2

0 .

A i B i B i Z i

A i B i F X i B i F X i B i B i Z i A i

B i F X i B i F X i Z i

A i

−

= + + −

+ + +

= 

 

The Lyapunov operator ( )0 ( ); iA i Π

  is asymptotically stable. In addition, X̂  is a solution to  

( ) ( ) ( )( )ˆ ˆˆ 0, 1, , 0i Q i i N Q i+ = = ≥X   and applying Lemma 1 we obtain:  
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( ) ( ) ( )( )( ) ( )

( )( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )
( ) ( )( )( ) ( )( ) ( )( )( ) ( )( )

2

T T
2 2

T T
2

2 2 1 1

ˆ ˆˆ ˆ ˆ0 0, ,

ˆ ˆ ˆ ˆ ˆ0 0, 0,

ˆ ˆ ˆ ˆ ˆ .

i i

i i i

Q i F X i Q i

A F X i X i X i A F X i C i C i

Q i F X i F X i F X i F X iγ

= + = +

= + + +Π

+ + +

X X

X

 

 

Since X̂  is the stabilizing solution to the latest equation, then the Lyapunov operator 
( )( )( )2 ˆ0, , ; iA F X i X Π

  is 

asymptotically stable with  

( )( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )0
2 2 2 1 1 2 2

ˆ ˆ ˆ0, .iA F X i A i B i F X i A i B i F X i B i F X i= + = + +  

Thus, following Lemma 2, 1) we conclude that ( ) ( ) ( )0 0 1ˆ ≥ + =X X Z X . 
Thus, the properties 1), 2), 3) and 4) are true for 0k = . We compute ( ) ( ) ( ) ( )1 0 0 0= + ≥X X Z X . 
Combining iteration (5) with equality ( ) ( ) ( )1k k k+ = +X X Z  we construct the following matrix sequences:  

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1ˆ and , , , , ,k k≤ ≤ ≤ ≤ ≤X X X X Z Z Z     

we prove by induction the following for 0,1, 2,k =  : 
(αk): The Lyapunov operator ( ) ( );k

iA i Π
  is asymptotically stable, 1, ,i N= 

; 

(βk): ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )T1 2
1 1 0, 1, ,k k k

i Z i B i B i Z i i Nγ+ −= ≥ =X  ; 

(γk): The Lyapunov operator ( ) ( );k
iA i Π

  is asymptotically stable where  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
1 1 2 2 , 1, ,k k k kA i A i B i F X i B i F X i i N+= + + =

 ; 

(δk): ( ) ( )1ˆ 0k k+≥ ≥ ≥X X X . 
We have seen the statements (α0), (β0), (γ0) and (δ0)) are true. We assume the statements (αk), (βk), (γk) and (δk) 

are true for 1k r= − . We prove the same statements for k r= . 
We know ( ) ( ) ( )1 1r r r− −= +X X Z . We compute ( ) ( )( ) ( ) ( )( )1 2,r rF X i F X i , and ( ) ( ) , 1, ,rA i i N=  . We have 

to find ( ) ( ) , 1, ,rZ i i N=   as a unique stabilizing solution to (5) with k r= . The matrix ( )( )r
i X  is posi-

tive semidefinite because ( )1rβ −  is true. It remains to show that ( ) ( ),r
iA i Π

  is asymptotically stable 

1, ,i N= 
. 

Following Lemma 2, 2) the operator ( ) ( )( )1 1 ˆ, ;r r
i iA − −+ ΠX Z X


  is asymptotically stable because  

( ) ( )1 1ˆ 0r r− −− − ≥X X Z   
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( )1 1 1 1

1 1 2 2
ˆ ˆ, , 1, ,r r r r

iA X i Z i X i A i B i F X i Z i B i F X i i N− − − −+ = + + + =  . Thus the 

operator 
( ) ( ) ( ) ( ) ( ) ( )( )1 1

1 1 ;r r
iA i B i F X i Z i− −+ + Π

  is asymptotically stable. In addition,  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )
1 1 2 2

r rrA i B i F X i A i B F X i+ = − . Thus the operator ( ) ( );r
iA i Π

  is asymptotically stable, 

1, ,i N= 
. There exists a unique positive semidefinite solution ( ) ( )rZ i  to (5) with k r= . The last fact in 

combination of the presentation of ( ) ( )( )r r
i +X Z  from Lemma 1, 1) we conclude that  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )T2
1 1

r r r r
i Z i B i B i Z iγ −+ =X Z  and moreover is positive semidefnite. The assertions (αr) 

and (βr) are proved. 
We have to prove the operator ( ) ( );r

iA i Π

  is asymptotically stable and  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1
1 1 2 2 , 1, ,r r rA i A i B i F X i B i F X i i N+= + + =

 . In addition, the operator  
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( ) ( ) ( ) ( ) ( ) ( )T
2 2 ;

, 1, ,r r
iA i B i B i Z i

i N
− Π

=   is asymptotically stable because (αr). Moreover,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )T
2 2 1 1 2 2 .r r r r rA i B i B i Z i A i B i F X i B i F X i Z i− = + + +  Thus the (γr) is true for 

k r= . 
Further on, we have ( ) ( ) ( ) ( )1r r r r+ = + ≥X X Z X  and ( ) ( )1 1ˆ r r− −≥ +X X Z  and thus  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1
1 1 2 2 ˆ ;r r

iA i B i F X i Z i B i F X i− −+ + + Π
  

is asymptotically stable by Lemma 2, 2) Using again Lemma 2, 1) we conclude ( ) ( )ˆ r r≥ +X X Z . Hence 
( ) ( )1ˆ r r+≥ ≥X X X . All statements are proved for k r= . 

The theorem is proved.                                                                   □ 
The problem is to find the stabilizing solution ( )Y i  to the general equation  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
T T

2 2 0, 1, , .k k k
i iA i Y i Y i A i Y i B i B i Y i i N+ +Π + − = =Y X       (10) 

The Riccati Iterative Method. We choose ( )0 0Y i =  and ( ) , 1, 2,sY i s =   is the stabilizing solution to 
( )1, ,i N=    

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T

, 1 2 2 0,k k
s s R s s sA i Y i Y i A i Q i Y i B i B i Y i−+ + − =               (11) 

with ( ) ( )( )1 1 11 , , .s s sY Y N− − −=Y   Note that the matrix ( ) ( )( ) ( ), 1 1
k

R s i i sQ i− −= +ΠX Y  is a positive semide-

finite matrix for ( )1 0, 1, ,sY i i N− ≥ =  . 
It is well know that if the matrix pair ( ) ( ) ( )( )2, , 1, ,kA i B i i N=   is stabilizable and the matrix  

( ), 1 , 1, ,R sQ i i N− =   is positive semidefinite, then there exists a semidefinite solution ( )Y i  to the “perturbed” 
Riccati Equation (10). 

Based on Riccati iteration (11) we consider the improved modification given by:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T ( ) T

, 1 2 2 0, 1, , ,k k
s s R s s sA i Y i Y i A i Q i Y i B i B i Y i i N−+ + − = =

         (12) 

with  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ), 1 1 1
1

.
r

k T
R s i l s l ij s ij s

l j i j i
Q i A i Y i A i Y j Y jλ λ− − −

= < >

= + + +∑ ∑ ∑X   

The Lyapunov Iterative Method. We choose ( )0 0Y i =  and ( ) , 1, 2,sY i s =   is the stabilizing solution to  

( )( ) ( ) ( ) ( ) ( )
T

, 1 0, 1, , ,s s L sA i Y i Y i A i Q i i N−+ + = = 

                     (13) 

with ( ) ( ) ( ) ( ) ( ) ( )T
2 2 1

k
sA i A i B i B i Y i−= −  and  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )T
, 1 1 1 2 2 1 .k

L s i s i s sQ i Y i B i B i Y i− − − −= Π + +Y X  

We consider the Lyapunov iteration (13) as a special case of the Lyapunov iteration introduced and investi-
gated by Ivanov [11]. Following the numerical experience in [11] we improve iteration (13) and introduce the 
improved Lyapunov iteration  

( )( ) ( ) ( ) ( ) ( )
T

, 1 0, 1, , ,s s L sA i Y i Y i A i Q i i N−+ + = =  

                    (14) 

where  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T T
, 1 1 2 2 1 1

1

1 .

r
k

L s i s s l s l
l

ij s ij s
j i j i

Q i Y i B i B i Y i A i Y i A i

Y j Y jλ λ

− − − −
=

−
< >

= + + +

+ +

∑

∑ ∑

X 
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Convergence properties of the matrix sequence defined by (14) are given with Theorem 2.1 [11]. 
Further on, we consider an alternative iteration process where one matrix sequence is constructed. This se-

quence converges to the stabilizing solution of the given set of Riccati equations. We are proving that this in- 
troduced iteration is equivalent to the iteration loop (4)-(5). We substitute ( )( )k

i X  from (3) in recurrence 

Equation (5) and after matrix manipulations we obtain for 1, ,i N= 
:  

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

T
1 T

1 1

1 1
1 1

T1 1T 2
2 2 1 1

0

( )

.

k k

k k k
i

k k k k

A i B i F X i X i C i C i

X i A i B i F X i

X i B i B i X i X i B i B i X iγ

+

+ +

+ + −

= + +

+ + +Π

− −

X              (15) 

Thus, we can construct the matrix sequence ( ){ }
0

k

k

∞

=
X  with ( ) ( )0 0X i =  and each subsequent matrix is 

computed as a unique stabilizing solution to (15). In fact we just proved that the matrix sequence ( ){ }
0

k

k

∞

=
X  

defined by (15) is equivalent to the matrix sequence ( ){ }
0

k

k

∞

=
X  defined by (4)-(5). In order to apply the itera-

tion (15) we change the term ( )( )1k
i

+Π X  from (15) with ( )( )k
iΠ X . 

The unknown matrix ( ) ( )1kX i+  is a solution to the set of continuous-time algebraic Riccati equation with the 
independent matrix  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )TT 2
1 1 , 1, , .k k k

i C i C i X i B i B i X i i Nγ −Π + − =X   

4. Numerical Simulations  

We have considered two iterative methods for computing the matrix sequence ( ){ }
0

k

k

∞

=
Z : the Riccati iteration  

(15) and the Lyapunov iteration (14). In the begining we remark the LMI approach for finding the stabilizing 
solution to (5). Following similar investigations [12] [13] we conclude that the optimization problem (for given 
k)  

( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

1

T

2

T
2

T

max ,

subject to 1, ,

0

N
k

i

k k k k k k k
i i

k

k k

I Z i

i N

A i Z i Z i A i Z i B i

B i Z i I

Z i Z i

=

 + +Π +  ≥  
 

=

∑

Z X



           (16) 

has a solution which is the stabilizing solution to (5). 
We carry out experiments for solving a set of Riccati Equation (1). We construct two matrix sequences 
( ){ }kX  and ( ){ } , 0,1,k k =Z   for each example. The first matrix sequence is computed using iterative me-

thod (4)-(5). In order to form the second matrix sequence we apply Riccati iteration (15), Lyapunov iteration (14) 
and LMI approach (16). In addition, we construct a matrix sequence ( ){ } , 0,1,k k =X   for each example using 

recurrence Equation (15) for this purpose. 
The matrices ( ){ } , 0,1,k k =Z   are computed in terms of the solutions of N Riccati equations for (15) and N  

algebraic Lyapunov equations for (14) at each step. For this purpose the MATLAB procedure care is applied 
where the flops are 381Nn  per one iteration. Lyapunov iteration (14) solves N algebraic Riccati equations at 
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each step. The MATLAB procedure lyap is used and the flops are 327
2

N n  per one iteration. In order to find 

the symmetric solution to (16) we adapt MATLAB’s software functions of LMI Lab. 
Our experiments are executed in MATLAB on a 2.20 GHz Intel(R) Core(TM) i7-4702MQ CPU computer. 

We use two variables tolR and tol for small positive numbers to control the accuracy of computations. We de- 

note ( )( ), 1, ,max k
k i N iError == Z

   and ( )( ), 1, ,max k
k i N iError == X

  . The iterations (15) and (14) stop 

when the inequality 
0,kError tol≤  is satisfied for some 0k . That is a practical stopping criterion for (15) and 

(14). The variable It means the maximal number of iterations for which the inequality ,ItError tolR≤  holds. 
The last inequality is used as a practical stopping criterion for main iterative process (4)-(5). The tolerance tol 
controls accuracy of the procedure mincx which is used for numerical solution to (16). 

We consider a family of examples in case 3, 2, 7,8, ,14N r n= = = 
 for two given values of 1 1: 4m m =  

and 1m n= . The coefficient real matrices are given as follows: ( ) ( ) ( ) ( )0 1 2 0, , , ,A i A i A i B i   
( ) ( ) ( )1 2, , , 1, 2,3B i B i C i i =  were constructed using the MATLAB notations:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

0 1

0 1

0 1

2 2

2

1 , 8 0.45 , ; 1 , 8;
2 , 8 0.45 , ; 2 , 8;
3 , 8 0.45 , ; 3 , 8;
1 , ,0.6 8; 2 , ,0.6 8;

3 , ,0.6 8;

A randn n n eye n n A randn n n
A randn n n eye n n A randn n n
A randn n n eye n n A randn n n
A full sprand n n A full sprand n n

A full sprand n n

= − ∗ =
= − ∗ =
= − ∗ =
= =

=

 

and 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

2 1 2 1 2 1

1 , 10; 2 , 10; 3 , 10;

1 , 9; 2 , 9; 3 , 9;

B rand n m B rand n m B rand n m

B rand n m B rand n m B rand n m

= = =

= = =
 

( ) ( ) ( )

( ) ( )
( )

( ) ( )

0.08 0 0.7
0 0.08 0

1 0.08 , 0.7 : ,

0.7 0 0.08

n n

sqrt sqrt
sqrt

C dc sqrt sqrt

sqrt sqrt

×

 
 
 = =    
  
 





   



 

and 

( ) ( ) ( ) ( ) ( ) ( )2 0.03 , 0.5 , and 2 0.05 , 0.9 .n n n nC dc sqrt sqrt C dc sqrt sqrt
× ×
= =        

In our definitions the functions randn (p, k) and sprand (q, m, 0.3) return a p-by-k matrix of pseudorandom 
scalar values and a q-by-m sparse matrix respectively (for more information see the MATLAB description). The 
following transition probability matrix  

( )
0.33 0.17 0.16

0.30 0.53 0.23
0.26 0.10 0.36

ijλ
− 
 = − 
 − 

 

is applied for all examples. 
For our purpose we have executed hundred examples of each value of m for all tests. Table 1 reports the av-

erage number of iterations for the main iterative process “ItM” and the average number of iterations for the 
second iterative process “ItS” needed for achieving the relative accuracy for all examples of each size. The col-
umn “CPU” presents the CPU time for executing the corresponding iterations. Results from experiments are 
given in Table 1 with 1 7, 1 8tolR e tol e= − = −  for all tests. Results from experiments with the iteration (15) 
are given in Table 2 with 1 7tolR e= −  for all tests. 

5. Conclusions  
We have studied two iterative processes for finding the stabilizing solution to a set of continuous-time genera- 
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Table 1. Results from 50 runs for each value of n.  

n 
(4)-(5) with RI: (15) (4)-(5) with LI: (14) (4)-(5) with LMI: (16) 

ItM ItS CPU ItM ItS CPU ItM ItS CPU 
Test 1: m1 = 4 

7 3 12.2 3.9 s 3 12.6 1.6 s 3 19.8 16.7 s 
8 3 14.7 4.6 s 3 13.7 1.6 s 4 20.3 23.5 s 
9 3 16.5 5.6 s 3 16.4 2.3 s 5 21.9 35.7 s 
10 4 17.4 6.5 s 4 18.9 2.8 s 4 23.4 54.8 s 
11 4 22.7 9.8 s 4 20.5 3.3 s 4 26.3 84.2 s 
12 6 27.3 13.3 s 5 26.8 4.6 s 4 31.6 130.5 s 

Test 2: m1 = n 
7 3 12.7 4.0 s 3 12.5 1.3 s 4 20.7 20.8 s 
8 4 13.2 4.4 s 3 14.9 1.8 s 3 22.0 28.0 s 
9 4 15.6 6.2 s 4 16.2 2.1 s 3 22.3 39.8 s 
10 4 17.7 7.8 s 4 18.4 2.5 s 3 26.2 66.0 s 
11 4 20.5 9.7 s 5 21.0 3.0 s 4 37.2 125.3 s 
12 4 23.3 11.5 s 4 22.8 3.3 s 4 36.9 163.2 s 
13 4 25.1 11.6 s 4 25.6 4.0 s 5 57.0 371.0 s 
14 4 28.6 15.3 s 4 27.3 4.7 s 4 73.8 636.5 s 

 
Table 2. Results from 50 runs for each value of n.  

n the max number of iteration steps the average number of iteration steps CPU time 
Iteration (15) for m1 = 4 

7 30 17.0 1.8 s 
8 38 18.6 2.1 s 
9 28 19.7 2.5 s 
10 58 23.2 3.1 s 
11 56 27.5 4.2 s 
12 61 31.6 5.2 s 

Iteration (15) for m1 = n 
7 24 16.1 1.8 s 
8 27 17.7 2.1 s 
9 30 18.8 2.6 s 
10 29 20.9 3.3 s 
11 40 24.3 4.0 s 
12 51 25.5 4.3 s 

13 40 27.9 4.5 s 

14 46 31.6 5.2 s 

 
lized Riccati Equation (1). We have made numerical experiments for computing this solution and we have com-
pared the numerical results. In fact, it is a numerical survey on iterative methods for computing the stabilizing 
solution. We have compared the results from the experiments in regard of the number of iterations and CPU 
time for executing. Our numerical experiments confirm the effectiveness of proposed new method (15). 

The application of all iterative methods shows that they achieve the same accuracy for different number of iterations. 
The executed examples have demonstrated that the two iterations “(4)-(5) with RI: (15)” and “(4)-(5) with LI: (14)” 
require very close average numbers of iterations (see the columns “ItS” for all tests). However, the CPU time is differ-
ent for these iterations. In addition, by comparing iterations based on the solution, the linear matrix Lyapunov equa-
tions shows that iteration “(4)-(5) with LI: (14)” is slightly faster than the second iteration (15). This conclusion is in-
dicated by numerical simulations. Based on the experiments, the main conclusion is that the Lyapunov iteration is 
faster than the Riccati iteration because these methods carry out the same number of iterations. 
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