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Abstract 
In this paper, we present the results of numerical analysis of optical solitons in dual core couplers. 
We studied the optical couplers as an application for the non-linear Schrödinger equation in the 
case of Kerr law for non-linear and clarify the exact solution in this case. Then we have provided a 
numerical study of the effect of changing the constants in the form of the three types of solitons: 
bright soliton and dark solitons and singular soliton. 
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1. Introduction 
The propagation solitons through optical fibers have been a major area of study given its potential applicability 
in optical communication systems. Several effects that are present in optical fibers and amplifiers limit the per-
formance of optical system. Signal propagation through optical fibers can be affected by group velocity disper-
sion (GVD), polarization mode dispersion (PMD), and nonlinear effects. The main nonlinear effects that arise in 
monomode fibers are Brillion scattering, Raman scattering, and the Kerr effect. The Kerr effect of nonlinearity 
is due to the dependence of the fiber refractive index on the field intensity. The intensity dependence of the re-
fractive index leads to a larger number of interesting nonlinear effects. Notable among them, which have been 
studied widely, are self-phase modulation (SPM) and cross phase modulation (XPM). The propagation solitons 
through optical fibers have been well established that this dynamics is described, to first approximation, by the 
integral nonlinear Schrodinger equation (NLSE) [1]. The Nonlinear Schrodinger’s Equation plays a vital role in 
various areas of physical, biological, and engineering sciences. It appears in many applied fields, including fluid 
dynamics, nonlinear optics, plasma physics, and protein chemistry. The NLSE that is going to be studied is giv-
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en by 

( )21 0
2t xxiq q F q q+ + =                                   (1) 

F is a real-valued algebraic function, q is the dependent variable, x and t are the independent variables. 
Equation (1) is known to support solitons or soliton solutions for various kinds of nonlinearity. 
There are various kinds of nonlinearities of the function F in (1) that are known so far.  
The special case where ( )F s s= , also known as the kerr law of nonlinearity, is integrable by the method of 

inverse scattering transform (IST) [2]-[5]. 
The Kerr law of nonlinearity originates from the fact that a light wave in an optical fiber faces nonlinear res-

ponses from nonharmonic motion of electrons bound in molecules, caused by an external electric field. Even 
though the nonlinear responses are extremely weak, their effects appear in various ways over long distances of 
propagation that are measured in terms of light wavelength. 

2. Dual-Core Couplers 
Nonlinear couplers are very useful devices that distribute light from a main fiber into one or more branch fibers. 
Couplers also have applications as intensity dependent switches and as limiters. 

Switching is the process of energy redistribution between the cores for a given input. The problem of switch-
ing, although involved, can be accomplished when the stability of soliton states is known. 

Although there has been a lot of work in the area of optical couplers, our approach in this paper is going to 
present the special cases of the kerr-law nonlinearity. 

Also, there has been a lot of exact and approximate numerical studies in the context of optical couplers. But 
these numerical techniques could get computationally intense [6] [7]. 

For Dual-core couplers, wave propagation at relatively high field intensities is described by coupled nonlinear 
equations. In the dimensionless form, they are 

( )2
1 1 1t xxiq a q b F q q K r+ + =                               (2) 

( )2
2 2 2t xxir a r b F r r K q+ + =                               (3) 

Equations (2) and (3) represent a generic model to study the dynamics of optical solitons through dual-core 
optical couplers. 

The first term in both equations represent linear temporal evolution. The coefficients of la  for 1, 2l =  is 
the group velocity dispersion (GVD) while lb  represent non-Kerr law nonlinearity, in general. On the right 
hand sides lK  are the coupling coefficients. The dependent variables ( ),q x t  and ( ),r x t  are the com-
plex-valued wave profiles that propagate through these couplers. In this research, the focus is limited to soliton 
signals. 

The functional F represents non-Kerr law nonlinearity, in general. 
For Kerr law nonlinearity, ( )F s s= . The model Equations (2) and (3) reduces to 

2
1 1t xxiq aq b q q K r+ + =                                 (4) 

2
2 2t xxir ar b r r K q+ + =                                 (5) 

For integrality aspects of this coupled equations by ansatz method an assumption of the following form is 
considered: 

( ) ( ) ( ),
1, , ei x tq x t P x t φ=                                  (6) 

( ) ( ) ( ),
2, , ei x tr x t P x t φ=                                  (7) 

where ( ) ( ), 1;2lP x t l =  represents the amplitude components of soliton while the phase component ( ),x tφ  is 

( ),x t kx tφ ω θ= − + +                                   (8) 
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In (6), K is the frequency of the solution’s while ω represents the wave number and θ  is the phase constant. 
Substituting (6) and (7) into (4) and (5) and then decomposing into real and imaginary parts give 

( ) ( )
2

22
2 0l

l l l l l l l l

P
a P a k b F P P K P

x
ω

∂
− + + − =

∂ 

                       (9) 

and 

2 0l l
l

P P
a k

t x
∂ ∂

− =
∂ ∂

                                  (10) 

Respectively. 
From the imaginary part equation it is possible to obtain the speed (v) of the soliton as,  

2 lv a K= −                                      (11) 

Since ( ),lP x t  can be represented as ( )lP x vt− , where the function g is the soliton wave profile depending 
the type of nonlinearity and v is the speed of the soliton. 

Now, equating the two values of the soliton speed, from (11) leads to 

1 2a a=                                       (12) 

The speed of the soliton therefore reduces to 
2v aK= −                                            (13) 

The coupled NLSE for dual-core couplers given by (4) and (5) modifies to 

( )2
1 1 1t xxiq a q b F q q K r+ + =                             (14) 

( )2
2 2 2t xxir a r b F r r K q+ + =                             (15) 

where 1 2a a a= =  Consequently, the real part Equation (9) reduces to  

( )
2

2
2

3 0l
l l l l ll

P
a P a k b P K P

x
ω

∂
− + + − =

∂ 



                        (16) 

This equation will now be integrated for three types of solitons. They are bright, dark and singular soliton so-
lutions. 

3. Families of Soliton Solutions 
3.1. Bright Solitons 
For bright solitons, one assumes [8] [9]  

sech ;lP
l lP A τ=                                  (17) 

where; 

( )–B x vtτ =                                   (18) 

Here, lA  represents the soliton amplitude and B  is the inverse width of the soliton. 
Substituting (17) into (16) gives:  

( ) ( )

( )

22 2 2 2

33

sech 1 sech

sech sech 0

l l

ll

p p
l l l l l

Pp
l l l l

A ak ap B aA p B p

b A K A

ω τ

τ τ

++ − + +

− + =



                 (19) 

Balancing principle yields 
2 3l lp p+ =                                      (20) 

So that 
1 for 1,2.lp l= =                                   (21) 
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Substituting (21) into (19) we get: 

( ) ( )2 2 2 3 3sech 2 sech sech 0l l l l l l
A ak aB aA B b A K Aω τ τ τ+ − + − + =



                (22) 

From coefficient sechτ  into (22) we get 2 2 0l
l

l

A
ak aB K

A
ω + − + =



 and therefore: 

( )2 2 l
l

l

A
a B k K

A
ω = − −



                                (23) 

From coefficient 3sech ,τ  we get 2 22 0laA B b− =  and therefore: 

2
l

l
b

B A
a

=                                      (24) 

which poses the constraint 
0 for 1,2.lab l> =                                     (25) 

This means that the GVD and Kerr law nonlinearity must bear the same sign for bright solitons to exist. 
Next, equating the width of the solitons for 1;2l =  from (24) imply 2 2

1 1 2 2b A b A=  And therefore: 

1 2

2 1

A b
A b

=                                       (26) 

which again shows the 

1 2 0b b >                                        (27) 

This shows that the nonlinearity of the two cores must also carry the same sign. Then, equating the wave 
numbers for the two components gives the relation (23) we get 2 2

1 2 2 1K A K A=  and therefore: 

1 1

2 2

A K
A K

=                                       (28) 

which again shows that 

1 2 0K K >                                       (29) 

Finally equating (26) and (28) leads to 

1 1 2 2b K b K=                                      (30) 

which is the constraint condition between the given coefficients that must hold for bright solitons to exist. This 
leads to the bright 1-soliton solution for dual couplers: 

( ) ( ) ( )
1, sech ei kx tq x t A B x vt ω θ− + += −                             (31) 

( ) ( ) ( )
2, sech ? i kx tr x t A B x vt ω θ− + +=                              (32) 

which will exist for the necessary constraints in place. 

3.2. Dark Solitons 
For dark solitons, the starting hypothesis is given by [6]  

tanh lp
l lP A τ=                                    (33) 

with the definition of τ  being the same in (18). However for dark solitons the parameters lA  and B are free 
parameters. Substituting (33) and (18) into (16) leads to 

( ) ( )

( )

22 2 2 2

2 32 3

2 tanh 1 tanh

1 tanh tanh tanh 0

l l

ll l

p P
l l l l l

pp p
l l l l l l l

A ak ap B aA B p p

aA p B p b A K A

ω τ τ

τ τ τ

−

+

+ +

=

− −

− + − + 



                 (34) 
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Balancing principle yields 
2 3l lp p+ =                                       (35) 

So that 
1 for 1,2.lp l= =                                   (36) 

Substituting (36) into (34) we get: 

( ) ( )2 2 2 3 3tanh 2 tanh tanh 0l l l l l l
A ak aB aA B b A K Aω τ τ τ+ − + − + =



               (37) 

From coefficient 1tanh τ  we get 2 2 0l

l

A
ak aB

A
ω + − + =



 and therefore: 

( )2 2 l
l

l

A
a B k K

A
ω = − −



                                 (38) 

From coefficient 3tanh τ  we get 2 22 0laA B b− =  and therefore: 

2
l

l
b

B A
a

=                                        (39) 

which poses the constraint 
0 for 1,2.lab l> =                                     (40) 

This means that the GVD and Kerr law nonlinearity must bear the same sign for bright solitons to exist. 
Next, equating the width of the solitons for 1;2l =  from (39) implied 2 2

1 1 2 2b A b A=  and therefore: 

1 2

2 1

A b
A b

=                                        (41) 

which again shows that 

1 2 0b b >                                         (42) 

This shows that the nonlinearity of the two cores must also carry the same sign. Then, equating the wave 
numbers for the two components gives the relation (38) we get 2 2

1 2 2 1K A K A=  And therefore: 

1 1

2 2

A K
A K

=                                        (43) 

which again shows that 

1 2 0K K >                                         (44) 

Finally equating (41) and (43) leads to 

1 1 2 2b K b K=                                        (45) 

This gives dark 1-soliton solution for dual-core couplers 

( ) ( ) ( )
1, tanh ei kx tq x t A B x vt ω θ− + += −                              (46) 

( ) ( ) ( )
2, tanh ei kx tr x t A B x vt ω θ− + += −                              (47) 

along with their respective constraints as indicated.  
Note: These waves known as check waves. 

3.3. Singular Solitons 
For singular solitons, the starting hypothesis is given by [6]  
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csch lP
l lP A τ=                                     (48) 

where τ  is the same as in (18) while the parameters lA  and B are again free parameters. Upon substituting 
(48) and (16) into (18) gives  

( ) ( ) 2 32 2 2 2 31 csch csch csch 0l l lp p p
l l l l l l l l l

A ak ap B aA B p p b A K Aω τ τ τ++ − − + − + =


         (49) 

Balancing principle yields 
2 3l lp p+ =                                      (50) 

So that 
1 for 1,2.lp l= =                                   (51) 

Substituting (51) into (49) we get: 

( ) ( )2 2 2 3 3csch 2 csch csch 0l l l l l l
A ak aB aA B b A K Aω τ τ τ+ − + − + =



              (52) 

From coefficient cschτ  we get 2 2 0l
l

l

A
ak aB K

A
ω + − + =



 and therefore: 

( )2 2 l
l

l

A
a B k K

A
ω = − −

                                 (53) 

From coefficient 3csch τ  we get 2 22 0laA B b− =  and therefore: 

2
l

l
b

B A
a

=                                      (54) 

which poses the constraint 
0 for 1,2.lab l> =                                   (55) 

This means that the GVD and Kerr law nonlinearity must bear the same sign for bright solitons to exist. 
Next, equating the width of the solitons for 1;2l =  from (54) implied 2 2

1 1 2 2 .b A b A=  And therefore: 

1 2

2 1

A b
A b

=                                      (56) 

which again shows the  

1 2 0b b >                                        (57) 

This shows that the nonlinearity of the two cores must also carry the same sign. Then, equating the wave 
numbers for the two components gives the relation (53) we get 2 2

1 2 2 1 .K A K A=  And therefore: 

1 1

2 2

A K
A K

=                                       (58) 

which again shows that 

1 2 0K K >                                       (59) 

Finally equating (56) and (58) leads to 

1 1 2 2b K b K=                                      (60) 

These lead to singular 1-soliton solutions in dual-core optical fibers with Kerr nonlinearity given by 

( ) ( ) ( )
1, csch ei Kx tq x t A B x vt ω θ− + += −                              (61) 

( ) ( ) ( )
2, csch ei Kx tr x t A B x vt ω θ− + += −                              (62) 

which will exist for the necessary constraints in place. 
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4. Results of Numerical Analyses 
Analytic process of the CNLS can only be found under certain special selections of parameters, i.e. certain un-
derlying physical system. For other cases, numerical analysis is necessary for seeking the evolution of solutions. 
It is essential to select a suitable numerical method for solving the equations [10]. 

To study the effect of parameters on Solitons we consider the following values [11]: 
Case 1: if they 

1
1 2 1 2

2 2

1 6, , 1.0103, , 2 ,
2

Ab K A A v ak
b b

= = = = = −   

2
1 2

1 , 1, 6, 3, , π
2 2

ba k K B A
a

ω θ= = = = = =   

Studying the effect of changing 2b  (non-linear coefficient) in terms of 1b  so take three cases 

2 1 2 1 2 1
1 1
4

, , 0b b b b b b= = =  

Figures 1-3 shows the effect of this change on Soliton amplitude. 
Case 2: if they 

1
1 2 1 2

2 2

1 6, , 1.0103, , 2 ,
2

Ab K A A v ak
b b

= = = = = −  

2
2 1 1 2

1 , 1, 6, 3, , π
4 2

bb b k K B A
a

ω θ= = = = = =  

Studying the effect of changing a (velocity dispersion coefficient) on the wave form and the values 
1 , 1, 2
2

a a a= = =  

Figure 4-6 shows the effect of this change on the width Soliton. 
Case 3: if they 

1
1 2 2

2 2

1 6 1, , , , 2 ,
2 2

Ab K a A v ak
b b

= = = = = −  

2
2 1 1 2

1 , 1, 6, 3, , π
4 2

bb b k K B A
a

ω θ= = = = = =  

Studying the effect of changing 1A  (Soliton amplitude) on the wave form, and that the values of 

1 1 10.550515, 1.0103, 2.20206A A A= = =  

Figures 7-9 shows the effect of this change on the Soliton width and Soliton amplitude. 

5. Conclusions 
The study couplers dual core is considered one of modern topics of great importance in the field of optical 
communication. In this research, the Schrodinger equation is linear been studying these couplers in the case of 
kerr law nonlinearity and clarifying the exact solution in this case. 

And we studied the effect of changing constants derived under the restrictions mentioned on Soliton form in 
the case of Solitons bright as in the case of a change b2 (non-linear coefficient) impact on soliton amplitude. 
When you changed a (velocity dispersion coefficient), we found that the effect on Soliton width as well as when 
changing 1A  (Soliton amplitude), the impact on the Soliton width and Soliton amplitude. 

Similarly, these changes have in the case of dark Solitons and singular Solitons. 
The extension of this work can apply different types of non-linear as well as increase the Perturbation terms to  
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Figure 1. Bright solitons.                                                                                 

 

 
Figure 2. Dark solitons.                                                                                   

 

 
Figure 3. Singular solitons.                                                                                 
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Figure 4. Bright solitons.                                                                                   

 

 
Figure 5. Dark solitons.                                                                                   

 

 
Figure 6. Singular solitons.                                                                                 
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Figure 7. Bright solitons.                                                                                  

 

 
Figure 8. Dark solitons.                                                                                   

 

 
Figure 9. Singular solitons.                                                                                 
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offset the Schrodinger non-linear. As that finding, those solutions to some numerical methods provide a lot of 
add-ons in this study, and this is what we hope implemented with God’s help in the future through the Master 
thesis. 
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