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Abstract 
This paper presents a continuous-time adaptive control scheme for systems with uncertain non- 
symmetrical deadzone nonlinearity located at the output of a plant. An adaptive inverse function 
is developed and used in conjunction with a robust adaptive controller to reduce the effect of 
deadzone nonlinearity. The deadzone inverse function is also implemented in continuous time, 
and an adaptive update law is designed to estimate the deadzone parameters. The adaptive output 
deadzone inverse controller is smoothly differentiable and is combined with a robust adaptive 
nonlinear controller to ensure robustness and boundedness of all the states of the system as well 
as the output signal. The mismatch between the ideal deadzone inverse function and our proposed 
implantation is treated as a disturbance that can be upper bounded by a polynomial in the system 
states. The overall stability of the closed-loop system is proven by using Lyapunov method, and 
simulations confirm the efficacy of the control methodology. 
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1. Introduction 
The problem of deadzone nonlinearity has been addressed by many researches with great success by utilizing 
adaptive control methods to eliminate the undesirable effects on the output of a plant [1]-[5]. Demonstrated in 
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Figure 1 is the effect of deadzone on the output of a plant for a pure sinusoidal input trajectory. The majority of 
earlier investigations to this problem focus on the problem where the nonlinearity is located at the input of the 
plant as an actuator problem [1] [2]. In an actuator deadzone, the control effort is within the span of the nonlin-
earity which makes it somewhat easier to reduce or eliminate its deleterious effects before it enters the dynamics 
of the system to be controlled. As a matter of fact, several papers present a two structure control schemes that 
can be designed to handle deadzone as well as other requirements for plant performance criteria [3]. On the 
other hand, output deadzone, which is physically inherent in some sensors that measure output signals of a plant, 
is a more complicated problem. The control effort has to eliminate the deleterious effect of the deadzone 
nonlinearity whilst going through the complicated dynamics of the plant. Therefore, whatever added control re-
quirements enforced on the designer due to disturbances or noise affecting the plant, will further complicated the 
task. One of the earliest investigations of output nonlinearities such as deadzone was presented by [4]. Their 
proposed methodology was based on output matching control which involved the design of an adaptive dead-
zone inverse used to reshape the input reference trajectory to negate the effect of the deadzone. The parameters 
of the deadzone were adaptively estimated by designing an error function utilizing the output to observe plants 
states. The implementation was quiet complex in design and implemented in discrete time. In [5], an output 
feedback design was analysed for robustness and was developed using input to state stability (ISS) small gain 
tools. The combination of observer and controller design was proved to be essential when handling output 
nonlinearities. An adaptive compensation scheme without constructing a dead-zone inverse was presented in [6]. 
The proposed adaptive method requires only the information of bounds of the deadzone slopes and treats the 
time-varying input coefficient as a system uncertainty. The new control scheme ensures bounded-error trajectory 
tracking and assures the boundedness of all the signals in the adaptive closed loop. Tian Ping et al. utilized the 
integral-type Lyapunov function to design an adaptive compensation term for the upper bound of the residual 
and optimal approximation error as well as the dead-zone disturbance [7]. It was demonstrated that the closed- 
loop control system was semi-globally uniformly bounded. In [8], an inverse deadzone function was incorpo-
rated in control system driven from a mathematical model of a deadzone in pneumatic servo valves. Tests were 
performed out using controllers with and without dead zone compensation to comparison validated the efficacy of 
the method. In [9], a somewhat earlier work was presented in discrete time which successfully achieved reduction 

 

 
Figure 1. The distortion effect of output deadzone nonlinearity on a sinusoidal of signal. 
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of the tracking error in plants with output deadzone nonlinearity while ensuring the global boundedness stability. 
The paper presented by Jing Zhoua et al. introduced a smooth approximation to the deadzone model which al-
lowed them to employ back stepping technique [10]. In their approach, no knowledge was assumed of the un-
certainty’s and the deadzone’s parameters. It is shown that the proposed controller not only can guarantee global 
stability, but also can achieve excellent transient performance. It is worthwhile to note that other non-classical 
control methods, such as fuzzy logic or neural network, have been presented by several researchers to reduce the 
effect of a deadzone nonlinearity [11]-[14]. For example, Wallace and Max used an adaptive fuzzy controller for 
nonlinear systems subject to dead-zone input. The boundedness of all closed-loop signals and the convergence 
properties of the tracking error are proven using Lyapunov stability theory and Barbalat’s lemma [15]. 

Motivated by the success in producing successful results in handling input deadzone, we present an extended 
method to reduce the errors caused by output deadzone nonlinearity. The proposed method relies on the premise 
that by pre-shaping the input trajectory to mimic an inverse form of the deadzone nonlinearity, the combined ef-
fect will reduce if not completely eliminating the effect of output deadzone.  

In this paper, a new continuous time robust adaptive output deadzone inverse controller (RAODI) is used in 
conjunction with a conventional model reference adaptive control to counter the distortions cause by output 
deadzone. The ideal deadzone inverse controller is approximated by an infinitely differentiable implementation 
to insure asymptotic tracking and minimized error generation. The overall stability of the system under the pro-
posed scheme will be proven analytically and demonstrated by simulation to a practical application. The struc-
ture of the paper starts with a brief presentation of the dynamics of an output deadzone nonlinearity that defines 
various parameters and its effect on the output of a system are presented in Section 2. Meanwhile, the proposed 
control methodology is presented and its analytical proof using the Lyapunov argument is shown in Section 3. 
Consequently, an illustrative example of a model reference adaptive control scheme combined with the inverse 
control method is presented and followed by simulation results in Section 4. 

2. The dynamics of Output Deadzone Nonlinearity  
A common representation of a non-symmetrical deadzone nonlinearity, shown in Figure 1, can be described as 
follows 

( )
( )

( )

, if
0, if

, if

r r

l r

l l

m x d x d
DZ y d x d

m x d x d

 − >


= − < <
 + < −

                           (1) 

where ( )DZ y  denotes the output of deadzone function, ( )x t  the output of a plant, m is the slope of the lines, 
( )r ld d−  is the width of the deadzone distance, and ( )u t  is the input of the plant block as shown in Figure 2. 
Although the width of the deadzone spacing is assumed not to be exactly known, an upper bounds on it is given 
by 

r l Md d d− ≤                                       (2) 

where Md  is a positive scalar. Output deadzone may also be written as 

( ) ( )dDZ y x sat x= −                                  (3) 

where ( )dsat u  represents a non-symmetrical saturation function given by 
 

 
Figure 2. Non-symmetric deadzone nonlinearity as a function of a plant output signal. 
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( ) , if
, if

, ifr r

d l r

l l

d x d
sat x x d x d

d x d

>
= < <
− < −

                               (4) 

By defining a logical switching operator  
1 if 0
0 otherwiser

x
χ

>
= 


                                   (5) 

1 if 0
0 otherwisel

x
χ

<
= 


                                   (6) 

Then, the dynamics of the non-symmetrical deadzone presented in (3) can be rewritten as follows 

( ) ( ) ( ) T
l l r ry DZ x x t d d x t dχ χ χ= = − − = −                          (7) 

where ( )x t  is the. Meanwhile, thelogical indicators, [ ]r lχ χ χ=  can be implemented by utilizing the defini-
tion of a sign function given as  

( )
1 0

sgn
1 0

d
d

d

x
x

x
>

= − ≤
.                                    (8) 

To obtain a smoothly differentiable implementation of (8), we replace it with a 

( ) ( )sgn tanhd s dx k x≈ ⋅ .                                    (9) 

with 0sk >  appropriately selected with high value for fast switching applications. 
Hence, rewriting Equation (5) and Equation (6) as  

( )1 tanh
2

s d
r

k x
χ

+ ⋅
=                                     (10) 

( ) ( )
1 tanh

1 .
2

s d
l r

k x
χ χ

− ⋅
= = −                                (11) 

To proceed with the design of the compensator the following assumptions are required: 
(A1) The deadzone parameters 0rd >  and 0ld− <  . 
(A2) The deadzone parameters rd  and ld  are bounded as follows: 

[ ]min, maxl l ld d d∈  and [ ]min, maxr r rd d d∈ . 

(A3) Without any loss of generality the slope of the deadzone m  is positive and is set to 1. 
Assumption (A1) and (A2) are the actual physical attributes of a real industrial deadzone and is adopted in 

[16]. Therefore, the saturation function given by (4) is physically bounded  

( ) T .Msat x d dχ= ≤                                  (12) 

3. Robust Adaptive Controller Design  
Considering the following nonlinear systems with input deadzone nonlinearity described as 

( ) ( ) ( ){ }
( )

x Ax f x B u x

y DZ x

ψ= + + +

=



                             (13) 

where the matrices A and B are given by  
0 1 0
0 0 1 0
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Meanwhile, the unmeasurable disturbances represented as ( )xψ  and ( )f x  are assumed to be bounded by 
a known pth order polynomial in the states [17]: 

( )
0

p
k

k
k

x xψ ζ
=

≤ ∑                                   (14a) 

( )
0

p
k

k
k

f x xζ
=

≤ ∑ .                                 (14b) 

The desired reference model is given by 

{ }d d dx Ax B Kx r= + + ,                                (15) 

where 1 nK R ×∈  and r is a reference signal. By reshaping the desired reference model in a way to produce a 
deadzone inversed version of it will reduce the effect of the deadzone. Tracking the reshaped copy of the refer-
ence model will force the output of the deadzone nonlinearity to track the original desired reference signal. The 
adaptive output deadzone inverse compensator can be deduced from (7) as 

 ( )* Tˆ ˆ ˆ
d d d l l r r dx DI x x d d x dχ χ χ= = + + = + ,                        (16) 

where Tˆ ˆ ˆ
r ld d d=  

   is the adaptively estimated values of the exact deadzone spacing * *
r ld d d =   . The adap-

tive inverse dynamics may be determined by differentiating (16) as follows 
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Consequently, we can utilize (15) to construct the inverse deadzone model reference as 

( ) ( )* *

0

ˆ  .
n

k n kT
d d d

k

n
x Ax B K x d r

k
χ −

=

    = + ⋅ + ⋅ ⋅ +   
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∑                       (17) 

Hence, the states tracking error dynamics *
dx x x= −  may be written as follows 

( ) ( ) ( )

0

ˆ  ,
n

k n kT
d

k

n
x Ax B u x K x d r

k
ψ χ −

=

    = + + − ⋅ − ⋅ ⋅ −   
    

∑

                   (18) 

where r is the desired reference signal. Equation (18) is written compactly as  

( ){ }*   .dx Ax B u x Kx rψ= + + − −

                             (19) 

where dynamics of *
dx  are given by (17).  

By defining the output tracking error ( ) dt y x= −  an adaptive update law for Td̂  can be written as 

( )d̂ tσ χ= −                                    (20) 

Once again, by ensuring that the plant states ( )x t  tracking ( )*
dx t  will cause 

( ) ( )( )  ( )( )( ) ( )*
d d dy t DZ x t DZ DI x t x t= = = +                        (21) 

where ( )t  is the output mismatch error caused by the difference between the exact deadzone parameter and 
the estimated one is expressed as * ˆd d d= − . To parameterize ( )t , we utilize Equation (7) to get  
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( ) ( ) ( ) ( ) ( )* T Tˆ
d dy t y t x t d x t dt χ χ= − = − − +                          (22) 

or simply written as 

( ) Tt d χ=  .                                       (23) 

where Td  the deadzone parameters estimation error is  
*

T
*

ˆ
,

ˆ
r r

l l

d d
d

d d

 −
=  

−  

                                      (24) 

Therefore, the deadzone effect noted by the term Td χ  in (7) can be cancelled by simply ensuring that the 
system’s states vector ( )x t  track the inverse dynamics of the desired trajectory ( )dx t . To achieve proper 
tracking and global bounded stability of the overall system, we propose the following RAODI controller: 

( ) T T *ˆ  d du t B Px B Px Kx rα β= − − + +                               (25) 

where 0α > , *
dx x x= − , and P is the positive definite symmetric solution of the Algebraic Riccati equation 

(ARE). Moreover, the adaptation law for β̂  is given by  

Tˆ Γ , Γ 0.B Pxβ = >

                                   (26) 

The properties of the controller (25) are stated in the following theorem: 
Theorem. For the plant described by (13) with input deadzone (1), and the RAODI control law (25) along 

with the adaptive update laws (22) and (26) will ensure the closed-loop stability and boundedness of tracking 
error, hence reducing the effects of deadzone on the control law driving the system dynamics and ensures-
bounded output tracking.  

Proof. Using the following positive definite control Lyapunov function 
1 1

T 2 2Γ
2 2

V x Px dσβ
− −

= + + 

                                 (27) 

Differentiating along the trajectories of the system and substituting for the closed loop dynamics given by (19) 
yields 

( ){ }( )
( ){ }( )

T T 1 1
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T * 1 1

ˆˆΓ
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d

d

V x Px x Px dd
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ψ

ψ ββ σ

− −
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= + + +

= + + − −

+ + + − − + +





  
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 





 

                   (28) 

Applying the robust controller given in (25) into (28) gives  

( ){ }( )
( ){ }( )

T
T T

T T T 1 1

ˆ

ˆˆ ˆΓ

V Ax B B Px B Px x Px

x P Ax B B Px B Px x dd

α β ψ

α β ψ ββ σ− −
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+ + − − + + +

   




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

                (29) 

Collecting terms and simplifying  

( ) ( ){ }( )
( ) ( ){ }( )

T T T T T 1 1

T T T T T 1 1

ˆˆ ˆ2 Γ

ˆˆ ˆ2 2 Γ
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α β ψ ββ σ

− −

− −

= + + − − + + +

= + − + − + + +








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
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   

         (30) 

( ) ( )( )T T T T T T 1 1 ˆˆ ˆ2 2 ΓV x A P PA PBB P x B Pxx PB x PB x ddα β ψ ββ σ− −= + − − + + + 



 



           (31) 

The first term can be simplified by solving the Algebraic Reccati Equation given by  
T T2A P PA PBB P Qα+ − = −                              (32) 
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which gives  

( )( )2T T T 1 1 T ˆˆ ˆ2 ΓV x Qx x PB x PB x d dβ ψ ββ σ− −= − − + + + 



   

                   (33) 

Replacing the adaptation law (23) and replacing *β̂ β β= +  in (31) yields  

( ) ( )( )2 2T * T T T 1 T ˆ2V x Qx x PB x PB x x PB d dβ β ψ β σ −= − − + + + + 

 

    

            (34) 

( )
2T * T T 1 T ˆ2V x Qx x PB x PB x d dβ ψ σ −= − − + + 







                        (35) 

Substituting the adaptive update law (7) ( )d̂ tσ χ= −   makes the fourth term in  

( ) ( )
2T * T T T2V x Qx x PB x PB x d tβ ψ χ= − − + −  



                         (36) 

Utilizing Equation (23) for output tracking error ( ) Tt d χ=  . 

( ) ( )2T * T T T 2
2V x Qx x PB x PB x dβ ψ χ= − − + − 

 



                        (37) 

Renders the last term negative. For the third term, we utilize the general inequality 2 22ab a b≤ +  the third 
term in (37) can be bounded as  

( )T T 12x PB x x PB xψ ς ς −≤ +                               (38) 

Applying this bound to (37) 

( )( ) ( )221 * T T
minV Q x x PB dλ ς γ β χ−≤ − − − − 





                      (39) 

By choosing the degree of freedom ς  satisfying the condition 
( )min Qλ

ς
γ

<  and choosing *β  to be 

greater than ς  ensures all terms of V  negative.  

4. Illustrative Example & Simulations 
To illustrate the efficacy of the proposed compensator a second order sinusoidal desired reference model is se-
lected for tracking. Simulations of the system in (22) under the adaptive control law (23) and (24) have been 
performed for a sinusoidal reference trajectory given by ( ) ( )3sin πdx t t=  represented by a second order 
model. The actual plant is also chosen to be a second order system simulating a rotational gear with deadzone 
resulting form the spacing between its meshing teeth. 

( )
( ) ( )

1 2m m m

l m m m

k k u t

DZ sat

θ θ θ

θ θ θ θ

+ + =

= = −

 

，
                              (40) 

where 
T

 m mθ θ  
  represent the driving motor angle and velocity respectively; [ ]T1 2k k  represent the viscous  

friction and the electromotive force constant; and lθ  represents the output load angle. By defining the state  
vector [ ]T1 2x x  to represent m mθ θ  

 , then the system under investigation can be represented in space state 
form as 

( ){ }
( ) ( )

Tx Ax B k x u t

y DZ x x sat x

= + +

= = −



.
                                (41) 

where the matrices A and B along with the gain k are given by 

1

2

0 1 0
, ,

0 0 1
k

A B k
k
    

= = =     
     

                              (42) 
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Meanwhile, the desired reference model to be tracked at the output for the overall system may be rewritten as 

( ){ }T 23π sin

,

πd d d

d

x Ax B k x t

y x

γ= + −

=



                            (43) 

where 0γ >  used to insure the stability of the desired tracked model. In the case of meshing gears, the dead-
zone spacing parameter can be easily predetermined and measured. The reference point is chosen to be at the 
center of the deadzone spacing. Hence, define * * * 1r ld d d= = − =  with d̂  being the adaptation that estimate-
sits value as given by Equation (20). Therefore, the adaptive deadzone inverse trajectory written as follows 

 ( )* ˆ
d d dx DI x x dχ= = + .                                (44) 

The proposed controller is given by  

( ) T T *ˆ  d du t B Px B Px Kx rα β= − − + +                             (45) 

where the first term is the conventional PD-controller, the second term is the robust adaptive controller, and the 
third term is the adaptive deadzone inverse one. 

Tˆ Γ , Γ 0.B Pxβ = >

                                 (46) 

Meanwhile, the initial value of d̂  is set to be zero and no prior knowledge of its values is needed. The exact 
value of the simulated deadzone parameter is set to * 1d = . For all other simulated parameters refer to Table 1. 

Figure 3 shows the output trajectory o ly θ=  for the system under RAODI control is presented and is com-
pared to the trajectory tracking of the system under adaptive without the inverse (in dotted blue), and a PD-con- 
troller (dashed red). The system performance is shown with the black solid line while the performance of a 
regular PD controller is shown in dotted red line. Clearly, the output of the system under RAODI outperforms 
the system with a conventional PD controller. The deadzone spacing effect is practically eliminated and the 
tracking error is held to a small negligible amount. 

The improvement in reducing the effect of output deadzone on the output signal is demonstrated in Figure 4 
where the error ( )o d l dy x θ θ− = −  is plotted in solid line as apposed to the same error for the system under a 
PD controller plotted in dotted red line. In addition, in Figure 4, the dashed blue line reflects the output track-
ing error for the system without the use of inverse deadzone modifier. The error without the deadzone inverter is 
much larger than the improved performance due to RAODI controller.The system state ( )1 mx tθ=  tracking 
performance (solid) verses the deadzone inverted trajectory 1d dx θ=  for the system under RAODI control is 
presented in Figure 5, with Figure 6 demonstrating the state tracking error ( ) l dt θ θ= −  for the system under 
the proposed control scheme. The second state ( )2x tω=  tracking performance and its error 2 dω ω= −  are 
presented in Figure 7 and Figure 8, respectively. In addition, Figure 9 and Figure 10 show the evolution of the 
adaptations β̂  and d̂  confirming their bounded stability. Meanwhile, the adaptive controller effort ( )du t  is 
shown in Figure 11. 

 
Table 1. Parameters utilized in the example. 

 
Systems Physical Attributes 

Parameter Value Unit 

1 pk
 

40 Gain Constant 

2 vk
 13 Gain Constant 

3 γ  100 Gain Constant 

4 *
rd

 1.0 radian 

5 *
ld

 −1.0 radian 

6 α  1.0 N.m/rad 

7 Γ  100 Gains 

8 J  1 2V s
rad

−⋅
 

9 dω  
π  rad/s 
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Figure 3. The output trajectory oy  (black-solid) for the system under RAODI control vs. the performance of an adaptive 
controller (blue-dotted), and a PD-controller (red-dashed). 

 

 
Figure 4. The output tracking error oy  (solid) for the system under RAODI vs. the tracking error of the system under a 
PD-controller (red-dashed). The dashed blue line reflects the output tracking error for the system without the use of inverse 
deadzone modifier. 
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Figure 5. The system state ( )1x tθ=  tracking performance (solid) verses the deadzone inverted trajectory 1d dx θ=  for 
the system under RAODI control (red-dashed). 

 

 

Figure 6. The state tracking error ( ) 1 1dt x x= −  for the system under RAODI control. 
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Figure 7. The system state ( )2x tω=  tracking performance (solid) verses the inverted deadzone trajectory 2d dx ω=  for 
the system under RAODI control (red-dashed). 

 

 
Figure 8. The second state error 2 2 2dx x= −  for the system under RAODI control. 
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Figure 9. The evolution of the robust adaptation β̂ . 
 

 
Figure 10. The evolution of the adaptation d̂  estimating the actual * 1.0d =  radian. 
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Figure 11. Evolution of the control. 

5. Conclusion 
In this paper, an adaptive inverse deadzone controller is compared with a robust adaptive controller for systems 
with output deadzone nonlinearity. Both controllers have been shown to effectively stabilize a second order sys-
tem, and achieve bounded input bounded output (BIBO) tracking. The proposed deadzone inverse controller has 
greatly improved the performance of the system over the robust controller. The deadzone inverse controller was 
implemented in continuous time and was used to modify a desired model reference to mimic an inverse dead-
zone trajectory. The RAODI is smoothly differentiable and can easily be combined with any of the advanced 
control methodologies. The stability of the closed-loop system has been proven by using Lyapunov arguments 
and simulations results confirm the efficacy of the control methodology. 
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