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Abstract 
A new epidemic SIRS model with discrete delay on scale-free network is presented. We give the 
formula of the basic reproductive number for the model and prove that the disease dies out when 
the basic reproductive number is less than unity, while the disease is uniformly persistent when 
the basic reproductive number is more than unity. Numerical simulations are given to demon-
strate the main results. 
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1. Introduction 
Since the modelling of the seminal works on the scale-free network, in which the probability of ( )p k  for any 

node with k  links to other nodes is distributed according to the power law ( ) ( )2 3p k Ck γ γ−= < ≤ , suggested  
by Barabá and Albert [1], it is well known that the real disease transmission networks exhibit scale-free proper-
ties (see for example [2] [3]), and the spreading of epidemic disease on scale-free network has been studied by 
many researchers [4]-[21]. 

Continuous time deterministic epidemic models are traditionally formulated as systems of ordinary differen-
tial equations. More realistic models should include some peat states of these systems, and ideally, a real system 
should be modeled by delay differential equation. Time delay plays an important role in propagation process of 
the epidemic, we can simulate the latent period of infectious diseases, the infections period of patients and the 
immunity period of recovery of the disease with time delay. Much attention has been given to the dynamical 
behaviors of the epidemic spreading model with time delay on homogeneous network [18]. However, up to now, 
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compared with studies of the dynamical behaviors of the epidemic models with time delays on hetergeneous 
network, only a few attentions have been paid to them on heterogeneous networks. Recently, Liu and Xu pre-
sented a delay differential equation SEIRS epidemic model with discrete time delays which represent the latent 
period and the immune period [19]. Liu and Deng et al. discussed epidemic SIS model with discrete time delay 
which represents the infectious period [20], they obtained the basic reproduction number and discussed the per-
sistence of the disease. Wang and Wang et al. discussed an epidemic SIR model with discrete time delay which 
represented the latent period [21]. Motivated by these, in this paper, we will present a suitable epidemic SIRS 
model with discrete delay which represents the infectious period on scale-free network using functional diffe-
rential equations to investigate the epidemic spreading. 

The rest of this paper is organized as follows: The SIRS model on scale-free network with discrete delay is 
presented in Section 2. The basic reproductive number is given and dynamical behaviour of the system is ana-
lyzed in Section 3. Numerical simulations are given to demonstrate the main results in Section 4. Conclusion is 
finally drawn in Section 5. 

2. The SIRS Model with Discrete Delay 
Suppose that the size of the network is a constant N during the period of epidemic spreading, we also suppose 
that the degree of each degree is time invariant. Let ( )kS t , ( )kI t  and ( )kR t  be the relative density of sus-
ceptible nodes, infected nodes and recovered nodes of connectivity k at time t, respectively. Obviously, the fol-
lowing normalization condition holds due to the fact that the number of total nodes with degree k is a constant 
( )p k N  during the period of epidemic spreading. 

( ) ( ) ( ) 1, 1,2, , .k k kS t I t R t k n+ + = =   

The dynamical equation for the density ( )kS t , ( )kI t  and ( )kR t , at the mean-field level, satisfy the fol-
lowing system when 0t > : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,

,

1 ,

k k k k

k k k

k k k

S t k S t t k S t t R t

I t k S t t k S t t

R t k S t t R t

λ δλ τ τ µ

λ λ τ τ

δ λ τ τ µ

 = − Θ + − Θ − +
 = Θ − − Θ −
 = − − Θ − −







               (1) 

where ( )kλ  is the correlated (k-dependent) infection rate such as kλ  [5] [8] [20], ( )c kλ  [6] and so on, and 

τ  represents the average infectious period. The term ( ) ( ) ( )kk S t tδλ τ τ− Θ −  describes some infected nodes  
may become susceptible nodes because they are recovered and are not immunized, where δ  is called incom-
plete cure rate, and consequently, ( )1 δ−  is cure rate. In reality, for example, some computer users find net-
work virus and kill it after τ  due to its destruction of the user, but they do not take further action to immunize 
computer from the network virus, but the other users can get the technique to protect their computer and their 
computer cannot be infected again. The dynamics of n groups of SIRS subsystems are coupled through the func-
tion ( )tΘ , which represents the probability that any given link points to an infected site. Assume that the net-
work has no degree correlations [4], we have 

( ) ( ) ( ) ( )1 ,k
k

t k p k I t
k

ϕΘ = ∑                            (2) 

where ( )
k

k p k k= ∑  stands for the average node degree, and ( )kϕ  has many different forms, such as 

( )k kϕ =  in [4] [5], ( )k Aϕ =  in [7], ( )k kαϕ = , 0 1α< <  in [8], and ( ) ( )1k ak bkα αϕ = + , 0 1α< <  
in [9] and so on. 

The initial condition of system (1) is  

( ) ( ) ( ) ( ) ( ) ( ) [ ], , , ,0 ,k k k k k kS I Rθ ϕ θ θ ψ θ θ φ θ θ τ= = = ∈ −  

where ( )1 2, , , n Cω ω ω ω= ∈  are nonnegative continuous on [ ],0τ− , and ( ) ( ) ( )( ), ,k k k kω ϕ θ ψ θ φ θ=  and 
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( ) ( )0 0, 0 0k kϕ ψ> >  for 0θ = . C denote the Banach space [ ]( )3,0 , nC Rτ−  with the norm 0sup h θω ω− ≤ ≤= , 

and ω  is Euclidean norm of 3nR . 

3. Dynamical Behaviors of the Model 
Denote 

( ) ( ) ( ) ( ) ( ) ( ), , ,k k kS t S t I t I t R t R t= = =  

( ) ( )
0 ,

k k
R

k
λ ϕ

τ=                                      (3) 

where ( ) ( ) ( )1
n
kf k f k p k
=

= ∑  in which ( )f k  is a function. 

Obviously, the second equation of system (1) can be furthermore transformed into the following integral equ-
ation: 

( ) ( ) ( ) ( )dt
k kt

I t k S s s s
τ

λ
−

= Θ∫                                 (4) 

Note that ( ) ( ) ( ) 1k k kS t I t R t+ + =  and ( )kR t  can be replaced by ( ) ( )1 k kS t I t− −  in the first equation of 
system (1). Thus we obtain the following equivalent system of system (1): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 ,

d .

k k k k k

t
k kt

S t k S t t k S t t S t I t

I t k S s s s
τ

λ δλ τ τ µ

λ
−

 = − Θ + − Θ − + − −


= Θ ∫



             (5) 

Theorem 1. The system (5) has always a disease-free equilibrium ( )0 1,1, ,1,0,0, ,0E   . The system (5) has 

a unique endemic equilibrium ( )* * * * * *
* 1 2 1 2, , , , , , ,n nE S S S I I I   when 0 1R > . 

Proof. Denote *
k kS S= , *

k kI I=  and *
k kR R=  (some constants) and substitute them into (5), we have 

( ) ( ) ( )
( )

* * * * * *

* * *

1 0,

,

k k k k

k k

k S k S S I

I k S

λ δλ µ

λ τ

− Θ + Θ + − − =


= Θ
                        (6) 

where 

( ) ( )1* *.
n

k
k

k k p k Iϕ−Θ = ∑                                     (7) 

It yields that 

( )
( )( ) ( )

*
*

* .
1k

k
I

k
λ µ τ

δ µτ λ µ
Θ

=
− + Θ +

                                 (8) 

Substituting it into (7), we obtain the self-consistency equality 

( ) ( ) ( )
( )( ) ( ) ( )

*
* *

*

1 .
1

n

k

k
k p k f

k k
λ µ τ

ϕ
δ µτ λ µ

Θ
Θ = = Θ

− + Θ +
∑                     (9) 

Obviously, * 0Θ =  always satisfies (9), it follows that from (8) that the disease-free equilibrium 0E  of sys-
tem (5) always exists. Note that 

( )
( ) ( ) ( )

( )( ) ( )( )
( ) ( )

* *

* 2

0* 2*
0 0

d 1
d 1

n

k

f k kk
k p k R

k kk

λ ϕλ µ τ
ϕ τ

δ µτ λ µ
Θ = Θ =

Θ
= = =

Θ − + Θ +
∑  

and 
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( )
( ) ( )

( ) ( )( ) ( )( )
( )( ) ( )( )

22 *

*2 3*

2 1 )d 1 0
d 1

n

k

k kf
k p k

k k

λ µ τ δ µτ λ
ϕ

δ µτ λ µ

− − +Θ
= <

Θ − + Θ +
∑

 
Hence, if 0 1R > , the Equation (9) has a unique positive solution, consequently, system (5) has a unique pos-

itive equilibrium ( )* * * * * *
* 1 2 1 2, , , , , , ,n nE S S S I I I   since (8) holds. *E  is an unique endemic equilibrium. 

Theorem 2. Consider the system (5), the following assertions hold. 
(1) If 0 1R < , the equilibrium 0E  of system (5) is globally attractive. 
(2) If 0 1R > , the disease is uniformly persistent, i.e., there exists a positive constant ε  such that  

( )lim inft I t ε→+∞ > , and the equilibrium 0E  of system (5) is unstable. 
Proof. First, According to the Equation (4), similar to the proof of Theorem 1 in [20], we can obtain that the 

equilibrium 0E  of system (5) is globally attractive. 
Second, motivated by the work in [22], we will prove that conclusion (2) in Theorem 2 holds step by step, i.e., 

we prove that the disease is uniformly persistent when 0 1R > . 
Step 1. We will prove that for any 0 0t > , it is impossible that ( )kI t η<  for 0t t> . 
Since 0 1R > , there exists a small enough 0η >  such that 

( ) ( ) ( )
1

k k k
R

kη

λ ϕ
τ

∆
= >  

in which ( ) ( )
( ) ( )

1
.k

k k k
µ η

λ ϕ η µ
−

∆ =
+

 

Suppose ( )kI t η<  for 0t t> , which implies 

( )
( )k

t
k

ϕ η
Θ <  

for 0t t> . It follows from the first equation of system (5) that 

( ) ( ) ( )
( )

( )1k k

k
S t k S t

k
ϕ η

µ η λ µ
 

≥ − − +  
 

                       (10) 

for 0t t> . Hence there exists a 1 0t t>  such that 

( ) ( )
( ) ( )

( )
1

kS t k
k k k

µ η
λ ϕ η µ

−
≥ = ∆

+
                         (11) 

for 1t t> , and there a 2 1t t τ> +  such that 

( ) ( ) ( ) ( ) ( ) ( ) ( )d d
t t

k kt t
I t k S s s s k k s s

τ τ
λ λ

− −
= Θ ≥ ∆ Θ∫ ∫                  (12) 

It follows from (2) and (12) that 

( ) ( )1 d
t

t
t R s sη ττ −

Θ ≥ Θ∫                                (13) 

Set [ ] ( )
2 2,min t t tl tτ∈ +Θ = Θ . We claim that lΘ ≥ Θ  for 2t t≥ . If not, there exists a 3 2t t τ≥ +  such that 

( )3 ltΘ ≥ Θ  and ( ) ltΘ ≥ Θ  for 2 3t t t≤ ≤ . It follow that 

( ) ( )3 3
1

l lt R R R tη η ητ
τ

Θ ≥ Θ = Θ = Θ  

which leads to 1Rη ≤ , contradicting 1Rη > . This proves the claim. 
Choose a positive constant 1R  which satisfies 11 R Rη< < . We claim now that ( ) 1 lt RΘ > Θ  for all 2t t τ> + . 
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Note that 

( ) ( )2

2
2 1

1 d
t

l lt
t R s s R R

τ
η ητ
τ

+
Θ + ≥ Θ ≥ Θ > Θ∫  

If the claim is not valid, there exists a 4 2t t τ> +  such that ( )4 1 lt RΘ = Θ  and 1 lRΘ ≥ Θ  for 2 4t t tτ+ ≤ ≤ . 
Thus 

( ) ( ) ( )4

4
4 1 4

1 d
t

l lt
t R s s R R R R tη η η ηττ −

Θ ≥ Θ ≥ Θ = Θ = Θ∫  

which leads to 1Rη ≤ , contradicting 1Rη > . This proves the claim. By induction method, we conclude that 

( ) 1
n

lt RΘ > Θ  

for 2t t nτ> + . It follows that ( ) ( )t k kϕ ηΘ ≥  if t is sufficiently large, contradicting ( ) ( )t k kϕ ηΘ < . 

So, for any 0 0t > , it is impossible that ( )kI t η<  for 0t t> . 

Step 2. We will prove that there exists a positive constant ε  such that ( )lim inft I t ε→+∞ > . 
Since it is impossible that ( )kI t η<  for 0t t> . Hence, there are two cases to be considered for ( )tΘ . 

Hence, there are two cases to be considered for ( )tΘ . 
Case 1: ( )kI t η≥  when t is sufficiently large. 
Case 2: ( )kI t  is oscillates about η  when t is sufficiently large. 
Suppose ( ) ( )* *

k kI t I t q η= + =  and ( )kI t η≤  for * *t t t q≤ ≤ + , where *
1t t τ> +  is sufficiently large 

such that ( )kI t η<  holds. Consequently, ( ) ( ) ( )* *t t q k kϕ ηΘ = Θ + =  and ( ) ( )t k kϕ ηΘ ≤  for 
* *t t t q≤ ≤ + . ( )tΘ  is uniformly continuous since the positive solutions of system (4) are bounded. Hence, 

there is a 0 σ τ< <  (independent of the choice of *t ) such that ( ) ( ) ( )2t k kϕ ηΘ >  for * *t t t σ≤ ≤ + . 

If q σ< , there is nothing to prove. If qσ τ< ≤ , for * *t t t qσ+ < < + , we have from (15) that 

( ) ( )
( ) ( )*

*

1 1d d .
2 2

t t

t t

k k
t R s s R s R

k k
σ

η η ητ

ϕ η ϕ η σ
τ

τ τ
+

−
Θ ≥ Θ > =∫ ∫

 

Let us define ( ) ( ) ( ) ( ){ }min 2 , 2p R k k k kη ϕ η σ τ ϕ η= , then ( )t pΘ ≥  for * *t t t q< < + . If 

q τ< , by similar method in step 1, we can obtain that ( )t pΘ ≥  for * *t t t q< < + . Thus, for case 2, 

( )t pΘ ≥  when t is sufficiently large, and ( ) 1kI t ε≥  where { } ( )1 1,2, ,min k nk p kε ϕ==


. 

Hence, ( )kI t ε≥  when t is sufficiently large, where { }1min ,ε η ε= , consequently,  

( ) ( )1lim n
t kI t p k ε ε→+∞ =

≥ =∑ , and the disease is uniformly persistent. 
At last, since ( )limt kI t ε→+∞ ≥  when 0 1R > , the equilibrium 0E  is unstable when 0 1R > . This com-

pletes the proof of Theorem 2. 
The basic reproductive number for system (4) is ( ) ( )0R k k kτ λ ϕ= . If 0 1R < , the disease will disappear 

due to the global attractivity of 0E . If 0 1R > , the disease will always exists due to ( )lim inf 0t I t ε→+∞ ≥ > . 
Remark. When 1δ =  system (1) reduce to system (4) in [20], and the results still holds. 

4. Numerical Simulations 
The basic reproductive number for system (1) is 

( ) ( )
0 .

k k
R

k
λ ϕ

τ=                                   (14) 
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Note that an epidemic always occurs on a finite networks in the real world, the maximum connectivity n of 
any node is related to the network age, which is measured as the number of nodes N [8] [9]: 

( )1 1 ,n mN γ −=                                   (15) 

where m is the minimum connectivity of the network. It follows from (14) and (15) that 0R , which depends 
both N and τ , can be approximately computed. 

Now we present the results of numerical simulations by using MATLAB 7.0 to support the results obtained in 
previous sections. Since the equilibria were obtained from system (5), the simulations are based on system (5)  
and a scale-free network in which the degree distribution is ( )p k Ck γ−= , and C satisfies ( )1 1n

k p k
=

=∑ . As-
sume the network is a finite network with 100n =  and 1m =  are suitable assumptions. Let 0.5γ = ,  

0.3µ = , 0.2δ = , 2τ = , ( ) ( )1k ak bkα αφ = +  in which 0.5a = , 0.75α = , 0.02b = , and ( )k kλ λ= . 
Figures 1-3 show the dynamic behaviors of system (5). 

 

 
Figure 1. The time series of system (5) with ( ) 0.5k kλ =  and 0 0.9644 1R = < .     

 

 
Figure 2. The time series of system (5) with ( ) 0.5k kλ =  and 0 1.9288 1R = > .     
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Figure 3. The time series of system (5) with ( ) 0.5k kλ =  and 2,3,5,10.π =        

 
From the dynamical behaviors of the SIRS model (5) shown in Figure l and Figure 2, it can be seen that if 

0 1R < , the infection eventually disappears. If 0 1R > , the relative density of infected nodes will tend to a positive 
constant, and the infection will always exist. The numerical results are consistent with the theoretical results. 

According to 0R , if 0 1R < , the equilibrium 0E  is globally attractive and the disease eventually disappear. 
However, 0 1R >  may hold as τ  increases due to the fact 0R  is proportional to τ , that is to say, the equili-
brium 0E  may lose its stability when the average infection period of disease τ  is large enough and the infec-
tion will always exist (shown in Figure 3). 

5. Conclusion 
An SIRS model with discrete delay has been proposed for investigating the dynamical behaviors of the epidem-
ics on scale-free networks. Through mathematical analysis, we obtained the basic reproduction number 0R . The 
main results reveal that when 0 1R < , the disease-free equilibrium is globally attractive, while 0 1R > , the dis-
ease-free equilibrium is unstable and the disease is uniformly persistent. In addition, numerical simulations show 
that the endemic equilibrium *E  is globally asymptotically stable when 0 1R >  (as shown in Figure 2). We 
would like to mention here that it is interesting but challenging to discuss the stability of equilibrium *E , we 
leave this for our future work. 
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