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Abstract 
We study the asymmetric nuclear matter in a nonperturvative manner at finite temperatures us-
ing thermofield dynamics method. The nucleon-meson interaction is taken to examine the binding 
energy (EB), pressure (P) for various proton fractions. 
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1. Introduction 
The properties of hot dense nuclear matter are very important in the context of neutron stars [1] as well as in 
high-energy heavy-ion collisions experiments. In those experiments, nuclei undergo collisions [2] and produce 
states of nuclear matter at different temperatures at conditions far from those normally encountered in low ener-
gy collisions. At low temperatures, this can be attained in medium energy heavy-ion reactions; no such exotic 
state can be produced but there is the possibility of interesting liquid-gas phase transitions leading to the breakup 
of heated nuclei into small clusters or droplets of nucleons [3]. 

Such phase transitions have been identified in multifragmentation experiments and in the crusts of neutron 
stars [4] [5]. The possibilities of such phase transitions were previously considered by several authors using dif-
ferent approaches [6]-[8]. Walecka [9] in a attempt, developed a method consisting of interactions of nucleons 
with a neutral scalar field σ and ρ mesons as well as neutral vector meson ω. Variations of the same model have 
also been considered including cubic and quartic terms in the σ fields to reproduce correct bulk modulus of nuc-
lear matter [10]. These calculations however use meson fields as classical, and use a σ-field which is not ob-
served. 

A model for infinite nuclear matter consisting of interacting nucleons and pions was considered in [11]. The 
Pion Nucleon interaction was taken with off mass shell of pion. The scalar isoscalar pion condensates simulated 
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the effects of σ mesons [12] with the short distance repulsion arising from composite structure of nucleons 
and/or through vector meson exchanges. This appeals aesthetically as classical σ fields arise from quantum me-
chanical structures and also has a stronger phenomenological appeal as σ mesons have not been found in nature. 
With a similar approach we shall reconsider nuclear matter at finite temperatures with pion dressing [13] with 
off mass shell. The methods of thermofield dynamics [14] fit naturally for this purpose because here statistical 
average is done through an expectation value over a “thermal vacuum” [11] in an extended Hilbert space. 

The article is organised as follows. In Section 2, we review the thermofield dynamics to consider hot and 
dense nuclear matter and obtain expressions for temperature-dependant pressure P, binding energy B and nuc-
lear density ρ. In Section 3, we evaluate numerically the above applying variational technique, study their cha-
racteristics and discuss the results so obtained. 

2. Formalism 
We consider the effective Hamiltonian for pion nucleon interaction at zero temperature [15]-[17] as  

( ) ( ) ( ) ( ) ,N int M= + +x x x x                                 (1) 

where ( )N x , ( )int x  and ( )M x  are the Hamiltonians for the free nucleon part, the pion-interaction 
part and the free meson part respectively. Here ( )N x  is given by 

( ) ( ) ( )†   ,N I x Iψ ε ψ=x x x                                  (2) 

and the effective Hamiltonian ( )int x  for pion nucleon Nπ  interaction 

( ) ( ) ( )
2

† 2 .
2 2int I I

x x

iG Gψ ϕ ϕ ψ
 

= − ⋅ + 
 

x x p x
 
σ                          (3) 

We have taken ( )1 22 2
x xM= − ∇ , with M as the mass of the nucleon. The free meson part of the Hamiltonian is 

given by 

( ) ( ) ( )2 2 21 ,
2M i i i imπϕ ϕ ϕ ϕ = + ⋅ + x  ∇ ∇                            (4) 

where mπ  denotes the mass of the meson and i iϕ τ ϕ= . The pion field expansion in Equation (4) in terms of 
annihilation and creation operators is given by 

( ) ( ) ( )( )†1
2i i i

x

x a x a xϕ
ω

= +  

( ) ( ) ( )( )†and   ,
2

x
i i ix i a x a x

ω
ϕ = −                             (5) 

with ( )1 22 2
x xmω = −∇ . We now study asymmetric nuclear matter at finite temperature using thermofield dy-

namics method. Here the thermal average of a quantum operator Ô  given in [13] [14] with 1 kTβ = , as 

( )
( )

ˆe
ˆ

e

H

H

Tr O
O

Tr

β

ββ

−

−
=                                    (6) 

The above reduces to ground state expectation, in zero temperature limit value for the operator Ô , shown be-
low as 

( )

( )

0 1

0 1

1 0

1 0

ˆ ˆ0 0 e 1 1 eˆlim lim
e e

ˆ ˆ0 0 1 1 e ˆlim 0 0 ,
1 e

O O
O

O O
O

β β

β ββ ββ

β

ββ

− −

− −→∞ →∞

− −

− −→∞

+ +
=

+ +

+ +
= =

+ +









 

 

 

 

                   (7) 

where 0  is the lowest energy state. In thermofield method, one generalises [13] to the case of finite tempera-
ture and for some ( )0 β , the relationship holds 
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( ) ( ) ( ) ( )ˆ ˆ ˆe e 0 0 ,H HO Tr O Tr Oβ β

β
β β− −= ≡                        (8) 

where ( )0 β  is defined as the “thermal vacuum”. Here corresponding to physical operator a, a “tilde” opera-
tor a  is introduced to denote thermal modes. At finite temperature the ground state is replaced by ( )0 β  
given as [13] 

( ) ( ) ( ) ( ) ( )( )( )† †0 exp , . . d ,B BU vac a a h c vacβ β θ β≡ = − −∫ k k k k               (9) 

where ( )†a −k  in the above corresponds to the extra Hilbert space. The function ( ),B kθ β  is calculated 
through minimization of thermodynamic potential density given as 

( ) 1
BE S Nβ µ

β
 

Ω = − + 
 

                               (10) 

where µ , the chemical potential, N, number of nucleons and the entropy density 

( )
( ) ( )( ) ( ) ( )( )2 2 2 2

3
3 d sinh , ln sinh , cosh , ln cosh , .

2π
B B B B BS θ β θ β θ β θ β = − − ∫ k k k k k  

For zero chemical potential and for free fields, extremization of the free energy then yields 

( )
2

,

1sinh 1
eB βω β

θ = −
k

                                 (11) 

with Hamiltonian density as 0 = ( ) ( )† dza aω∫ z z z  so that 

( )
( )2

3
1 sinh d

2π
BE θ ω= ∫ k k  

If we substitute this value the free energy density becomes 

( )
( )

( )( )3

1 1 1 ln 1 e d
2π

BE S βωβ
β β

−= − = −∫ k k  

Similarly for the fermionic sector the thermal vacuum is 

( ) ( ) ( ) ( ) ( )( )( )† †0 exp , . . d ,F F I IU vac h c vacβ β θ β ψ ψ≡ = − −∫ k k k k             (12) 

where †
Iψ  corresponds to the creation of the fermionic thermal modes. The entropy is given as 

( )
( ) ( )( ) ( ) ( )( )2 2 2 2

3 d sin , ln sin , cos , ln cos , ,
2π

F F F F FS γ θ β θ β θ β θ β = − + ∫ k k k k k  

and ( ),Fθ βk  is given as [13] 

( )( )
2

,

1sin 1,
e

F β ω β µ
θ

−
= +

k
                                (13) 

where µ  is the chemical potential corresponding to baryon number conservation and ( ) 2 2, k Mω β = +k  
for free fermions of mass M. In this methodology the correct distribution function with extra thermal modes can 
be obtained and this enables us to have the temperature dependent background off-shell pion pair configuration 
given as 

( ) ( ), = I If U f U U vacβ β β=                            (14) 

with 

( ) ( ) ( )( )†expI I IU T B T B T= −                              (15) 

and 



S. K. Sahu 
 

 
1311 

( ) ( ) ( ) ( )† † †1 , d
2I B i iB T T b bθ= −∫ k k k k                             (16) 

In the above, 

( ) ( )† †
i ib Ua U=k k                                     (17) 

In nucleon sector for fermions 

( ) ( ) ( )( )†expII II IIU T B T B T= −                                (18) 

with 

( ) ( ) ( ) ( )† † †1 , d
2II F I IB T Tθ ψ ψ= −∫ k k k k                           (19) 

where ( ),F Tθ k  will be determined later. We then have the nuclear matter density 

( ) ( ) ( ) ( )
( )

† † 2
3 d sin .

2π
II II Fvac U T U vacα α

γρ ψ ψ β θ−= = ∫x x k                 (20) 

Here the thermodynamic potential [18] is given by 
,p p n n TSµ ρ µ ρ= − − −                                  (21) 

where pµ  and nµ  are chemical potentials of proton and neutron respectively, nρ  and pρ  are neutron and 
proton densities and S is the entropy of the asymmetric nuclear matter ( )p nS S S= + . Clearly, with  

( )2sin F fk kθ = Θ − , Equation (13) gives 3 26πfkρ γ=  of zero temperature. 2sin Fθ  for the interacting sys-
tem will be determined here from the construction of the thermodynamic potential. We thus have for the nucleon 
kinetic term temperature dependent as 

( )
2

3 22π d sin
2f F
k
M

γ θ−= ∫ k                                (22) 

The temperature dependent kinetic energy due to the mesons is given by 

( ) ( ) ( ) ( ) ( )3 2 23 2π d sinh cosh 2 , sinh ,k B Bfω θ β θ β−  = + ∫  k k k k k                (23) 

where ( ) 2 2mω = +k k  and ( )f k  is pion dressing function [13] which extremises energy, pressure and en-
tropy etc of nuclear matter. Then the interaction energy density becomes 

2

2int
G J

M
ρ

=                                      (24) 

where 

( ) ( )
( ) ( )2 2

3

sinh 2 cosh 23 d sinh cosh 2 sinh .
22π

B
B B

f
J f

θ
θ θ

ω

 
= + +  

 
∫

kk k
k



             (25) 

we shall now assume a phenomenological term corresponding to meson repulsion due to composite structure of 
mesons given as 

( ) ( ) ( )( ) 2 23 2 23 2π sinh cosh 2 sinh e dR kR
m B Ba f πβ θ θ−= +∫ k k                   (26) 

Finally, the nucleon repulsion term given as 
2

R λρ=                                        (27) 

where ρ  is as given in Equation (20). Thus the energy density is given by 

( )f m RE
ρ

+ +
=
  

                                   (28) 

where 
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R
m k m int= + +     

as before. 
The thermodynamic potential density Ω is given by 

p p n n
SEρ µ ρ µ ρ
β

Ω = − − −                               (29) 

where the last term corresponds to nucleon number conservation with pµ  and nµ  as the chemical potentials 
of proton and neutron respectively. The temperature dependent pressure is given as P = −Ω . The entropy den-
sity above is F BS S S= +  with FS  being the entropy in fermion sector given as 

( )
( ) ( )( ) ( ) ( )( )2 2 2 2

3 d sin , ln sin , cos , ln cos , .
2π

F F F F FS γ θ β θ β θ β θ β = − + ∫ k k k k k  

and similarly the meson sector contribution BS  is given as 

( )
( ) ( )( ) ( ) ( )( )2 2 2 2

3
3 d sinh , ln sinh , cosh , ln cosh , .

2π
B B B B BS θ β θ β θ β θ β = − − ∫ k k k k k  

Thus the thermodynamic potential density now is a functional of ( ),F Tθ k , ( ),B Tθ k  as well as the pion 
dressing function ( )f k  which will of course depend upon temperature. Extremisation of Equation (29) with 
respect to ( )f k  yields 

( )
( ) ( )

2 2

2

2
2

1tanh 2
2 e

2
R k

Gf
M G a

M
π

ρ
ρω ω

= − ⋅
+ +

k
k k

                      (30) 

which is of the same form as [16] for zero temperature. Similarly minimising the thermodynamic potential with 
respect to ( ),B Tθ k  we get 

2 1sinh
e 1B βωθ ′=

−
                                  (31) 

where 

( ) ( )
2 2

2 2

e cosh 2 sinh 2
2 2

R kG Ga f f
M M

π
ρ ρω ω
ω ω

 
′ = + + + 

 
k k                    (32) 

Once we substitute the optimised dressing as in Equation (30), the above simplifies to 

( )2 2 2 2
1 22 1 2

e eR k R kG a a
M

π π
ρω ω ω
ω

 
′ = + + + 

 
                         (33) 

which is different from ω  due to interactions. Further, minimising the thermodynamic potential with respect to 
( ),F Tθ k  we have the solution 

( )
2 1sin

e 1FF β µ
θ

−
=

+
                                 (34) 

with 
2 2

2
2 2F
G k
MJ M

λρ= + +                                 (35) 

where J is given in Equation (25). We may note that the change in F  above from 2 2k M  is also due to inte-
raction. 

3. Results and Discussions 
The parameters a, Rπ , ωλ  and ρλ  [15] [16] are determined variationally. The first three of these four para-
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meters are evaluated by constraining the binding energy per nucleon ( )BE Mρ≡ − , the pressure P and the  
compressibility K of the symmetric nuclear matter i.e. 16 MeV

satBE = − , 0satP =  and 270 MeVsatK =  [19].  

The fourth parameter ρλ  of our calculation is evaluated by fixing the value of symE  to the standard value of 
31 MeV. 

The pion-nucleon coupling constant 2 4π 14.6G =  and a = 115.264 MeV, 1.061 fmRπ = , 23.164 fmωλ =  
and 20.650 fmρλ = . 

In Figure 1 we study the nature of variation of EB with different baryon densities at different temperatures. 
The saturation binding energy increases from −16 MeV at zero temperature to higher values with rise of temper-
ature. This clearly shows that the temperature has a significant effect on symmetric nuclear matter. 

In Figure 2, the variation of pressure P with nucleon densities have been studied at different temperatures (T 
= 0, 4, 8, 12, 16, 20 MeV). It shows that at the saturation density, the pressure is zero for zero temperature as 
usual. But pressure becomes negative if one goes towards lower density and it becomes zero at zero nuclear 
density. This peculear behaviour is first order phase transition. This trend disappears at higher temperatures. 

In Figure 3, the variation of pressure with nucleon densities for different Proton fraction at different temper-
atures. It shows that at Proton fraction 0.1Py =  the pressure becomes positive. If one goes to higher yPs the 
Pressuer becomes negative at different lower densities reaching zero Pressure at zero nucleon densities. So the  
 

 
Figure 1. The binding energy EB as a function of nucleon 
density ρ. 

 

 
Figure 2. The pressure P as a function of nucleon density ρ at 
different temperature. 
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asymmetric nuclear matter behaves differently at different nucleon densities. 
In Figure 4, the slope ( ) , pT yP ρ∂ ∂  at different relative nucleon densities 0ρ ρ  are plotted at two different  

temperatures for different proton fractions. It shows that the slope becomes negative as the relative nucleon den-
sities increases to a certain value and then increases at higher values. The trend is same at different higher tem-
peratures but terminates to a certain value of slope at certain lower densities. 

4. Summary 
In this paper, we study the warm equation of state (EOS) of asymmetric nuclear matter taking pion-nucleon in-
teraction with repulsive effect due to ρ and ω mesons. We observe here that our results are comparable with the 
Non-Linear Walecka (NLWM) and Quark Meson Coupling (QMC) model [20]. The binding energy changes 
from negative to positive value with increase of temperature around saturation density. The profile of pressure 
variation with density at different temperatures shows that there is a liquid-gas phase transition and the transition  
 

 
Figure 3. The pressure P as a function of nucleon density ρ for different proton fraction. 

 

 
Figure 4. The pressure variation ( ) , pT y

P ρ∂ ∂  as a function of relative nucleon density 

0ρ ρ  for different proton fraction. 
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is continuous above the critical temperature Tc at which ( ) , 0
pT yP ρ∂ ∂ = . We also observe that the pressure 

gradient becomes more negative due to increase of proton fraction leading to a possibility of instability. 
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