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Abstract

We establish some results on the existence of multiple nontrivial solutions for a class of p(x)-Lap-
lacian elliptic equations without assumptions that the domain is bounded. The main tools used in
the proof are the variable exponent theory of generalized Lebesgue-Sobolev spaces, variational
methods and a variant of the Mountain Pass Lemma.

Keywords

p(x)-Laplacian Operator, Generalized Lebesgue-Sobolev Spaces, Variational Method, Multiple
Solutions

1. Introduction

The study of differential and partial differential equations involving variable exponent conditions is a new and
interesting topic. The interest in studying such problem was stimulated by their applications in elastic mechanics
and fluid dynamics. These physical problems were facilitated by the development of Lebesgue and Sobolev
spaces with variable exponent.

The existence and multiplicity of solutions of p(x)-LapIacian problems have been studied by several
authors (see for example [1] [2], and the references therein).

In [3], A. R. EL Amrouss and F. Kissi proved the existence of multiple solutions of the following problem

_div<|Vu|p(X)f2 Vu) =f(xu), inQ, 1)
u=0, on 0Q.
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Also Xiaoyan Lin and X. H. Tang in [4] studied the following quasilinear elliptic equation

—div(|Vu|p_2 Vu)+v(x)|u|p_2 u=f(xu), inR", .
ueWw"?(R"),

and they proved the multiplicity of solutions for problem (2) by using the cohomological linking method for
cones and a new direct sum decomposition of W*P? (]RN ) :
In this paper, we consider the following problem

_Ap(x)u +b(X)|u|p(X)*2u: f (X,U)| in RN, (3)
uew ™ (R"),

where A u= div(|Vu|p(X)’2 Vu) is the p(x)-Laplacian operator; p(x):R" — R is a Lipschitz continuous
function with

l1<p =inf p(x)<p(x)<p"=sup p(x)<mo
xeR

xeRN

b(x) is agiven continuous function which satisfies
(Bo)
b= >0,m(b™(0,T]) <+, forall T eR",

here m is the Lebesgue measure on R".
f:R" xR — R isa Carathéodory function satisfying the subcritical growth condition

(Fo)
| f (x,t)| < c(1+|t|q(x)7l), VteR, ae xeRV,

for some ¢ >0, where q(x)eC(RN), p<q =inf q(x), 1<q(x)<p(x), VxR, and
xeR

[() ) p(X)<N,

p'(x)=N=p(x)’
o, p(x)=N.

Define the subspace

E ={u er’p(X)(RN)

[on (|Vu|p(x) +b(x)|u[™ )dx < +oo}

and the functional ®:E >R,
1 x
cI)(“):J.RNW(|VU|”() |u|ID ) —J'RNF(x,u)dx, vueE,

where F(x,u)= juf (xt)dt.
Clearly, in order to determine the weak solutions of problem (3), we need to find the critical points of func-
tional @. It is well known that under (Bo) and (Fo), @ is well defined and is a C* functional. Moreover,

(@' (u).v) =, (|Vu|p(x) 2 vuvv+b(x)[ul"? uv)dx—jﬂ{N f (x,u)vdx,
forall u,veE.

If f (x,O):O for a.e. xeR", the constant function u=0 is a trivial solution of problem (3). In the fol-
lowing, the key point is to prove the existence of nontrivial solutions for problem (3).

Set
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A= inf P() - >0, (4)
J.RN WX)M’)(X) dx

This paper is to show the existence of nontrivial solutions of problem (3) under the following conditions.

(Fy)

t|>

lim F(x,t)—(p+) A

M%w 3

=—oo, uniformly for a.e. x e R",

where A, as givenin (4).
(F2) There exist xe[1,p") and y >0, such that

0< uF(xt)<tf(xt), for ae.xeR", 0<|t|<y.
(F3) There exist > p" and K >0 such that
t|> K = 0<0F (x.t)<tf (xt),
forae. xeRY, vteR.
(Fa) f(x,t):o(|t|p+’l) as t—0 and uniformly for xeR", with g~ > p*. Here q(x) is given in the

condition (Fy).

We have the following results.

Theorem 1.1. If b(x) satisfies (Bg), f(x) satisfies (Fo), (F1) and (F,), then problem (3) possesses at least
one nontrivial solution.

Theorem 1.2. Assume b(x) satisfies (Bo), f(x) satisfies (Fo), (Fs) and (Fs), with f(x,0)=0 for a.e.
x e R", then problem (3) has at least two nontrivial solutions, in which one is non-negative and another is
non-positive.

This paper is divided into three sections. In the second section, we state some basic preliminary results and
give some lemmas which will be used to prove the main results. The proofs of Theorem 1.1 and Theorem 1.2 are
presented in the third section.

2. Preliminaries

In this section, we recall some results on variable exponent Sobolev space w P (]RN ) and basic properties of
the variable exponent Lebesgue space LP (RN, we refer to [5]-[8].
Let p(x) el” (RN ) , p~ >1. Define the variable exponent Lebesgue space:

LP) (]RN ) = {u RY > R|u is a measurable function and IRN |u|p(x) dx < +oo}.
For ueLP™ (RN ) , We define the following norm
|u|p(x) =inf {u > o|jRN

p(x)
dx <1;.
Define the variable exponent Sobolev space:

w0 (}RN ) = {u RY > R‘u e L’ (RN ) and [Vu e L™ (RN )}’

u(x)

which is endowed with the norm

"u"l, p(x) = |u|p(x) +|Vu|p(x) '

It can be proved that the spaces L% (RN) and WP (RN) are separable and reflexive Banach spaces.
See [9] for the details.
Proposition 2.1. [10] [11] Let

()
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I(u)=.. |u|p(x) dx, u e LP™ (RY).
Then we have
1)For u=0, Jul = @J(ijzl;
U] = 2 P
2) Jul,0 > 1= Jull, <9 (u)<|u,

: <1:>|u|z(x) <J (u)£|u|z(7x)
3) |u|p(x) >1(=1<1)< I (u)>1(=1, <1);

4) |un|p(x)—>0©J(un)—>0, |un|p(x)—>oo<:>J(un)—>oo.

For h(x)eL”(R") with h™>1,let h"(x):R" >R satisfy
IESE
h(x) h(x)

We have the following generalized Holder type inequality.
Proposition 2.2. [9] [12] For any u e L™ )(RN) and vel"" '(R"), we have

< T Yl
h™- h h(x) 17 1h™(x)

We consider the case that b(x) satisfies (Bo). Define the norm
p(x)
dx <1.

. vu["
Ju] = inf {,,,>o| jRN[_”

+b(x
o b
Then (E,|-|) is continuously embedding into w P (RN) as a closed subspace. Therefore, (E,|-[) isalso
a separable and reflexive Banach space.
Similar to the Proposition 2.1, we have
Proposition 2.3. [13] The functional J, :W*** (RN ) — R defined by

3, (u) J'(|Vu|p +b(x)[u]™ ))dx

=1, ae xeR".

u

U

has the following properties:
1) us0ul= s 3 [E]zl;
7

ul>1=>ul” <3, (u)<[ul” . fu] <2=u” < 3, (u)<]ul” ;
Uy[| > 0= 3, (u, )—>0
Lemma 2.4. [13] If b(x) satisfies (Bo), then
1) we have a compact embedding E << L™ (R");
2) for any measurable function q:R" —» R with p(x)<q(x)< p"(x), we have a compact embedding

E ooy 90 (R” ) . Here u<v means that XiEr]}%fN (v(x)-u(x))>0.

Now, we consider the eigenvalues of the p(x)-Laplacian problem

A u+b()ul?u =A%y, inRY,

uew ™ (RY).
Forany ueE,define G,H:E—>R by
_ L p(x) p(x p(x
0(6)= oy 176" 0O Jox ()= L 5™

Forall t>0, set

()
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S,=H?(t)={ueE:H(u)=t},

then S, isa C' submanifold of E since t is a regular value of H. Put
Y ={lcS:I==1,y(1)zn},
t,n

where (1) isthe genus of I.
Define

Cn = INfSUPG(u), =12,

uel
t,n

We denote by {(u(n’t) ; ﬂ’(n,t) )} the eigenpair sequences of problem (5) such that

IRN (

p(X)jdX

vu P +b(x)

(nt) Uty

(ng) = — 00, 85N —> .

p(x)

[on U] ¥
Define
. ,[RN (|Vu|p(x)+b(x)|u|p(X))dX
=1 ,
H E\0) LRN |u|p(X> dx
_. G(u)
“ =y

A, =inf A, where A={1eR:21isan eigenvalue of (5)}.
Lemma2.5. Forall t>0,let u,, bean eigenfunction associated with 4,

G(U(Lt)) =Cyy =inf {G(u):ues,}.

Proof. Let z, =inf {G(u):ueS,}. From the definition of c,,, itis easy to see that z,<c, .
On the other hand, since the functional G:E — R is coercive and weakly lower semi-continuous and S, is
weakly closed subset of E, there exists u, € S, suchthat G(+u,)=z. Letting |={+u,},then »(1)=1 and

Cq . < Z,. Thus the lemma follows. O
\2 \2
(p—+j B <A, _(p—_] L.
p p

) of the problem (5). Then,

wy =
Lemma 2.6.

A

Proof. From Lemma 2.5, we have

H (”(1’,0)
Since
6(us) i plx) Uvua ) "y b(%) U . )dx
H{u) Jin p(lx) U " ax
p Jin ( Vi b0 pmjdx
v Ji U "o |
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B G
so we have p—+/1(1t) <inf (1) ueS, ;. Then,
pr H (u)
- G
p—+/1* <inf (u) ueS ;, forallt>0.
p H (u)
P P
Thuswe get —A4, <, and 4, <—u,.
p p
Similarly, if u,, is the eigenfunction associated with 4, ,, we get An) z%y,, and 4, 2> E+ M, . Final-
ly, we obtain p—;y* <A < p—fy,ﬁ.
p
On the other hand, it is easy to see that p—;ﬁ* <u, s&ﬁ*. Thus the lemma follows. [
p p

Now, we consider the truncated problem

A +b(X)uu= £, (xu), inRY,

(
u er’p(x)(RN )

—
<
+
~—

where

f+(X,t)={f (x,t), if £t>0,

0, otherwise.

We denote by u') = max (u,0) and ut) = max (—u,0) the positive and negative parts of u.
Lemma 2.7.
1)If ueE then u™ ,u” cE and

) _JVu, u>0, - _ )0 u=0,
vu'’ = vu'’ =
0, u<o, Vu, u<DO.

+

2) The mappings u — u®) are continuous on E.

Lemma 2.8. All solutions of (Mf) (resp. M, ) are non-positive (resp. non-negative) solutions of problem
3).

Proof. Define @, (u):E > R,

@, (u)=], ﬁ(Wur’(x) +b(x)|u|p(x))dx—j}RN F, (x,u)dx

= [ ﬁﬂwr’m +b(x)[u™ )dx—fRN F (x,u(i) )dx,

where F, (x,s) =josfi (x,t)dt. From Lemma 2.7 and (Fo), ®, is well defined on E, weakly lower semi-con-

tinuous and C*-functionals.
Let u be a solution of (M_). Taking v=u") in

@' (u)v= jRN (|Vu|p(x)72 Vuvv+ b(x)|u|p(x)72 uv—f (x,u)v)dx =0,

we have

vu|P e

()=

u

+b(x)

p(X))dx =0.

=0,s0 u'=0 and u=u", ae. xeR", then u is also a criti-

()

By virtue of Proposition 2.3, we have ‘
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cal point of the functional ® with critical value @ (u)=®_(u).
Similarly, the nontrivial critical points of the functional ®, are non-negative solutions of problem (M+) O

3. Proof of Main Results
3.1. Proof of Theorem 1.1

To derive the Theorem 1.1, we need the following results.
Proposition 3.1. @ is coercive on E.
Proof. Put

2
L(x,t):F(X,t)—(p Lo
(v7)
From (F;) we have, forany R >0, thereis My >0 such that
L(x,t)<-R, V[t|>Mg,ae.xeR".
By contradiction, let AeR and {u,} < E such that

Ju,| = and ®(u,)<A (6)

t

Putting V, = , one has |v,||=1. For a subsequence, we may assume that for some v, € E, we have

Uy
Jua]
v, —v, weaklyinEand v, —>v, stronglyin L""(R").

Consequently, v, #0.Let Q= {x eR" 1y, # O} , via the result above we have |©[#0 and

|Un| — 400, a.eXxeQ.

Set
o fu (%), xeq,
":{o, xeR"\Q,
then,

|o,| >+, asn—w, ae xeQ

From (6), (F,) and Lemma 2.6, we deduce that

Az(T,) =], va, " b ()T, )~ [ F (x.T, ) ox

1
ol
N2
%L[W“+b<x>|un|“”{ ‘i} )

p

un|p(x)de—fQL(x,un)dx

> —IQL(x,un)dx — +o0.

This is a contradiction. Therefore, @ is coercive on E. [J

Proposition 3.2. Assume f(x) satisfies (Fo) and (F,), then zero is local maximum for the functional
®(su), u#0, seR.

Proof. From (F,), there is a constant ¢, >0 such that

F(xt)=cltf, forxeR", 0<|t|<y, 1<u<p. )
From (Fo) and || > >1, there exists ¢, >0 such that
|F(x,t)|§c2|t|q(x), xeRY, [t >y. (8)
By (7) and (8), we get
F(x,t)zcl|t|”—c2|t|q(x), xeRY, teR. (9)
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For ueE,u#0,0<s<1, wehave
D(su)< %IRN (|V“|p(x) er(X)|u|p(X))dx—j']RN (Cls” |u[ —c,s" |u|q(x))dx

< Spi_fnw (|VU|P(x) + b(X)|u|p(x))dx —c,s" "u”f# +0,5% J‘RN |u|q(x) dx

Since 1<u<p <q ,thereisa s, =s,(u)>0 such that
®(su)<0, forall0<s<s, <1. (10)

Thus the proposition follows. [

Proof of Theorem 1.1. From Proposition 3.1, we know @ is coercive on E. Since ® has a global minimizer
u, onE, @ is weakly lower semi-continuous and <D(O) =0, then, in order to prove u, =0, we need to prove
®(u,) < 0. So we have the Theorem 1.1 following from Proposition 3.2. [

3.2. Proof of Theorem 1.2

To find the properties of the p(x)-Laplacian operators, we need the following inequalities (see [10]).
Lemma3.3.For ¢ and S inR", then there are the foIIowing inequalities

[l g™ 8)( =) (of 417} = (02T for1<n<z

(el =[] B) (=)= 2" |~ forn>2.

Proposition 3.4. Assume (Fo), and let {u } be a sequence such that u, —u in Eand @’ (u,)v=o0,(1)
for all veE as n—o, then, for some subsequences, Vu,(x)—Vu(x), ae. in R", as n—o and
@' (u)v=0 forall veE.

Proof. Let R>0 and 5 eCy (R") such that

n=0if [x > 2R, n=1if [x| <R, 0<n(x)<1 forall xe R" and |v;7|<%.
Let us denote by {P,} the following sequence
P = (|Vun|p(x)_2 vu, -|[vu["¥? Vu)(Vun -Vu).
From Lemma 3.3, we have P, >0 and
IBR(O)Pndx <[ vy, "™ ndx =, Vu, "™ vu,vu - 7dx

[ VU™ vuv (u, —u)-ndx.
Recalling that u, —u in E, we get
[n VulP" pvuv (u, —u)dx — 0, asn — oo,
and so,

IBR(O)Pndx < J.]RN [Vu,| P i — IRN [Vu,| P2 VU Vudx + 0, (1) a
= [ vu, " v,V (u, —u)dx+o, (1).

On the other hand, by (11) and d)’_(un)[ry(u —u)|=0,(1), we obtain
jBR(O)Pndx <0, (1)~ [Lu|Vu |02
= [ (), |p u,
<0, (1)~ [ «[Vu, P2
= [ (), |p u

ndx+_[RN f (x,uf]’))(un —u)ndx
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Thus,
.[BR(o)PndX <0, (1)+01Lup”|vun|p(x)_l |Un —U|dX
+ C1J.Sw,,]b(x)|un|p(x)7l |u, —u|dx+c, J.sup”|un|q(x)f1 |u, —uldx.
Combining Holder’s inequality and Sobolev embedding, we deduce that

jBR(O)Pndx -0, as — . (12)

Let us consider the sets
B, ={xe By (0)1< p(x)<2} and B, ={xeB,(0) p(x)>2}.

From Lemma 3.3, we get

2 |[Vu,-vuf _
P Z(p —1) o |+|VU|)Z")‘X)' if xeB, (13)

P, >27" [vu, -vu|"”, if xeB,. (14)
Applying again Holder’s inequality,

J'B1|Vun —Vu|p(x) dx<Clg, Lﬁ(Bl)|h“|Lﬁ(x)(Bl)’ (15)
where
[Vu, —Vu|p(x)
9 (%)= P02 (1)
(VU [ +[vul) 2
and
p(x)(2-p(¥)
h, (x) = (|Vu, [ +[vu]) 2
Then,
Jo Ina 75 de = [, (¥, |+ )" o < o0 (16)
From (12) and (13), we have
jBl|gn|% deC_[Bandx—>0, as n — oo. (17)
By (15)-(17), we obtain
.[Bl|Vun ~vu|"™ dx 0, asn—> . (18)
(12) and (14) imply that
[ —Vu|p(x) dx — 0, asn — oo, (19)
2

From (18) and (19), Vu, — Vu a.e.in B (0). Because R is arbitrary, it follows that for some subsequence
Vu, - Vu ae inR".

Combined with Lebesgue’s dominated convergence theorem, we get

P00 §
|Vun|p(x)72 vu, — |Vu|p(x)72 Vu in {Lp(x)l (RN )J . (20)
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By (20) and @’ (u,)v=0, (1), we derive that @’ (u)v=0 forall veE.O

Proposition 3.5. Assume (Fo), and let d e R and {u,} be a (PS)q sequence in E for ®_, then {u,} is
bounded in E.

Proof. From (Fo), we have |F (x.t)|<c, |t|q(x) ,VteR, ae. xeR". Itisclear that

1 1

© () 5@ ) = Lo [Vl 00 = o (o

1 (v, +b(x)|un|p(x))dx+%j]RN f (x,ug‘))undx

2( 1+ —% [ (|Vun|p(x)+b(x)|un|p(x))dx—jRNF(x,uﬁ'))dx
1

p

1 (
2(_*_5 3 ()= ful”

p
1 1 X
Z(F_E 3, (uy) -] |un|q( ) dx

Assume that |u,[|>1 for some ne N, then, by Proposition 2.3, Holder’s inequality and Sobolev embedding,
we have

1 1 - +
d+1e o Z[F—g]"un”p o @)

Since > p* and 1< p” <q", (21) impliesthat {u,} isboundedinE. O

Proposition 3.6. Assume b(x) satisfies (Bo), f(x) satisfies (Fo) and (Fs), and let {u,} be a (PS)q sequence
in E, then @_ satisfies the (PS) condition.

Proof. From Proposition 3.4, we have
Iim(.[]RN (|Vun|p(x)—2 vu, —|Vu|P Vu)(Vu —Vu)dx)_ I|m_[ P.dx = 0. (22)

n—o0 n—oo

By Lemma 2.4, we get
lim [ b(x)|u,[*" dx=[ b (x)Ju" dx. (23)

n—w

On the other hand, Lebesgue’s dominated convergence theorem and the weak convergence of {un} touinE
show

rI1|_r)1010.[ b(x |p - uundx=_[RNb(x)|u|p(x)dx. (24)
P(x)
Moreover, since b(x) |u |p u, are bounded in Lp(x)’l(RN),then we have

(-1 (-1 U
b(x)')rJ(7X)|un|p(x)72un Ab(x)ppW|u|p( Cuoin LPUH(RY),

Therefore, by virtue of the definition of weak convergence, we obtain
lim [_b(x)|u, | u,udx = [ b(x)|u]"" d (25)
By (23)-(25), we have

Ilm(j b( x)(|un|p(x)72 u, —Ju]" u)(un —u)dx)

n—oo

_I|m(J' (b )|u, |p +b(x)[u™ )—b(x)|un|p( “uu-b(x)|ul” )_Zuun)dx) (26)

n—oo

=0.



H. H. Qj, G. Jia

By (22) and (26), we get
lm(.[n@' (|Vun|p(x)f2 vu, - |[vu[*? Vu)(Vun —Vu)dx
+ b(x)(|un|p(x)_2 u, —Juf"™ u)(un —u)dx) =

Then combining Lemma 3.3, we obtain
lm(ij vu, - vy dx+ [ b(x)]u, —u|p(x) dx) =0,

which imply that u, > u inE.O
Proposition 3.7. There exist r>0 and 1>0 suchthat ®_(u)>1,forall ueE with |u|=r.
Proof. The conditions (Fo) and (F4) imply that

F(xt)|<eltf” +C (&)™, forall(x,t)e R xR
For |u| small enough, combined with Proposition 2.3, we have

d)(u)z%Jl(u)—IRNF(x,u())dx

ul” —g.[RN u(’)‘w dx—C(e).[RN u(’)‘q(x) dx (27)
2§}WW+—gkdqwdx—C( ]l ax.
By the condition (F), it follows
p<p(X)<p <qg <q(x)<p(x),
from Lemma 2.4, which implies the existence of C,,C, >0 such that
Jull s+ <C4u| and |u| n <C s ull, forallueE. (28)

Using (28) and Proposition 2.1, we deduce
Joo (" e <y, <l
Combining (27), it results in that

1 + N + _
0.0z L o0 WP -, b

o . -1 .
here C, are positives constants. Taking & >0 such that £C; 32—+, we obtain
p

p* 1 -t
2p* '

Since p* <q~, the function t—{%—gtq‘ﬁj is strictly positive in a neighborhood of zero. It follows

@ (u)2|ul ~C; o] =

that there exist r >0 and | >0 such that
®_(u)=1, YueE:|u|=r.

O
Proposition 3.8.If ucE and s>1,wehave ®_(su)—>—x,ass—+w, foracertain uek.

Proof. From the condition (Fs3), we get
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F(x,t)20|t|g, t|> K, forallxeR".

For ueE and s>1, we have

®_(su)= 1 (|sVu|p(X) + b(x)|su|p(x))dx -[ WF (x,(su)(’) )dx
1

" p(x)
w0l

<s” [, vul?™ + x)|u|”(x))dx—cs"LRN UH‘H dx.

Since 6> p*, we obtain

®_(su)—>—o, ass—> +w.

O
Proof of Theorem 1.2. According to the Mountain Pass Lemma, the functional @_ has a critical point u'”)

with ®_(u”)>1.But, ®_(0)=0,thatis, u") 20, ae. xeR". Therefore, the problem (M_) has a non-
trivial solution which, by Lemma 2.8, is a non-positive solution of the problem (3).

Similarly, for functional @, , we still can show that there exists furthermore a non-negative solution. The
proof of Theorem 1.2 is now complete. [J
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