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Abstract

We investigate the existence and nonexistence of positive solutions for a system of nonlinear Rie-
mann-Liouville fractional differential equations with coupled integral boundary conditions which
contain some positive constants.
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1. Introduction

Fractional differential equations describe many phenomena in various fields of engineering and scientific dis-
ciplines such as physics, biophysics, chemistry, biology (such as blood flow phenomena), economics, control
theory, signal and image processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see [1]-[6]).
For some recent developments on the topic, which can be seen in [7]-[19] and the references therein.

In this paper, we consider the system of nonlinear ordinary fractional differential equations

. {Dgiu (t)+a(t) f(v(t))=0,te(01),
Dyv(t)+b(t)g(u(t))=0,t(0,1),
with the coupled integral boundary conditions
u(0)=u'(0)=--=u"?(0)=0,u(1)= [v(s)dH (s)+a,

(BC) .
v(0)=v'(0)=+=vI"?(0)=0,v(1) = [u(s)dK (s)+hy,
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where n—-1<a<n, m-1<g<m, nmeN, nm>3, Dy, and D/ denote the Riemann-Liouville
derivatives of orders « and g, respectively, the integrals from (BC) are Riemann-Stieltjes integrals, a, and
b, are positive constants.

Under some assumptions on the functions f and g, we shall prove the existence of positive solutions of problem

(S)-(BC). By a positive solution of (S)-(BC), we mean a pair of functions (u,v)eC([0,1;R,)xC([0,1;R,)
satisfying (S) and (BC) with u(t)>0, v(t)>0 forall te(0,1]. We shall also give sufficient conditions for

the nonexistence of positive solutions for this problem. Some systems of fractional equations with parameters
subject to coupled integral boundary conditions were studied in [20] by using the Guo-Krasnosel’skii fixed point
theorem. We also mentioned the paper [21], where we investigated the existence and multiplicity of positive

solutions for the system Dg.u(t)+ f (t,v(t))=0,te(0,1), D{v(t)+g(t,u(t))=0,t(0,1), with the integral
boundary conditions (BC) with a, =b, =0 by using some theorems from the fixed point index theory and the

Guo-Krasnosel’skii fixed point theorem. In [21], the nonlinearities f and g may be nonsingular or singular in
t=0 and/or t=1.Some systems of Riemann-Liouville fractional equations with or without parameters subject
to uncoupled boundary conditions are studied in the papers [22]-[25], and the book [26].

In Section 2, we present some auxiliary results which investigate a system of Riemann-Liouville fractional
equations subject to coupled integral boundary conditions. In Section 3, we prove our main results, and an
example which supports the obtained results is finally presented in Section 4. In the proof of our existence result,
we shall use the Schauder fixed point theorem which we present now.

Theorem 1. Let X be a Banach space and Y — X a nonempty, bounded, convex and closed subset. If the
operator A:Y —Y iscompletely continuous, then A has at least one fixed point.

2. Auxiliary Results

We present here the definitions of the fractional integral and Riemann-Liouville fractional derivative of a
function, and some auxiliary results from [20] and [22] that will be used to prove our main theorems.
Definition 2.1: The (left-sided) fractional integral of order « >0 of a function f :(O,oo) — R s given by

1

a t a-1
(|0+f)(t):mj.o(t—5) f(S)dS,t>0,
provided the right-hand side is pointwise defined on (O,oo), where F(a) is the Euler gamma function defined

by I'(a)=|[t""e"dt, a>0.

Definition 2.2: The Riemann-Liouville fractional derivative of order « >0 for a function f :(0,oo) >R
f(s

is given by
dy 1 dy
D f)(t)=|—| (13:f)(t)=———| —
( 0+ )( ) (dtj ( 0+ )( ) r(n_a)(dtj o(t_s)a—ml
where n=[a]]+1, provided that the right-hand side is pointwise defined on (O,oo).

The notation [[a]] stands for the largest integer not greater than o . If a=meN then Dg f(t)= £(m (t)

for t>0,andif &=0 then Dy, f(t)=f(t) for t>0.
We consider now the fractional differential system

Dyu(t)+x(t)=0,te(0,1),n-1<a <n, O
DJv(t)+y(t)=0,te(0,1),m-1< B <m,
with the coupled integral boundary conditions
u(0)=u'(0)=+-=u"?(0)=0,u(L) = [V(s)dH s),
2

v(0)=v'(0)=--=v"?(0)=0,v(1) = |
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where nmeN,

where

and

nm=>3 and H,K:[0,1]] >R are functions of bounded variation.
Lemma 1. ([20]) If H,K:[0,1]—> R are functions of bounded variations,

A=1—(J'01r“’1dK(r))(ﬁr”’ldH (f));tO and x,yeC(0,1)NL*(0,1), then the unique solution of problem
(2)-(2) is given by

u(t —IG (t,s)x s)ds+'f;G2(t,s)y(s)ds,

1 ®)
v(t) J'G s)y(s)ds+[G, (t,s)x(s)ds, t [0,1],
G, (t,s)=0g,(t,s)+ (jr“dH )(Igl 7,5)dK (7 ))
_t 1jgz
@)
G, (t,5)=g,(ts +—(jr" 'dK (¢ )('[g2 7,8)dH (7 ))
G, (t,s) =Tjogl(r,s)dK (z), vt,s€[0,1],
1 7 (1-s5)" —(t-s)"",0<s<t <],
gl(t’s)_l"( ){ H1-s) ", 0<t<s<l,
(5)

/1 (1-s)"" ~(t-s)"", 0<s <t <,
1"(ﬂ) /1 (1-s)", 0<t<s <1,

9, (t,S) =

Lemma 2. ([22]) The functions g, and g, given by (5) have the properties
a) 0,,9,:[0,1]x[0,1] > R, are continuous functionsand g, (t,s)>0, g,(t,s)>0 forall

(t, S) € (O,l)x(O,l) ;
b) g,(t.s)<9,(6,(s).5).9,(t.s)<9,(6,(s).s), forall (t,5)e[0,1]x[0,1];

c) Forany ce(0,1/2), we have

1060902 70(4(5)5) i, 0.(05)2 78, (5).9),

forall se[0,1], where y =c*

g2

p-1

te[c1-c]
> se(0],
1y, =ci g (s) =11 (L-8)? and
a__z, s:()’
a-1
., se(0,1],
s=0.

Lemma 3. ([20]) If H,K :[0,1] — R are nondecreasing functions, and A >0, then G,, i=1---,4, given
by (4) are continuous functions on [0,1]x[0,1] and satisfy G, (t,s)>0 for all (t,s)e[0,1]x[0,1], i=1-,4.
Moreover, if x,yeC(0,1)NL'(0,1) satisfy x(t)>0, y(t)=0 forall te(0,1), then the solution (u,v) of
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problem (1)-(2) satisfies u(t)>0,v(t)>0 forall t<[0,1].

Lemma 4. ([20]) Assume that H,K :[0,1] —» R are nondecreasing functions and A > 0. Then the functions
G;,i=1---,4, satisfy the inequalities

a)) G(t,s)<J,(s), V(t,5)e[0,1]x[0,1], where

3.(s)= 0, (6.(5).9) (j T 14H (¢ )(_[gl (r.5)dK ( ))
a,) Forevery ce(0,1/2), we have

min_ G, (t,5) > 7,J,(s) = 7G, (t',s), vt';s €[0,1];

tefc1-c]

bi) G,(t;s)<J,(s), v(t,s)e[0,1]x[0,1], where J,( =—jg2 (z,5)dH (7);
b,) For every ce(0,1/2), we have
min_G, (t,5)>J,(s) = 7G,(t,s), vt',s €[0,1];

tefc1-c]

1) Gy(t,s)<J4(s), V(t,5)e[0,1]x[0,1], where

33(5)= 8. (0:(5),8) + ([ 0K (7)) [ (+,9)aH (1))
cz) For every ce(0,1/2), we have
min G, (t,5)> 7,35 (s) = 7,G;(t',s), vt',;s €[0,1];

tefc1-c]

d) G, (t,5)<J,(s), V(t.s)e[0,1]x[0,1], where J,s :% [l9,(7,5)dK (¢);
d,) For every c<(0,1/2), we have
min_ G, (t,5) > 7,J,(s)=7,G,(t",s), vt',s €[0,1].

te[c1-c]
Lemma 5. ([20]) Assume that H,K:[0,1] >R are nondecreasing functions, A>0, ce(0,1/2) and

x,yeC(0,1)NL'(0,1), x(t)=0, y(t)=0 for all te(0,1). Then the solution (u(t),v(t)), te[0,1] of
problem (1)-(2) (given by (3)) satisfies the inequalities

inf u(t)>ylsupu(t) inf v(t)>y,supv(t’).

tefc,1-c] te[c,1-c] te[04]

3. Main Results
We present first the assumptions that we shall use in the sequel.

(J) H,K:[0,]] >R are nondecreasing functionsand A =1- (J' r“dK (7 )(Irﬁ YdH (¢ ))>0.

(J2) The functions a,b:[0,1] —[0,0) are continuous and there exist t,t, €(0,1) such that a(t,)>0,
b(t,)>0.

(J3) f,g:[0,00) >[0,00) are continuous functions and there exists ¢, >0 such that
CO C0
f (u)<—, g(u)<T forall ue[0,c,],

where L= max{j ds+jlb s)ds,_[olb(s ds+_[ )ds} and J,,i=1---,4 are de-

fined in Lemma 4.
(J,) are continuous functions and satisfy the conditions
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lim,,,, f(u)/u=oo,lim,, g(u)/u=co.
By assumption (J,) we deduce that ﬁa(s)‘]l(s)ds >0, j:b(s)\]2 (s)ds >0, J':b(s)‘]s(s)ds >0 and

j:a(s)J4(s)ds >0, that is, the constant L from (J5) is positive.

Our first theorem is the following existence result for problem (S)-(BC).

Theorem 2. Assume that assumptions (J;)-(Js) hold. Then problem (S)-(BC) has at least one positive solution
for a, >0 and b, >0 sufficiently small.

Proof. We consider the system of ordinary fractional differential equations

Dy, h(t)=0,t<(0,1), ©)
D{k(t)=0,t<(0,1),
with the coupled integral boundary conditions
h(0)=h'(0)=++-=h"?(0)=0,h(1) = [k(s)dH (s)+ay, o
7

k(0)=k'(0) ==k (0)=0, k(L) = [ h(s)dK () +b,,

with a, >0 and b, >0.
The above problem (6)-(7) has the solution
1g
X (aO +by [ 57 dH (s)),te[o,l],

h(t)="
4 ®)

(0)= by vy 50K (5)) <o,

where A is defined in (J;). By assumption (J;) we obtain h(t)>0 and k(t)>0 forall te(0,1].
We define the functions x(t) and y(t), te[0,1] by

x(t)=u(t)=h(t), y(t)=v(t)-k(t), vt [0,1],

where (u,v) is asolution of (S)-(BC). Then (S)-(BC) can be equivalently written as

a-1

Dy x(t)+a(t) f(y(t)+k(t))=0,te(0,1), ©)
D7y (t)+b(t)g(x(t)+h(t))=0,te(0,1),
with the boundary conditions
x(0)=x'(0)=---=x"?(0)=0, x(1) = ['y(s s
(0)=x(0) (0)=0.x(1)=[y(s)aH (5) w0

y(0)=y'(0)=--=y"?(0)=0, y(1) = [x(s)dK((s).

Using the Green’s functions G;, i=1--,4, from Lemma 1, a pair (x, y) is a solution of problem (9)-(10)
if and only if (x, y) is a solution for the nonlinear integral equations

x(t)=[G, (t.s)a(s) f (y(s)+k(s))ds+ [ G, (t.s)b(s)g(x(s)+h(s))ds,t [0,1],

y(t)= I:G3 (t,s)b(s)g(x(s)+h(s))ds+.f:G4 (t.s)a(s) f(y(s)+k(s))ds,te[0,1],
where h(t) and k(t), te[0,1] aregivenin (8).
We consider the Banach space X =C([0,1]) with the supremum norm |-|, the space Y = X x X with the

(11

norm |(x, )], =[X|+]¥| . and we define the set

E={xeC([0,1]),0<x(t)<c,, vte[0,1]} = X.

We also define the operators S;,S,:ExE — X and S:ExE —Y by
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S, (%, y)( IG (t.s)a(s) f(y(s )+k ds+le t,s)b(s)g(x(s)+h(s))ds,
S, (%, y)( jG (t.s)b(s)g(x(s)+h ds+IG s)a(s) f(y(s)+k(s))ds,
forall te[0,1], and S(x,y)z( S, (xy).S ( ¥)). (X, y)eExE.
For sufficiently small a, >0 and b, >0, by (J3), we deduce
F(y(1)+k(1) <32 g(x(1)+h(t)) <=2, vte[01], vxy < E

Then, by using Lemma 3, we obtain S, (x,y)(t)>=0, S,(x y)( )=0 forall te[0,1] and (x,y)e ExE.
By Lemma 4, for all (x, y) e ExE, we have

S, (% IJ y(s)+k(s) ds+jJ b(s)g(x(s)+h(s))ds
s%(j ds+J'1b ds)<co,Vte[0 1]
and
S, (x,y g.[lJ s)b(s)g(x( s)+h (s)) ds+J'1J4 (s)a(s) f(y(s)+k(s))ds

_O(IIb ds+j )ds)<cO,Vte[Ol]

Therefore S(ExE)c ExE.

Using standard arguments, we deduce that S is completely continuous. By Theorem 1, we conclude that S has
a fixed point (x, y) € ExE, which represents a solution for problem (9)-(10). This shows that our problem
(S)-(BC) has a positive solution (u,v) with u=x+h,v=y+k for sufficiently small a, >0 and b, >0.

In what follows, we present sufficient conditions for the nonexistence of positive solutions of (S)-(BC).

Theorem 3. Assume that assumptions (J1), (J2) and (J4) hold. Then problem (S)-(BC) has no positive solution
for a, and b, sufficiently large.

Proof. We suppose that (u,v) is a positive solution of (S)-(BC). Then (x,y) with x=u-h, y=v-k is
a solution for problem (9)-(10), where (h,k) is the solution of problem (6)-(7) (given by (8)). By (J,) there

exists Ce(O 1/2) such that t,t,e(c,l1-c), and then J'Cl_ca(s)\]l(s)ds>0, Cl_cb(s)Jz(s)ds>O,

Il b(s)J,(s)ds >0, J' J,(s)ds>0. Now by using Lemma 3, we have x(t)>0, y(t)>0 for all
te [0,1] , and by Lemma 5 we obtain inf,__, o x(t)= 7 [x| and inf ., ;y(t)= 7, |y[.

Using now (8), we deduce that inf h(t :}/1||h|| and inf__, k(t)=7,[k|. Therefore, we obtain

tefc,1-c]

inf (o1 o (x(t)+h(t)) 2y, |x+h| and inf_.1 (y(t)+k(t))=7,|y+K|.

We now consider R = (;/f fj_cb(s)Jz (s)ds)i1 > 0. By using (J,), for R defined above, we conclude that there
exists M >0 such that f(u)>2Ru, g(u)>2Ru for all u>M . We consider a, >0 and b,>0
sufficiently large such that inf,,, (x(t)+h(t))=M and inf o1 g (y(t)+k(t))=M . By (Jz), (9), (10) and

the above inequalities, we deduce that x| >0 and |ly|>0.
Now by using Lemma 4 and the above considerations, we have

x(c)—IlG (c,s)a(s) f(y(s)+k ds+IlG (c.s)b(s)g(x(s)+h(s))ds
>71IJ )b(s)g(x(s)+ ( ))ds > ,[ "3, (s)b(s)g (X(S) h(s))ds
J,(s)b

> 2Ry, [ (s)(x(s)+ ())ds>2R71 3,(s)b(s) inf (x(z)+h(z))ds

re[c,l—c]

S

S

> 2Ry, j 3, (s)b(s)x+hlds =2|x+h|> 2[x|-
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Therefore, we obtain || s%x(c) s%"x" which is a contradiction, because |x||>0. Then, for a, and b,

sufficiently large, our problem (S)-(BC) has no positive solution.

4. An Example

We consider a(t)=1, b(t)=1 for all te[0,1], a=7/3 (n=3), p=5/2 (m=3), H(t)=t*, for all
0, te[0,1/3),
e[01] . K(t)=11 te[Y3,2/3), then Ev(s)d 2[ sv(s)ds and .[ (s)=u(%)+%u[§j :
3/2,te[2/3,1].
We also consider the functions f,g:[0,00)—[0,%0), f(x)=ax*, g(x)=bx’, for all xe[0,0), with
ab>0.Wehave lim_, f(x)/x=lim,, g(x)/x=oo.
Therefore, we consider the system of fractional differential equations
) {Dgfu(t)ﬂfwz (t)=0,te(0,1),
Dyv(t)+bu®(t)=0,t<(0,2),
with the boundary conditions

u(0)=u’'(0)=0,u(1) stv )ds +ay,

1y 1 (2
0)=Vv'(0)=0,v(1)=u| = |+=u| = |+b,.
v(0)=V'(0) v(1) u(3j+2u[3j+o

Then we obtain

A=1-( 7K (7)) [ir*%H (7)) - 1—{(1]4/3 +l[3j4/3j(2 ez - 234824 701534915 0

(BCo)

3 2\ 3 2133
We also deduce

(ts)- L t°(1-s)" —(t-5)"*,0<s <t <1,
ls =~
% T(7/3) [t (1-5)"°, 0<t<s <1
(ts)=—2 92 (1-5)" ~(t-s)"*,0<s <t <L,
,S
% 3Jn |12 (1-5)% 0 <t<s <L,
6, (s)= ; 0, (s)=;2 forall se[0,1]. For the functions J;, i=1--,4, we obtain
4—6s+4s” — 3-3s+s
)" 2 [2(1-5)" ~2(1-3s)" +(2-25)"" - (2-35)"" | {0 < s < y3,
7/3 (4-65+4s" -5’ ]/ 213/3A
3,(s)= )" 2 [2(1-5)" +(2-25)" ~(2-35)" | [ y3< 5 < 23,
7/3 (4-65+4s" —s° ]/ 213/3A
)" 2 2(1-5)" +(2-25)" |}, 2/3<5 <1
7/3 (4-65+4s" -5’ ]/ 213/3A

3,(s) = ?MA{l(l 3)3/2_%(1_5)7/2_%5(1—5)5/2},sG[o,l],
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4 S(l—S)3/2 4(1"'3/5) 1 32 1 72 1 5/2
\]3(5)—3\/; (3—3S+SZ)1/2+ N [7(1—3) —7(1—5) —gs(l—s) } se[0,1]

1 4/3 4/3 4/3 4/3 <s<
m[za—s) ~2(1-35)" +(2-25)" -(2-35)"") |0 < s <3,
B 1 )2 L (2_25)3 _(p_3s)¥? <s<
3,(s)= —6§/§AF(7/3)[2(1 5" +(2-25)" - (2-35)"" | Y3 <5 <23,
1 4/3 4/3 o<
m[z(l_s) +(2-25)" | 2/3<5 <1,

Then we deduce that assumptions (J;), (J2) and (J4) are satisfied. In addition, by using the above functions J;,

i=1-,4, weobtain A:=[3J,(s)ds~0.15972386, B:=[J,(s)ds ~0.05446581,

C:=|J,(s)ds ~0.09198682, D:=|J,(s)ds~0.12885992, and then L =max{A+B,C + D} ~0.22084674.
0 0

We choose c, =1 and if we select a<%,6<%, then we conclude that f(x)<%, g(x)<% for all

x €[0,1]. For example, if a<4.52 and b <4.52, then the above conditions for f and g are satisfied. So,

assumption (Jz) is also satisfied. By Theorems 2 and 3 we deduce that problem (Sy)-(BCy) has at least one
positive solution for sufficiently small a, >0 and b, >0, and no positive solution for sufficiently large a,
and b, .
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