
World Journal of Engineering and Technology, 2015, 3, 149-154 
Published Online October 2015 in SciRes. http://www.scirp.org/journal/wjet 
http://dx.doi.org/10.4236/wjet.2015.33C022   

How to cite this paper: Sasaki, Y. (2015) The Best Constant of Discrete Sobolev Inequality on a Weighted Truncated Tetra-
hedron. World Journal of Engineering and Technology, 3, 149-154. http://dx.doi.org/10.4236/wjet.2015.33C022  

 
 

The Best Constant of Discrete Sobolev 
Inequality on a Weighted Truncated 
Tetrahedron 
Yoshikatsu Sasaki 
Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Japan 
Email: sasakiyo@hiroshima-u.ac.jp  
 
Received 12 August 2015; accepted 15 October 2015; published 22 October 2015 

 
 

 
Abstract 

The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which 
describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of 
known results by Kametaka et al. under the assumption of uniformity of the spring constants. 
Since the buckyball fullerene C60 has 2 kinds of edges, destruction of uniformity makes us pro-
ceed the application to the chemistry of fullerenes. 
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1. Introduction 
Sobolev inequality known as Sobolev embedding theorem plays an important role in the theory of PDEs. Brezis 
[1, Chap.IX] gave some constant of Sobolev inequality, and mentioned that the best constant was known and 
complex. Talenti [2] and Marti [3] studied the best constant by use of variational methods.  

Kametaka and his coworkers studied the best constant of Sobolev inequality in view of the boundary value 
problem [4]-[8], and then they studied discrete Sobolev inequality [9]-[13] aiming to application to the C60 
buckyball fullerene [14]. Table 1 is a summary of Kametaka school; in this table, Rn stands for the regular 
n-hedron, and Tn stands for the truncated n-hedron. In classical geometry, each truncated n-hedra is known as a 
member of Archimedean polyhedra. Note that the works of Kametaka school on each polyhedron is under the 
assumption of uniformity of the spring constants.  

On the other hand, in chemistry of fullerenes [15], the structure of the fullerenes is studied in detail. [16]-[18] 
tell us that the bond lengths of the C60 buckyball fullerene are of 2 kinds. So, in prospects for application to the 
chemistry of fullerenes, the assumption of uniformity of the spring constants should be thrown away.  

This article concerns with the best constant of discrete Sobolev inequality on T4 with 2 kinds of spring con-
stants, in other words, a weighted T4 graph. The results of Kametaka school for R4 [10] and T4 [12] are genera-
lized in the next section. The outline of this article follows the paper of Kametaka school on Rn [10]. 
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2. Discrete Laplacian and Discrete Sobolev Inequality 
2.1. Main Results 
Consider the truncated tetrahedron T4. It has 12 vertices, and let us number the vertices 0, 1, …, 11 as in Figure 
1, similar to [12]. Put  

12 12
0 1 11( , ,..., ) and (1,1,...,1) .t tu u u= ∈ = ∈ u 1  

Define the bond matrix ijB , as in Figure 2, by  
( ) ( ) 1, ( ) ( ) 1, ( ) 0 for , { , }.ij ii ij ij ij ij ij ji ij klB B B B B k l i j= = = = − = ∉   

Note that 2 *| | .i j iju u B− = u u  Let us represent each edge of T4 by the couple of the numbers of both vertices, 
identifying ( , )j i  with ( , )i j . Put  

1 {(0,1), (2,11), (3,6), (4,5), (7,10), (8,9)},e =  

{ }2 (0, 4), (4,8), (8,0), (1, 2), (2,3), (3,1), (5,6), (6,7), (7,5), (9,10), (10,11), (11,9) .e =  

1e  is the set of original edges of R4, and 2e  is the set of edges of T4 created by the truncation. Let us denote 
r  the ratio of the spring constant of each egde of 2e  to one of each edge of 1e , and introduce 2 kinds of the 
Sobolev energies as follows:  

1 2

2 2 2

( , ) ( , ) 0 11
( ) | | | | , ( , ) ( ) | | .i j i j j

i j e i j e j
E u u r u u E a E a u

∈ ∈ ≤ ≤

= − + − = +∑ ∑ ∑u u u  

Here, 0a >  is a dumping parameter. Define the weighted discrete Laplacian  

1 2( , ) ( , )
.ij ij

i j e i j e
A B r B

∈ ∈

= +∑ ∑  

A  is also represented as follows:  
 

 
Figure 1. Numbering of the vertices of T4. 

 

 
Figure 2. Bond matrix. 
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1

2

1 2 ( )
1 (( , ) )

.
(( , ) )

0 (otherwise)

r i j
i j e

A
r i j e

+ =
 − ∈=  − ∈


  

By use of the weighted Laplacian defined as above, the Sobolev energies are written as follows:  
* *( ) , ( , ) ( ) .E A E a A aI= = +u u u u u u  

The eigenvalues of A  are as follows:  

2 3 2 3 2 3 2 3 2 3 2 30,3 ,3 ,2 3 ,2 3 ,2 3 , , , , , , ,
2 2 2 2 2 2

r D r D r D r D r D r Dr r r r r + − + − + − + + + + + ++ + +  

where 24 4 9D r r= − + . Let us stand 0 1 110, ,...,λ λ λ=  for the eigenvalues of A . Note that 0 is a simple ei-

genvalue of A  with the corresponding eigenvector 12(1,1,...,1)t= ∈1 , and 0
1

12
tE = 1 1  is the projection 

matrix to the eigenspace corresponding to the eigenvalue 0. Let us introduce the Green matrix of A  by  
1( ) ( ) .G a A aI −= +   

For the Green matrix, there exists a unique matrix *G  satisfying  

* * 0 * 0 0 *, .AG G A I E G E E G O= = − = =   

*G  is the Penrose-Moore genelarized inverse matrix of A , and is called the pseudo green matrix of A . We 
see that  

( )1
* 00

lim ( ) .
a

G G a a E−

→+
= −  

Theorem 1. There exists a positive constant C  independent of 12∈u  such that, for every 12∈u  sa-
tisfying 0t =1u , the discrete Sobolev inequality  

( )2

0 11
max | | ( )jj

u CE
≤ ≤

≤ u  

holds. Among such C , the best constant 0 0 ( )C C r=  is  

2

0
1 11

1 1 52 168 81( ) .
12 144 (2 3 )j j

r rC r
r rλ≤ ≤

+ +
= =

+∑  

Theorem 2. There exists a positive constant C  independent of 12∈u  such that, for every 12∈u , the 
discrete Sobolev inequality  

( )2

0 11
max | | ( , )jj

u CE a
≤ ≤

≤ u  

holds. Among such C , the best constant ( )a aC C r=  is  

0 11

1 1 1 1 2 3 3(2 2 3 )( ) .
12 12 3 2 3 (3 4) ( 2)a

j j

a rC r
a a a r a r a r a aλ≤ ≤

 + +
= = + + + 

+ + + + + + + 
∑  

Remark. 0 ( )C r  in Theorem 1 coinsides with 0
301
720

C =  for 1r =  which appears in [12] for T4, and with 

0
3

16
C =  for r →∞ , which appears in [10] for R4. So, the main result covers the results by Kametaka school 
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(cf. Table 1). 
Table 1. The best constants on polyhedra known by Kametaka school. (a) Regular n-hedron (=Rn) [10]; (b) Truncated n-he- 
dron (=Tn) [9] [12]. 

(a) 

 R4 R6 R8 R12 R20 

The best 
constant 3/16 ≒ 0.1875 29/96 ≒ 0.30208 13/72 ≒ 0.18056 137/300 ≒ 0.45667 7/36 ≒ 0.19444 

(b) 

 T4 T6 T8 T12 T20 

The best 
constant 301/720 ≒ 0.41806 173/288 ≒ 0.60069 1019/2016 ≒ 0.50546 - 239741/376200 ≒0.63727 

2.2. Proof 

Let jq  be the normalized eigenvectors of A , i.e. *, ,k k k j k jkA λ δ= =q q q q  where jkδ  is the Kronecker’s 

delta. 0 1 11( , ,..., )Q = q q q  is unitary. Let *.k k kE = q q  Put 1 11,( , , ) (0 11)t
k k k kδ δ= ≤ ≤δ . We have  

* *

0 11 0 11 1 11
, .k k k k k

k k k
I QQ E A QDQ E Eλ λ

≤ ≤ ≤ ≤ ≤ ≤

= = = = =∑ ∑ ∑  

Note that * *

0 11 0 11
1.t t

j k j j k k j k k
j j

E
≤ ≤ ≤ ≤

= = =∑ ∑δ δ δ q q δ q q  Then, 00 11,j≤ ∀ ≤   

0 0

1
0 * *

0 11 0 11 1 11

1 1

1 11 0 11 1 11

1 1
12 12

1 1 .
12 12

t t t
j j j j j k k j

j j k

t
k j k j k

k j k

C G G E

E

λ

λ λ

−

≤ ≤ ≤ ≤ ≤ ≤

− −

≤ ≤ ≤ ≤ ≤ ≤

= = =

= =

∑ ∑ ∑

∑ ∑ ∑

δ δ δ δ δ δ

δ δ
 

 
Definition. For any 12, ∈u v , we define  

* 2 *( , ) : ( , ) , || || : ( , ) ( ).A A AA A A E= = = = =u v u v v u u u u u u u   

Lemma. For every 12∈u , we have the reproducing equality as follows:  

*( , ) (0 11).j j Au G j= ≤ ≤u δ   

Remark. So, *G  is the reproducing kernel on 12
 .  

Proof of Lemma. Since *
* *G G=  and 12

0 0 ( )E = ∈u u , we have  

* * * 0( , ) ( , ) ( ) .t t t
j A j j j j jG A G G A I E u= = = − = =u δ u δ δ u δ u δ u  

Proof of Theorems. Applying the Schwarz inequality to the reproducing equality, we have  
2 2 2 2

* *| | || || || || || || ( ).j A j A j Au G G E≤ =u δ δ u  

Using 0 * ,E G O=  we have  
2

* * * 0 * * 0|| || ( ) .t t t
j A j j j j j jG G AG I E G G C= = − = =δ δ δ δ δ δ δ  

Then we obtain discrete Sobolev inequality:  

( )2

00 11
max | | ( ).jj

u C E
≤ ≤

≤ u  

Then, for 
0* ,jG=u δ   
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( )2
2

00 11
max | | .jj

u C
≤ ≤

≤  

( )2
2 2

0 * 0 11
( ) max | | ,t

j j jj
C G u

≤ ≤
≤ ≤δ δ  

Combining it with the trivial inequality  
We obtain the conclusion of Theorem 1. Theorem 2 is similarly proved.  

3. Discussion and Prospects 
Kametaka school says that the high symmetry of Rn or Tn allows us to compute the exact expression of the best 
constant. However, the introduction of our weight does not destroy the computability of this problem because 
our weighted Laplacian is still symmetric matrix. Whether our model with weight is appropriate or not is anoth-
er problem. It depends on what kind of problem we want to apply our model to.  

And, after this article, the author wish to study the Tn for n = 6, 8, 12, 20, and application to the interaction of 
fullerene and another molecules. The high symmetry move us to its beauty however, the destruction of the 
symmetry also fascinates us.  
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