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Abstract 
The introduction of vehicular ad-hoc networks (VANETs) leads to the possibility to re-evaluate 
many traditional functions and views of road traffic networks. The ability for vehicles and infra-
structure to communicate and collaborate will enable many novel solutions for problems as di-
verse as collision avoidance and traffic management with the view of reducing traffic congestion, 
increasing the effectiveness of logistics systems etc. In this paper we introduce a novel framework 
that utilises VANET information to share information about risk factors among road occupants 
and infrastructure. We introduce the concept of risk limits as a means of traffic accident risk miti-
gation, whereby vehicles need to adjust their behaviour to maintain a given level of risk. We dis-
cuss determination of risk values and detail this process using the NSW traffic accident database. 
We show how the effects on risk of particular vehicular behaviours such as speed and headway 
can be calculated and use these results to modify vehicle behaviour in real time to maintain a 
predefined risk limit. Experiments are carried out using the Paramics Microsimulator. Our results 
show that it is possible to reduce the accident rate among vehicles while at the same time increas-
ing road network throughput by exploiting the variation in risk between vehicles. 
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1. Introduction 
With the advent of vehicular ad-hoc networks (VANETs), vehicles are able to share information and respond in 
real-time, leading to the ability for traffic management systems to be more dynamic, rapidly responding to cur-
rent circumstances, and to be tailored to individual vehicles. This gives an opportunity to increase network 
throughput by more efficiently managing traffic flows. However, a key consideration is that such systems do not 
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increase the accident risk to drivers, passengers and other road users. 
To facilitate this, we introduce the notion of risk limits, whereby vehicles must maintain a sufficiently low 

probability of an incident occurring, and/or a sufficiently minor impact of such an incident in terms of injuries to 
people and damage to property. These risk limits would be dynamic and calculated in real-time based on the 
characteristics of each driver and vehicle as well as prevailing environmental conditions. Vehicles would then be 
able to behave in a way that optimises the utility of the road network—both in terms of the speed of individual 
vehicles and overall network throughput—as long as their risk does not increase above the set threshold. 

In order to gain the most benefit from such a system, the differentiated nature of accident risk must be taken 
into account. Each driver, vehicle and situation has its own constellation of risk factors that may be rapidly 
changing and the range of risk levels experienced either by a single vehicle and driver over time or between dif-
ferent vehicles and drivers is significant. These differences can be exploited to obtain the maximum benefits to 
network utility while still maintaining an acceptable level of accident risk. Such a system would require the cal-
culation of risk levels in real-time so as to determine appropriate vehicle behaviour. 

An inter-vehicle communications network plays a key role in such a system, not only for co-ordinating the ac-
tions of different vehicles in an environment of differentiated behaviour but also as a means of conveying in-
formation about risk. Surrounding vehicles themselves constitute a source of risk and thus must communicate 
their own characteristics in order for vehicles to be able to make an accurate estimate of their current risk level. 

In this paper, we propose a framework for managing risk levels with the aim of maximising the road network 
throughput. We show through an experimental study that it is possible to achieve both lowered accident levels 
and increased throughput simultaneously by exploiting the variation in risk between situations, dynamically 
striking a balance between risk and utilisation. 

2. Determining Risk 
The first step in maintaining a risk limit is to be able to determine the current level of risk. Risk as it relates to 
traffic accidents consists of four aspects: exposure, crash probability, injury probability and injury outcome [1]. 
Exposure refers to the amount of use of the system by a user or class of users, i.e. the amount of time spent or 
distance travelled on the road. Crash probability is the likelihood of being involved in an accident, given a par-
ticular exposure. Injury probability is the likelihood of sustaining an injury when involved in an accident and 
injury outcome is the eventual result of this injury. 

Since we are interested in balancing accident risk with road system utility, we will concern ourselves primar-
ily with crash probability and, to a lesser extent, injury probability, as these two aspects of risk—and of mitigat-
ing risk—have the most influence on utility. The other two elements of risk are beyond the scope of this work. 
Measures to affect exposure are typically too long-term to be relevant to research focusing on dynamic traffic 
management through the use of VANETs—their effects will persist and be stable over long periods of time ra-
ther than varying with the traffic situation, and cannot be influenced by individual vehicles or drivers as they 
travel. Injury outcome is largely a problem of logistics, economics and medical science and thus the benefits of a 
VANET are also limited or non-existent for this cause. Hence for this work, we consider risk primarily in terms 
of crash probability, as this is the aspect of risk that is most amenable to influence from a VANET-based traffic 
management system. In future, it would also be desirable to extend this model to include injury probability and 
this is discussed further in Section 8. However, as an initial step in developing a dynamic traffic management 
model, we will here only consider crash probability. 

In order to come to an overall measure of risk, it is first necessary to determine the levels of the contributing 
risk factors. These factors can be broken up into three categories: human factors relating to the driver of the ve-
hicle, factors relating to the vehicle itself, and environmental factors which relate to the current situation of the 
driver and vehicle such as weather, lighting, type of road, nearby hazards, and so on. This breakdown of risk 
factors can be seen in the first row of the Haddon matrix [2] [3]. 

Although there have been many studies detailing various risk factors and their effects on accident rate, the 
current literature does not provide the knowledge necessary for devising a general model of risk such as that a 
particular driver is more accident prone or that a particular environmental hazard increases accident risk. To in-
corporate risk factors into a model, the need arises to determine how the vehicle moves at each timestep. For ve-
hicular factors, this is often straightforward as we can calculate the effects of characteristics such as maximum 
deceleration or mass. This is also true for some environmental factors—typically those that have direct, physical 
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effects on the vehicle. Factors relating to the driver of the vehicle, however, present significant challenges. 
Human factors account for a large number of traffic accidents (percentages found vary between 65% and 75%) 

[4]-[6], however these are also often the most difficult factors to model. For some temporary human risk factors, 
such as driver fatigue [7] and potential distractions such as mobile phone use [8], technological advances have 
enabled closer monitoring of the driver in real time, which leads to a more accurate measure of these factors that 
does not require the active participation of the driver. When dealing with longer-term factors which may vary 
only over the course of months or years, however, those human factors which are relatively simple to model are 
also the ones least useful in determining risk. In [9], the authors found that vehicle control skills had no correla-
tion to accident risk. This is supported by findings that professional race drivers, a highly skilled subset of the 
driving population, have a higher accident involvement than other drivers [10]. Instead, it is factors relating to 
perception and cognition that are the best determinants of accident risk. Hazard perception [9] [11], field depen-
dence as measured by tests such as the embedded figures test and the rod and frame test [4] [12]-[14], visual 
impairments [15], selective attention skill [4] [14] [16] and drivers’ awareness of their own risk [4] [17] [18] 
have all been shown to predict accident risk. 

Many of these factors have the problem that they are difficult, time-consuming or expensive to measure, often 
requiring extensive tests conducted by specialists. Even once measured, modelling them is a challenging task. 
Some attempts have been made to provide models of drivers’ perception and cognition [19] [20] and their emo-
tions and personality [21] [22], however these models are much more complex and difficult to implement than 
purely physical models of vehicle dynamics such as those proposed by [23] and [24] (which is the model used as 
the basis for Paramics, the simulation engine we used to conduct this research). 

While these problems are substantial, it is still possible to obtain a coarse grained estimate of the risk value by 
using only one or a few factors—preferably those with the biggest contribution to accident risk, although the 
possible factors to use also depends on the available data. Even an incomplete risk estimate can give a measure 
of the difference in risk between different vehicles, drivers and environments and thus can be used as a means to 
inform changes in vehicle behaviour for the purposes of risk mitigation. Furthermore, as risk models requiring 
this information are developed, this gives a motivation for the research community to obtain the needed data 
about individual risk factors in order to improve the exactness of the risk model. 

3. Risk Model 
We propose a model in which information about the risk factors pertinent to a vehicle is combined to give a risk 
value. This is done by calculating a relative value for each factor; for instance, a factor which increases risk by 
50% will have a value of 1.5, a factor which causes no change in risk will have a value of 1.0 and a factor which 
causes a 50% reduction in risk will have a value of 0.5. The individual values for each factor are averaged to-
gether to give the overall risk value for a vehicle. Note that since individual factors have different values, this 
means that the aggregate values for each of the three types of factors are not necessarily equal. This risk value 
can change rapidly as environmental conditions change and as other vehicles enter and leave the nearby area. A 
vehicle’s risk value can then be compared to the desired risk limit. If the current risk value is too high, the ve-
hicle needs to undertake risk-mitigating behaviours to bring its current risk level down under a predefined limit. 
If the risk value is already below the limit, the vehicle has some scope to engage in utility-increasing behaviours. 
These behaviours will in general increase the vehicle’s current risk and should never cause the vehicle to exceed 
the risk limit. A diagram of the model’s structure is shown in Figure 1. 

Risk-mitigating behaviours are any behaviours that reduce a vehicle’s current risk level. These may include 
reducing speed, increasing headway, changing lanes, or changing route. Utility-increasing behaviours are those 
which improve the utility of the road system, comprising the speed at which vehicles can travel and the overall 
throughput of the system. These behaviours may include increasing speed, decreasing headway and, again, 
changing lanes or route. 

This model is designed to be modular so that as risk factors are increasingly able to be understood, measured 
and modelled, they can be added to the model with mininal alteration to the overall algorithm. Similarly, further 
risk-mitigating and utility-increasing behaviours can be added and a given vehicle can choose a combination of 
behaviours from the known set, appropriate to its current situation. 

In order to implement this model, the following components are required. First, an understanding of at least 
some of the risk factors affecting a vehicle and a measure of how much each of these affects accident risk.  
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Figure 1. Risk model. 

 
Second, an understanding of the effects of some risk-mitigating and utility-increasing behaviours for vehicles to 
use and finally, a system to tie these two together: to calculate risk dynamically in real-time and modify vehicles’ 
behaviour accordingly. 

In the remainder of the paper we detail how we have obtained the initial risk levels and carried out an experi-
mental study to investigate the feasibility of the approach. In Section 4, we detail the process of calculating risk 
values from real-world traffic accident data; Section 5 covers our experimental setup and Section 6 describes our 
investigation of the effects of specific behaviours on risk levels and Section 7 presents the results. Section 8 
discusses future directions for this work and Section 9 concludes this paper. 

4. Calculating Risk from the NSW CrashLink Database 
The NSW Roads and Traffic Authority collects data from traffic accidents on state roads. All accidents which 
result in death or injury or in at least one vehicle being towed away are recorded in the CrashLink database. A 
section of this database was used for analysing the feasibility of calculating risk values and a method for doing 
so. The data used was from the F3 (Sydney to Newcastle) Freeway for the years 2004 to 2008 inclusive. 

4.1. Selecting Risk Factors for Analysis 
Although there are a large number of parameters contained in the crash database, not all of them are suitable for 
calculating risk values for the purposes of modifying vehicle behaviour. While the database records the number 
of incidents for any given combination of factors, what is not known is the number of vehicles or drivers who 
share these characteristics and did not crash, i.e. the exposure for any given risk factor. This means that it is dif-
ficult to reliably distinguish between an increased number of crashes due to a larger prevalence of a given risk 
factor in the general population, and an increased number of crashes due to increased accident-proneness corre-
lating to that risk factor. 

In order to gain an estimate of the proportion of the general population of drivers and vehicles that share a 
particular risk factor, we use induced exposure [25] [26]. In this method, an estimate is made of the total propor-
tion of vehicles on the road matching a particular factor by dividing vehicles involved in accidents into those 
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that are considered at-fault, or at least partly responsible for the accident, and those that are not. For instance, in 
a single-vehicle accident, that one vehicle is considered entirely at fault, while in a multi-vehicle accident, the 
first two vehicles to collide may be considered responsible. 

The CrashLink database contains a field for each vehicle specifying whether that vehicle was the key traffic 
unit in the accident in which it was involved, i.e. whether it was the primary at-fault vehicle for that accident. 
We use this field to differentiate between vehicles that were at fault and those that were not. We then compare 
the proportion of at-fault vehicles or drivers to the proportion of not-at-fault vehicles or drivers to get a measure 
of the risk of accident involvement associated with a given risk factor or set of factors. We chose a set of seven 
risk factors to analyse in this way: driver age, driver gender, vehicle make, number of occupants of the vehicle, 
vehicle speed at time of crash, vehicle type and year of manufacture of the vehicle. Because induced exposure 
relies on determining the proportion of not-at-fault vehicles or drivers that possess a particular risk factor, it is 
not possible to use this methodology to analyse environmental risk factors. Thus our set of factors all relate to 
either vehicles or drivers. 

4.2. Calculating Risk Values 
To calculate the risk value for a given set of factors, we first need to calculate the proportion of the at-fault ve-
hicles which have that factor using the key traffic unit field. For instance, in the crash database, 1604 of the key 
traffic unit drivers are listed as male, out of 2212 key traffic unit drivers total, giving us an at-fault population 
proportion of 1604/2212 = 0.725. Note that when calculating proportions, individual records are only included if 
all risk factors being considered are complete—if any fields are missing, those vehicles or drivers are excluded. 

Following on, we estimate the proportion of not-at-fault vehicles or drivers having that risk factor. To contin-
ue the previous example, 1015 out of 1369 not-at-fault drivers were listed as male, giving us a proportion of 
1015/1369 = 0.741 of the not-at-fault population. Finally, we take the ratio of the crash population proportion to 
the not-at-fault population proportion, giving us a risk value of 0.725/0.741 = 0.98. This method can be extended 
to any number of risk factors by selecting the proportions of the at-fault and not-at-fault populations that have all 
the risk factors in question. 

Figures 2-4 give risk value calculations for each risk factor. For two factors, gender and number of occupants 
of the vehicle, we have also conducted the same analysis restricted to young drivers only. These factors have of-
ten been raised in the debate about licensing rules for young drivers and thus analysis specific to young drivers 
on these factors may prove of interest. 

Calculations of this sort may take significant time relative to the necessary response time of a traffic man-
agement application, particularly for combinations of many factors. However, these calculations would not need 
to be performed every time a risk value was needed, as results could be pre-computed and stored for fast look-up. 
This means that providing individual, differentiated risk estimates, a requirement of our risk limit traffic man-
agement model, is viable. 

Additionally, as VANETs see more widespread use, we can expect more and better quality data to become 
available for calculating risk values. In particular, VANETs promise an unprecendented opportunity to gather 
complete and accurate exposure data for traffic accident risk, as vehicles will be constantly transmitting their 
state and characteristics over the network. Collection and management of this data brings its own set of chal-
lenges, in particular with regards to the sheer scale of data to be collected and management of road users’ priva-
cy. Nonetheless, risk estimates should become more accurate and incorporate more risk factors in the future. 

5. Simulation Environment 
Once risk values have been determined, they can be used to inform vehicle behaviour in order to maintain a 
given risk limit. To investigate a means of doing this, simulations were conducted using the Quadstone Paramics 
Microsimulator (version 6.7.2). 

5.1. Simulating Accidents 
By default, Paramics does not have any mechanism for simulating traffic accidents. Hence, in order to study ac-
cident rate, it is first necessary to model accidents in the simulation. Although accidents are not themselves 
modelled in Paramics, the car-following model used extends to situations in which vehicles are separated by  
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Figure 2. (a) Risk values by gender; (b) Risk values by gender for young 
drivers (age less than 25 years); (c) Risk values by age. 
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Figure 3. (a) Risk values by vehicle make; (b) Risk values by vehicle type; 
(c) Risk values by number of occupants of the vehicle. 
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Figure 4. (a) Risk values by number of occupants of the vehicle for young drivers 
(age less than 25 years); (b) Risk values by vehicle speed at time of crash; (c) Risk 
values by year of manufacture of vehicle. 
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small distances—well below required stopping distances—and where acceleration and deceleration reach the 
physical constraints of the vehicle [27]. As such, it was possible to model traffic accidents in Paramics. 

This is done by modelling dangerous behaviours that have the potential to lead to accidents. Vehicles in Pa-
ramics will by default never perform dangerous actions such as sudden braking, running a red light, changing 
lanes without checking for a gap etc. In reality however, most accidents are caused by such cases of human error 
[5] [6]. Two dangerous actions—sudden braking and lane changing without gap checking—have been imple-
mented to act as potential causes of accidents. These actions are performed on a stochastic basis and braking can 
be of any magnitude up to the vehicle’s maximum deceleration. 

The results of these actions are then left up to the simulation engine to play out, so that for many dangerous 
actions, no accident occurs as there are no other vehicles nearby or drivers are able to avoid colliding with the 
vehicle performing the dangerous action. Once vehicles have collided, they are removed from the simulation as 
we do not wish to model the effects of incidents but rather the frequency of accidents occurring, so it is impor-
tant that all vehicles travel under the same conditions, i.e. without any incident-related congestion or road clo-
sures. 

5.2. Road Network and Simulation Parameters 
The road network used for the following experiments was a test network developed for this purpose. It consists 
of two links (forming one bi-directional road), each with four lanes, and two zones. Each zone acts as an origin 
for one of the links and a destination for the other. Vehicles are evenly distributed between the two links. Each 
simulation runs for two hours (simulation time) including warmup. During this time vehicles are constantly re-
leased onto each link as fast as possible, i.e. vehicles will not exceed their maximum speed and will maintain 
headway according to the Paramics car-following model from the time they are released onto the link. A dia-
gram of the road network can be seen in Figure 5. Each simulation was run 10 times for each datapoint, with the 
exception of the control simulation, which had 100 runs. 

6. Vehicle Behaviour and Accident Rate 
In order to change the accident rate by modifying vehicle behaviour, it is vital to first understand how particular 
behaviours affect the accident rate. To do this, experiments were conducted in which first speed and then head-
way were varied and the accident rate observed. These experiments were carried out using the test network de-
scribed in Section 5.2 with a simulation duration of 2 hours for each datapoint in our graphs. 

Each vehicle in Paramics attempts to drive at a maximum speed for the link it is currently on. Most of the 
time, the maximum speed matches the speed limit for the link, however under some circumstances this may be 
different for particular vehicle types or links, e.g. a heavy vehicle which has its speed limit set lower than that of 
the link it is on, or for vehicles with a high driver aggressiveness factor, which may seek to exceed the speed 
limit. However, using the programming API, it is possible to manually set the maximum speed for each vehicle. 
This effectively represents the target speed for that vehicle, i.e. the speed it will travel at when not constrained 
by other, slower vehicles. 

In the first experiment, the maximum speed was varied by a factor ranging from 0.1 in the first set of simula-
tions to 3.5 in the last set. This was multiplied by the default maximum speed for that vehicle. The accident rate 
was then observed (see Figure 6(a)). A line of best fit was calculated to give an approximation of the relation-
ship between speed and accident rate in Paramics and is given by ( ) = 0.004 0.0015f x x − . 

Since here we are varying maximum speed—i.e. a vehicle’s target speed—not the actual speed vehicles travel 
at, the speed vehicles will travel at is affected not only by this parameter but also constraints due to other traffic. 
This results in a relatively complex, non-linear relationship with accident rate. However, for our purposes, it is 
not necessary to fully investigate this function but we instead choose to take a simple linear approximation 
 

 
Figure 5. Road network for simulations. 
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as an initial estimate. As will be seen in later sections, this is sufficient to achieve improvements in road system 
efficiency whilst maintaining the accident rate. 

However, the more accurately vehicle behaviour and its relationship with accident rate can be modelled, the 
better the results that can be expected. As such, an important direction for future work in this area is to improve 
the model of vehicle behaviour. This will be discussed further in Section 8. 

The second experiment involved varying the headway factor of the vehicles. The default headway in Paramics 
is 1 second, however, each vehicle also has a headway factor, primarily based on the vehicle type, which is mul-
tiplied by the default headway in order to give a target headway for that vehicle. To test the effect of headway 
on accident rate, an additional headway factor, ranging from 0.1 in the first set of simulations to 3.5 in the last 
set, was multiplied by the target headway of each vehicle. The resulting accident rate function is shown in Fig-
ure 6(b). A decaying exponential function was fitted to this curve, with the resulting function of 

( ) 1.440.007e 0.0002
x

f x
−

= + . 

 
Figure 6. (a) Max speed factor vs. accident rate; (b) Headway factor vs. acci-
dent rate. 
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7. Modifying Vehicle Behaviour 
7.1. Determining Risk 
The first step in adjusting vehicle behaviour to compensate for risk levels is to determine the risk value for each 
vehicle. However, this presents significant difficulties, especially in modelling risk factors, as discussed in Sec-
tion 2, and so only the vehicle type is included in our initial experiments with the added benefit that it is already 
modelled in some detail in Paramics. Differences between vehicle types include mass, height and width, and 
maximum deceleration. There were five different vehicles types in the simulation: car, Large Goods Vehicle 
(LGV), Other Goods Vehicle (OGV) types 1 and 2 (with differing dimensions), and coach. 

To calculate the risk value for each type, a control simulation was run in which vehicle behaviour was not 
modified except for introducing dangerous actions as described in Section 5.1. The control simulation went for 
100 runs, each of which were 2 hrs (simulation time) in length, on the network described in Section 5.2. From 
this simulation, the accident rate for all vehicles was calculated by the formula 

number of vehicles in collisionsaccidentrate .
total number of vehicles in simulation

=  

Accident rates were then calculated similarly for each vehicle type, giving a proportion of the vehicles of that 
type that were involved in collisions. The risk for a given vehicle type is given by 

accident rate for vehicles of typerisk .
accident rate for all vehicles

=  

Risk values for each vehicle type are given in Table 1. 
Having determined its own risk value, each vehicle then communicates this value to surrounding vehicles. For 

this initial study, we have not used a full wireless networking model, but instead have communicated these val-
ues between vehicles using the Paramics API. Vehicles primarily use their own risk value and that received from 
the vehicle in front (as this is most relevant for determining appropriate headway) in order to decide their beha-
viour. 

7.2. Adjusting Behaviour 
Vehicle behaviour was adjusted according to a risk threshold, which represents the desired risk limit. Vehicles 
with a risk value higher than the risk threshold were required to adjust their behaviour so that they were driven 
more safely, thereby bringing them down to the threshold. Vehicles with a risk value lower than the threshold 
were allowed to be driven at higher risk, e.g. faster, in order to improve the utility, i.e. average vehicle speed and 
overall throughput of the network. 

Three different vehicle behaviours were affected in this way: maximum speed, target headway and lane 
changing. Maximum speed refers to the speed the vehicle prefers to travel on the link. A vehicle will accelerate 
until it reaches its maximum speed, unless it is constrained by the speed of surrounding vehicles or by other 
conditions such as an approaching intersection. Since the simulation network did not contain any intersections, 
the only constraints on a vehicle’s speed were its maximum speed for the link and the speeds of surrounding ve-
hicles. 
 

Table 1. Risk values by vehicle type. 

Vehicle type Risk value 

Car 0.999 

LGV 2.710 

OGV1 3.334 

OGV2 1.568 

Coach 3.345 
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Target headway is the time a vehicle aims to keep between itself and a preceeding vehicle, as opposed to 
headway which is the actual instantaneous time between the two vehicles. A vehicle will accelerate to get closer 
to the lead vehicle if its current headway is greater than the target headway, and decelerate to get further away 
from the lead vehicle if its current headway is less than the target headway. The acceleration or deceleration ap-
plied also depends on the relative speeds of the two vehicles. Paramics breaks the headway/velocity-difference 
space into five regions, each of which have different behaviours. Further details on this can be found in the Pa-
ramics Technical Report [27]. 

Lane changing was modified in the following way. If the vehicle’s risk value was below the threshold, the ve-
hicle would attempt to change into the adjacent lane which would allow it to go the fastest. If the vehicle’s risk 
value was above the threshold, it would change into the lane which was the least risky—i.e. the lane in which 
surrounding vehicles had the lowest risk values, or a lane with no nearby vehicles if there was one. In cases 
where a choice was not clear, vehicles would choose the lane closest to the kerb. 

The exact functions for modifying speed and headway are derived from the curves of best fit shown in Figure 
6(a) and Figure 6(b). The headway function is 

0.0037 0.000158
1.437 ln

0.0065
rh k

 − 
= −  

  
 

 

where h is headway factor, which is multiplied by the vehicle’s default headway factor given by the Paramics 
simulation engine, k is an adjustment constant of 0.2, so that headway factors are slightly over-estimated, giving 
an overall decrease in risk at the cost of some utility, and r is given by 

( ) ( )risk lead vehicle risk following vehicle
r

τ
×

=  

where τ  is the risk threshold. 
The function for maximum speed is 

0.0037 0.0015
0.0041

rs k
r

+
= +  

where s is the maximum speed factor, which is multiplied by the default maximum speed given by the Paramics 
simulation engine, k is an adjustment constant of −0.2, so that maximum speed is slightly under-estimated, and r 
is given by 

( )risk vehicle
r

τ
=  

where τ  is the risk threshold. 
The adjustment constants k are used to account for inaccuracies in the model. We wish to improve road sys-

tem utility whilst maintaining the accident rate. As such, it is more important to keep the accident rate at or be-
low control levels than to achieve greater gains in efficiency. We therefore take a slightly conservative estimate 
for headway and maximum speed. As the accuracy of the vehicle behaviour model improves, it should be possi-
ble to reduce or even eliminate these constants without violating the constraint of keeping below the risk limit. 

7.3. Results 
Simulations were run with risk thresholds ranging from 0.1 to 3.5, with 10 simulations runs for each value. The 
results are shown in Figures 7(a)-(c), plotted with 95% confidence intervals. 

Table 2 gives the values of accident rate, average vehicle speed and arrival rate for risk thresholds between 
0.7 and 1.5, as well as percentage differences from the control simulation. Instances where the results were im-
proved over the control simulation are in bold. 

We can see that for risk thresholds between 1.1 and 1.4 inclusive, we get an improvement in all three measures. 
For risk thresholds outside of this region, one or more of the measures is improved, however this comes at a 
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Figure 7. (a) Risk threshold vs accident rate; (b) Average vehicle speed vs. 
risk threshold; (c) Arrival rate vs. risk threshold. 
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Table 2. Simulation results. 

Risk thresh-old Accident rate 
(collisions/s) 

% control 
accident rate 

Average vehicle 
speed (m/s) 

% control average 
vehicle speed 

Arrival rate 
(vehicles/s) 

% control 
arrival rate 

Control 0.00372 100.00 10.54 100.00 0.816 100.00 

0.7 0.00318 85.54 6.14 58.24 0.637 78.14 

0.8 0.00335 90.02 6.98 66.25 0.661 81.07 

0.9 0.00318 85.54 8.54 81.02 0.724 88.69 

1.0 0.00340 91.52 10.83 102.72 0.803 98.44 

1.1 0.00340 91.52 12.86 121.98 0.863 105.83 

1.2 0.00350 94.13 14.72 139.66 0.903 110.75 

1.3 0.00344 92.64 16.72 158.63 0.929 113.87 

1.4 0.00344 92.64 18.41 174.61 0.943 115.61 

1.5 0.00426 114.68 19.69 186.75 0.957 117.33 

 
price—we may have decreased accident risk but average vehicle speed and arrival rate are also below the con-
trol level, or the utility (throughput and speed) of the network may be improved, but the accident rate is also in-
creased above the control. Accident rates in this region range from 91.52% to 92.64% of the control rate, while 
average speed is improved by between 21.98% and 74.61% of the control. The arrival rate shows improvements 
from 5.83% to 15.61%. 

8. Future Work 
While our results indicate that the risk limit model is a viable and effective means of traffic management, with 
benefits to road system utility, our work currently has a number of limitations and areas for possbile improve-
ment. We will discuss some of these in the following sections. 

8.1. Accident Risk Data 
As discussed in Section 2, there is a scarcity of data on accident risk in an appropriate form to be used in the risk 
limit system. Since the model relies on differentiating between drivers’ and vehicles’ risk levels in order to le-
verage these differences for utility gains, the more risk factors that can be used in calculating the risk level, the 
better. In addition, improving the accuracy of the risk estimate allows the system to operate more efficiently 
while still remaining safe. To these ends, a useful direction for future work would be to gather and analyse more 
data on accident risk, particularly on the exposure for various risk factors in order to compare this to accident 
rates. 

More—and more accurate—data on the effects of various risk factors may also lead to improvements in cal-
culating the overall risk level based on the levels of the various factors present. Many risk factors are likely to 
interact and while we have been able to test the system in a simulation environment where full information 
about the effects of each factor as well as combinations of factors is avaialble, this is not so straightforward in 
the real world and requires further work as more and more factors are added to the system. 

8.2. Vehicle Behaviours 
A key way of expanding the risk limit system is to add more risk-mitigating and utility-increasing behaviours to 
it and it has been designed to allow for this kind of modular extension. Thus far we have addressed speed, 
headway, and lane choice as possible behaviours for vehicles to take. However there are many more behaviours 
that can affect a vehicle’s risk and/or utility. These might include route choice, choosing to drive at a different 
time of day, when to overtake, and gap acceptance when changing lanes or negotiating intersections. 

Additionally, there is room for improvement in the existing model of vehicle behaviour, particularly in the 
model of vehicle speed. In this work, we have used a relatively crude linear approximation of the relationship 
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between maximum vehicle speed an accident rate. The maximum speed parameter was chosen in part because it 
is easily accessible using the Paramics API, whereas modifying vehicles’ actual speed was considerably more 
difficult to implement. However, in a real-world implementation, actual vehicle speed—rather than maximum 
speed—may be a more useful behaviour to employ in a traffic management system of this kind. 

Vehicle speed is one of the most significant and well-studied factors in accident risk and is frequently cited as 
a contributing factor in accident reports. The probability of a crash involving an injury has been found to be 
proportional to the square of the speed, while the probabilities of a serious or fatal crash are proportional to the 
cube and fourth power of speed respectively [28] [29]. In future refinements of the vehicle behaviour model, it 
may be more fruitful to investigate using these models rather than improving the model of maximum speed as a 
risk-mitigating behaviour. 

8.3. Crash Severity 
One aspect of accident risk that we have not yet addressed sufficiently is crash severity; we have instead focused 
on accident rates in this work. However, crash severity is also an important consideration as not all accidents are 
equal in outcome. Currently, a minor accident at low speed resulting in property damage only is given the same 
weight as a high-speed accident resulting in severe injury or death. In future work, the potential outcome of a 
crash in terms of harm to vehicle occupants and other road users should be incorporated into the risk calculation 
to avoid this. 

One means of doing this would be to adjust the risk level according to indicators that an accident, should it 
occur, would result in severe injury or death. Since accident severity depends heavily on factors such as speed at 
impact, vehicle mass, and the presence of safety features designed to lessen the force on occupants at impact, it 
may be possible to determine the approximate severity of potential accidents based on the characteristics and 
state of the current vehicle and the vehicles surrounding it. The risk level could then be modified accordingly so 
that the risk limit can be achieved by affecting either accident probability, accident severity, or both. 

9. Conclusions 
In Section 4, we have shown how we can calculate the risk value for a given vehicle, driver and situation’s con-
stellation of risk factors given raw data. We can pre-calculate risk values for combinations of factors to gain in-
formation about the interactions between factors. This can require significant computation time; however, it is 
only necessary to do once. The relevant data could then be stored on an on-board computer in each vehicle, or 
could be accessed via the network (or some combination of these). Combined with inter-vehicle communica-
tions, it is then possible for each vehicle to have up-to-date information on its own risk level and those of the 
vehicles around it. 

Section 7 illustrates how such information can be used to modify vehicle behaviour—in particular speed, 
headway and lane-changing—at a fine-grained level in real-time. This allows us to take advantage of risk varia-
tion between vehicles to improve both safety and utility simultaneously. Even in our initial experiments we are 
able to make significant improvements to road utilisation while maintaining the accident risk at the control level. 
Given that a more complete risk model could be reasonably expected to make possible even higher gains, it is 
clear that the methodology of capitalising on the dynamic risk levels is promising for future safe and highly ef-
fective road networks. This is an initial study using only a simple test network and one risk factor (vehicle type) 
but this method can readily be expanded to apply to other networks and to incorporate more risk factors, once 
these are added to the simulation model. 
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