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Abstract 
In this paper we study the structure of k-transitive closures of directed paths and formulate 
several properties. Concept of k-transitive orientation generalizes the traditional concept of 
transitive orientation of a graph. 
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1. Introduction 
We use the standard notation. By an edge we mean an unoriented pair of vertices, and by an arc we mean an 
oriented pair of vertices. For a given graph G, ( )V G  and ( )E G  denote the set of its vertices and the set of its 
edges, respectivly. For a digraph G, we write ( )A G  for the set of its arcs. By an oriented graph we mean such 
a digraph that if ( ),a b  is an arc, then ( ),b a  is not. All graphs and digraphs in this paper are finite. 

2. Motivation 
Orientation of a graph G is called transitive if for every ( ) ( ),a b A G∈ , ( ) ( ),b c A G∈ , also ( ) ( ),a c A G∈ . 
This concept was studied by many authors in numerous papers, see the survey [1] for example. The concept of 
transitive orientation was generalized in several ways in [2] and [3], [4] and [5], and other papers. 

A digraph is called k-transitive if every directed path of the length k has a shortcut joining the beginning and 
the end of this path. In other words, if ( )0 , , kv v  is a path in the digraph G, then ( ) ( )0 , kv v A G∈ . 

Note that our term “k-transitive” coresponds to “ ( ),1k -transitive” in [2] and [3]. 

A k-transitive closure of an oriented graph ( ),G V A=  is an oriented graph ( )T Ck G  such that 

(1) ( )( ) ( )T CkV G V G=  

(2) ( ) ( )( )T CkA G A G⊂  

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2015.512066
http://dx.doi.org/10.4236/apm.2015.512066
http://www.scirp.org
mailto:krzysztof.pszczola@ujk.edu.pl
http://creativecommons.org/licenses/by/4.0/


K. Pszczoła 
 

 
734 

(3) ( )T Ck G  is k-transitive. 
(4) it has the minimal (by inclusion) set of arcs among all graphs with the above stated properties.  
Observe that there are oriented graphs for which the k-transitive closure does not exist. For example in a 

cyclically oriented cycle 1kC +  it is not possible to add arcs to fulfill the condition (3). 
If the k-transitive closure does exist for some oriented graph, it is unique. 
Note that this definition is a partial answer to the point (4) in ([2], p. 41). 
The aim of this paper is to describe k-transitive closures of directed paths. 

3. Structure of the k-Transitive Closure of the Directed Path 
Instead of ( )1T Ck nP −  we write ( ):k n  to denote the k-transitive closure of an oriented path on n vertices. We 

label the vertices by natural numbers 1, 2, ,n  and assume that ( ) ( )1, 1 ni i A P −+ ∈  for 1 <i n≤ . 
Although the graph ( ):k n  is oriented, some of the properties will be stated for simple graphs obtained by 

“forgetting” the orientation. We belive that it is clear from the context, but to be precise, for the unoriented case 
we write [ ]:k n . 

In this paper by a degree sequence of a graph [ ]:k n  we mean a sequence ( ) ( )( )deg 1 , ,deg n . (In/out) 

degree sequence of a graph ( ):k n  is defined in a similiar way. 
Observe that [ ]2 : n  is just the complete graph nK , and ( )2 : n  is the tournament on n vertices. 
The starting point in a construction of the k-transitive closure of the path 1nP −  is to add arcs ( ),i i k+ . Then 

we add arcs ( ), 2 1i i k+ − , at the next stage arcs ( ), 3 2i i k+ − , and so on. This construction shows that for 

every ,k n∈ , ( ):k n  is well defined. 
The key observations are: 
3.1 Fact. Adding one vertex to the path adds only arcs ending in this new vertex. In other words, ( ):k n  is 

an induced subgraph of ( ): 1k n + .                                                            □ 
3.2 Fact. In the graph ( ):k n , ( ) ( )( ), :i j A k n∈  iff ( )1 1j i l k− = + −  for some ( ) ( )0 2 1l n k≤ ≤ − − .  

Proof. It follows directly from the construction described above that  

( ) ( ) ( ) ( ){ } ( )( ), : 0 2 1 , 1 1 : .i j l n k j i l k A k n∃ ≤ ≤ − − − = + − ⊂  

To show the other inclusion we use the induction on n. First observe that for n k≤  all arcs are of the form 
( ), 1i i + . Assume that all arcs in ( ): 1k n −  have the length ( )1 1l k+ −  for some 0l ≥ . To obtain a k-shortcut 

in ( ):k n  we need k arcs, each of them of length ( )1 1il k+ − , 0il ≥ . So  

( ) ( ) ( )( ) ( )( )1 2 1 2 1 21 1 1 ( 1) 1 1 1 1 1 1k k kj i l k l k l k k k l l l k l l l− = + − + + − + + + − = + − + + + = + − + + + +   . □ 
In Figure 1 we present the graph ( )5 :11  as an example. 

4. Some Properties 
From the observations mentioned above, we conclude several properties of graphs ( ):k n  and [ ]:k n . 

4.1 Fact. For n k≤ , ( )1 1T Ck n nP P− −= . So for n k≤ , the graph ( ):k n  is just the path 1nP − .         □ 
We can observe the following block structure in indegree/outdegree sequences of graphs ( ):k n : 

 

 

Figure 1. The graph ( )5 :11 . All arcs ending in the last vertex are drawn with thick lines.       
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4.2 Theorem. Let ( )2 1n l k m= + − +  for some l∈  and 0 1m k≤ < − . In the oriented graph ( ):k n  
the indegree sequence is built from uniform “blocks” of length 1k −  and has the form  

1 times 1 times 1 times 1 times

0, 1, ,1 , 2, , 2, , , , , 1, , 1 .
k k k m

l l l l
− − − +

 
+ +  

 
   

      

Similarly, the outdegree sequence is built from uniform “blocks” of length 1k −  and has the form  

1 times 1 times 1 times 1 times

1, , 1, , , , , 2, , 2, 1, ,1 ,0 .
m k k k

l l l l
+ − − −

 
+ +  

 
   

      

Proof. The proof follows from Facts 3.2 and 3.1. We prove the part concerning the indegree sequence. First 
note that the indegree of the first vertex is 0. For the next 1k −  vertices there is no arcs ending in them other  
than the arcs in the initial path, so their indegree is 1. First vertex of indegree 2 is the ( )1k + -th vertex. First 

vertex of indegree 3 is the 2k-th vertex, and first vertex of indegree j is the ( )( )( )1 1 2j k− − + -th vertex. 

The proof for the outdegree sequence is similiar; we just start from the last vertex.                     □ 
4.3 Corollary. The graph ( ): 2 1k l k+ −    is ( )1l + -regular for every l∈ .  
Proof. This is a consequence of Theorem 4.2; just observe that summing up the indegree and outdegree 

sequences gives the constant sequence ( )1, , 1l l+ + .                                             □ 
4.4 Corollary. For every l∈ , and for every 0 1m k< < − , all vertices of the graph  

( ): 2 1k l k m+ − +    has degree 1l +  or 2l + . Morover, if we put 1a l= +  and 2b l= + , the degree 
sequence is built from “blocks” of the form  

times 2 times

, , , , , ,
m k m

a b b a a
− −

 
  
 

 

   

repeated to get the sequence of the length ( )2 1l k m+ − + . Note that the last “block” has the length 

( )( )2 mod 1m k+ − .  

Proof. This is another consequence of Theorem 4.2.                                             □ 
4.5 Corollary. For every l∈ , and for every 0 1m k≤ < − , in the graph ( ): 2 1k l k m+ − +    there are 

( )1m l +  vertices of degree 2l +  and ( )1 2l k m− − +  vertices of degree 1l + .                   □ 
As an example, below are the degree sequences for 5-transitive closures of the paths on 10, 11, 12, 13 and 14 

vertices: 
• for [ ]5 :10 : ( )3,3,3,3,3,3,3,3,3,3 ; ( )10 2 2 5 1 0= + − + , 2l =  and 0m = , by Corollary 4.3 this graph 

is 2 + 1 = 3 regular;  
• for [ ]5 :11 : ( )3,4,3,3,3,4,3,3,3,4,3 ; ( )11 2 2 5 1 1= + − + , 2l =  and 1m = , by Corollary 4.4 this 

sequence is built from repeated blocks ( )3,4,3,3 ;  

• for [ ]5 :12 : ( )3,4,4,3,3,4,4,3,3,4,4,3 ; ( )12 2 2 5 1 2= + − + , 2l =  and 2m = , by Corollary 4.4 this 

sequence is built from repeated blocks ( )3,4,4,3 ;  

• for [ ]5 :13 : ( )3,4,4,4,3,4,4,4,3,4,4,4,3 ; ( )13 2 2 5 1 3= + − + , 2l =  and 3m = , by Corollary 4.4 this 

sequence is built from repeated blocks ( )3,4,4,4 ;  
• for [ ]5 :14 : ( )4,4,4,4,4,4,4,4,4,4,4,4,4,4 ; ( )14 2 3 5 1 0= + − + , 3=l  and 0m = , by Corollary 4.3 

this graph is 3 + 1 = 4 regular.  
Recall that by degree of a vertex v in a digraph we mean a pair ( ) ( )( )indegree ,outdegreev v . 

For oriented graphs ( ):k n  we can observe the following: 
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4.6 Corollary. Every constant subsequence in the degree sequence of the non regular graph [ ]:k n  is also 

the constant subsequence in the degree sequence of the oriented graph ( ):k n .                         □ 

For example, the degree sequence for [ ]5 :12  is ( )3,4,4,3,3,4,4,3,3,4,4,3 , and the degree sequence for 

( )5 :12  is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0,3 , 1,3 , 1,3 , 1,2 , 1,2 , 2,2 , 2, 2 , 2,1 , 2,1 , 3,1 , 3,1 , 3,0 . 

Recall that an oriented graph G is irregular if for every two vertices ( ),i jv v V G∈ , i jv v≠ , their degrees are 
different. 

Straightforward consequence of Corollary 4.6 is that graphs ( ):k n  for 3k >  are not irregular. The natural 
question is: are the graphs ( )3 : n  irregular? The answer is: 

4.7 Theorem. Oriented graphs ( )3 : n  are irregular iff n is odd.  
Proof. By Theorem 4.2, pairs of vertices 2 , 2 1i i +  for 1 2i n≤ <  have the same indegree. Because for the 

even n the graph [ ]3 : n  is regular, so ( )3 : n  is not irregular if n  is even. 
Also by Theorem 4.2, ( ) ( )indegree 2 indegree 2 1 1i i= − +  for 1 2i n≤ < . By Corollary 4.4, for the odd n the 

degree sequence of the graph [ ]3 : n  is of the form ( ), , , , ,a b a b a . So for n odd, if for some two vertices 

their total degrees are equal then its indegrees are different. Hence ( )3 : n  is irregular if n is odd.          □ 
Recall that the tournament ( )2 : n  is irregular for any n. 

5. Density 

By density of the graph G, ( )V G n= , we mean ratio “number of edges in the graph G” / “number of edges in 

complete graph nK ”; in symbols ( ) ( ) ( ) ( ) ( )( )Dens 2 1nG E G E K E G n n= = − . 

Recall then for every even n, a graph [ ]3 : n  is 
2
n -regular. We have 21

4
n  edges. So for even n, 

[ ]( ) 1Dens 3 :
2 1

nn
n

=
−

. 

For every odd n, in a graph [ ]3 : n  there are 
2
n 
  

 vertices of degree 
2
n 
  

 and 
2
n 
  

 vertices of degree 

2
n 
  

. We have ( )21 1
4

n −  edges. So for odd n, [ ]( ) 1 1Dens 3 :
2

nn
n
+

= . 

Observe that in both cases the density is bigger then 1/2 and  

[ ]( )lim Dens 3 : 1 2.
n

n
→∞

=  

We have the following: 
5.1 Theorem. For 2k > ,   

[ ]( ) ( )lim Dens : 1 1 .
n

k n k
→∞

= −  

Proof. By Corollary 4.5,  

( )( )( ) ( )( ) ( )( )( )
( )

1 2 2 1 1
Dens : 2 1 .

1
m l l l k m l

k l k m
n n

+ + + + − − +
 + − + =  −

 

By standard calculation we get  

( )( )( ) ( ) ( ) ( )( )( )
( )( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )( )

2

22

1 2 2 1
Dens : 2 1

2 1 1 1

1 2 1 2 1
.

1 1 2 3 1 2

l m l l k m
k l k m

l k m l k m

l k l k m m

l k l k m m m

+ + + + − −
 + − + =  + − + + − +

− + + + + +
=

− + − + + + +
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Recall that ( )2 1n l k m= + − + , where k and m are fixed, so when l →∞ , then also n →∞ . So  

[ ]( ) ( )lim Dens : 1 1 .n k n k→∞ = −                                                               □ 

Obviously, for 2k = , [ ]( )Dens 2 : 1n = . 

6. Open Problems 
The main open problem concerning k-transitive closures in general, is to state what properties of an oriented 
graph G guarantee the existence of ( )T Ck G . 

There are also some other special classes of oriented graphs, such as cycles (with different orientations) and 
trees, for which there is a chance to obtain interested properties for their k-transitive closures. 
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