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Abstract 
In this article the concept of phase encoding/decoding is used to analyze and formalize a simple 
quantum algorithm—the Deutsch’s algorithm. The algorithm is formalized in two different ways 
through an analysis, based on phase encoding/decoding, carried out by the formalized elementary 
operators developed by the author of this article. Concrete examples of different possible realiza-
tions of the formalized with Raychev’s operators Deutsch’s algorithms are offered. 
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1. Introduction 
Quantum computers can be useful in solving many important and complex issues such as solving many funda-
mental and complex problems such as integer factorization [1], database search [2], global binary optimization 
[3], linear equation solving [4], and so on [5]. The reversible computation and reversible universal logic operator 
was first proposed by Toffoli [6]. Based on the work of Toffoli, Bennett first implement efficient algorithm with 
reversiblelogic [7]. Based on the work of Toffoli and Bennett, Deutsch defines a three-qubit operator [8]. As a 
result of the Deutsch’s work, a plurality of other universal operators [9]-[12] were found. On this basis in recent 
years several other complex surveys have been created [13]-[15]. This report described an approach for encod-
ing and decoding of discrete information about basic states at the input of operators in the phase of their outputs. 
The decoding is viewed as a special case of interference with four different decoding forms that reflect the iden-
tity classes and negation operators. The formalized qubit operator developed by the authors [16]-[24], which is 
described in this research, uses the decomposition of the phase/amplitude, which characterizes the operators, 
presented in the report. The formalized operator permits operation with single qubit operators as linear combina-
tions of the identity operator and the negation operator. In such case, a single qubit operator either negates, iden-
tifies, or performs partial identity/negation. If an operator decodes another one, it is able to read the information 
encoded in the phase space, and reduce the encoded bits to a state or its negation. Relationships of decoding 
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have been developed both as regards to the operator parameters and in terms of Boolean functions encoding. 
This in addition leads to an increase in the abstraction level. The proposed system approach is different from 
previous discussions for phase encoding, making the encoding a substantial part of all operators so that the cor-
rect encoded information can be determined from the operators parameters. 

Both Identity1 and Negation1 classes are analogous to the classic operators and therefore the formalization of 
single qubit operators with these classes, acting as main operators, ensures means for primitive operators opera-
tion, set out in the classical concepts for calculations. The main goal is the parts of the state phase to be sepa-
rated from those of the amplitude in such a way that should be set out as the key models at the interference, gen-
erated by the operators. This interference is a key to the quantum calculations and the quantum algorithms de-
velopment. In addition, the separation permits the strict characterization of the consequences from a change of 
the phase as the binary information encoding in a phase space and thus permits the characterization in terms of 
Boolean functions. This report will consider the necessary and sufficient conditions for combining operators 
from Identity1 and Negation1 for formation of unitary operators and provision of an abstraction on the relative 
weights of the base operators. The logical formalization of the main operators will be addressed as regards to 
their phases and phase changes, which they carry out, on the states, to which they are applied. Whereas this ap-
proach to elementary controlled operators is elementary, the formalized system for designing of quantum cir-
cuits algorithmic models offers a second approach, which unites the elementary controlled operations with 
another important aspect of multitude of quantum algorithms, the Oracle operators. In the quantum algorithms 
design a standard technique is the use of an Oracle operator to enact a phase-kickback operation. Herein an arbi-
trary, probably irreversible function : m lf →   is encoded into an n = m + l qubit operator fU , such that 

( )( )fU xy x y f x= ⊕ , where mx∈ , and ly∈ . Usually higher degree bits for x and with a lower degree 
for y shall be used. The same could be performed vice versa where ( )( )fU yx y f x x= ⊕ . In both cases fU  
acts as an Oracle for f. Such operations are accepted as the controlled application of l qubit operator fU , where 
x acts as a control bit, and y as a target bit. The phase kick-back happens when the target qubits are set to an own 
state fU , and the value of f(x) is encoded into the resulting state phase. It is possible this conception for the 
controlled operations to be applied to an elementary, two qubit controlled operators, which will provide a new 
means for viewing the elementary controlled operations behavior and the interference patterns that they generate. 
In order to generalize the behavior of a fU -type operator, the option to occur phase shifts in addition to the 
main changes must be enabled. In 1985 Deutsch offers a probabilistic algorithm [5], which allows for Oracle 
function g: In → B to be calculated ( ) ( )0 1g g⊕  with a probability of 1/2, using only 1 application of G: If G: 

( ), ,x y x y g x→ ⊕  is a two qubit oracle operator, realizing the boolean oracle function g: In → B. The reg-
ister x will contain the value ( ) ( )0 1g g⊕  each time, when 1 is measured in y, which in turn occurs in 50% of 
the cases. Although strictly speaking this does not provide an acceleration relative to the classical case, if it is 
taken into account that on average 2 trials are needed for the actual measurement ( ) ( )0 1g g⊕ , then the 
Deutsch’s algorithm is the first evidence that the quantum computers are capable of computations in ways im-
possible for the classical computers. As a whole, in order to achieve any acceleration relative to the classical al-
gorithms, it is necessary to be used the unique characteristics of the quantum computations, namely 
• Superposition (step 2) 
• Quantum parallelism (step 3) 
• Interference (step 4) 

Deutsch’s algorithm has been explored many times [3] [4]. In this paper we want to focus mainly on the phase 
encoding and decoding with formalized Raychev’s operators. 

The Deutsch’s algorithm points out the basic principles of the quantum algorithms, while requiring a small 
and relatively easy to understand circuit. Here it will be studied anew through the prism of the phase encoding 
and decoding and will be given more common characteristic of the algorithm. First, let’s recall the algorithm and 
its standard presentation. The problem of Deutsch is to determine if a single bit boolean function is in BAL or 
CONST at given quantum external source of information, black box, to that function. It requires a single query 
of the source, where a classical approach would require two. Figure 1 gives the standard circuit for Deutsch’s 
algorithm. The Deutsch’s algorithm is a key element of the introduction to the quantum computations and has 
been analyzed many times [3] [4]. Specifically this analysis is focused mainly on the phase encoding and de-
coding relationships in an attempt to generalize the construction of the circuit. 

Particular attention will be paid to three elements of the Deutsch’s algorithm, as it is presented in Figure 1. 
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Figure 1. Algorithm of Deutsch.                                                                              

 
1) The Hadamard operator H, which is applied to 1x  at the start and end of the algorithm, is its own identity 

decoder. Thus the effect of the initial and final [ ]1H  can be considered as encoding and decoding of the initial 
state of 1x . 

2) The composition of [ ]0H  with an oracle operator forms an α  degree 1 2
U


 operator. 
3) The selection of an initial state of the working qubit plays a role in the result of the algorithm. The condi-

tions for the initial state of the working qubits can be expressed and explained in respect of the encoding/de- 
coding results. 

2. Formalizations of the Deutsch’s Algorithms 
To examine the conclusions from these observations isproposed the three-part decomposition. 

The algorithm is divided into three logical steps: the application of [ ]1A , followed by the Oracle operator VC, 
and finally the application of [ ]1B  (Figure 2). The analysis will begin by passing through the algorithm in order 
to examine the state of the system with respect to the operator parameters.  

If [ ] ( )1 ,A AA U pα= , then 1 1 0А x xφ = , where 
( ) ( ) ( ) ( ) ( ) ( )1 10 1

1 1 0 1 0 1 01 1 1A Ap x p x
A AА x x x x x xφ α α= = − + − −   

If [ ] ( )0 ,C CC U pα=  and ( )0 11,0, , ,V CU f V V= , where 0 1IdentityV ∈  and 1 1NegationV ∈  such that  
1 n

V U∈


. 

Similar formulation of V allows the phase changes to be introduced by the Oracle operator in addition to the 
conditional basis changes. By Theorem 1 VC is α degree 1 2

U


 operator. If ( )0 11,0, , ,O VC CU f V C V C= =   
and ( )( )1f xO  denotes the phase function of 0V C  when ( )1 0f x = , and vice versa 1V C , when ( )1 1f x = .  

In this analysis the two operators of O are effectively indexed via the function f. In a similar way, the amplitude 
parameter of O can be indexed. If ( )1f xα  denotes Cα , when ( )1 0f x = , and 1 Cα− , when ( )1 1f x = .  
Then 2 1Oφ φ=  is such that, 

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 00 1 0
1

1 00 1 1
1

1 01 1 0
1

1 01 1 1
1

2 1 1 0

1 0

1 0

1 0

1

1 1

1 1

1 1 1

A f x

A f x

A f x

A f x

p x O x
A f x

p x O x
A f x

p x O x
A f x

p x O x
A f x

O a x x

a x x

a x x

a x x

φ φ α

α

α

α

⊕

⊕

 ⊕  
 

 ⊕  
 

= = −

+ − −

+ − −

+ − − −

 

 

 

 

                    (1) 
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Figure 2. Formalized three-partdecomposition.         

 
The final step of the algorithm generates interference between the operator A and B. If [ ] ( )1 ,B BB U pα= , 

then 3 2Bφ φ= . The final state of the circuit, is given in Equation (2). The formulas are rearranged, in such 
way that the results of the operators, generating the interference, are next to each other. 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 00 0 1 0
1

1 1 01 1 1 0
1

1 1 00 0 1 1
1

1 1 01 1 1 1
1

1 11 0 1

1 0 2

1 0 2

1 0 2

1

1 1 1

1 1

1 1 1 1

1

A B f x

A B f x

A B f x

A B f x

A B f x

p x p x O x
A B f x

p x p x O x
A B f x

p x p x O x
A B f x

p x p x O x
A B f x

p x p x O

x x B

a

a a

x x B

a

a a

x x B

φ

α α

α

φ

α α

α

φ

⊕ ⊕

 ⊕ ⊕  
 

⊕ ⊕

 ⊕ ⊕  
 

⊕ ⊕

= −

+ − − −

= − −

+ − − − −

= −

  

  

  

  

   ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

0
0

1

1 1 00 1 1 0
1

1 1 01 0 1 1
1

1 1 00 1 1 1
1

1 0 2

1

1 1

1 1 1

1 1 1

A B f x

A B f x

A B f x

x
A B f x

p x p x O x
A B f x

p x p x O x
A B f x

p x p x O x
A B f x

a

a a

x x B

a a

a a

α α

α

φ

α

α


 
 

⊕ ⊕

 ⊕ ⊕  
 

⊕ ⊕

−

+ − −

= − − −

+ − − −

  

  

  

               (2) 

If the general formulas for the probability amplitude of each basis state shown in Equation (2) are given, the 
Deutsch’s algorithm can be generalized in the context of the formalized Raychev’s operators. The general cha-
racter of the output data will be maintained in such way that the final state should leave 1x  unchanged, if f is 
constant, and change it if f is balanced. The first observation is that the final operator of the Deutsch’s algorithm 
is a decoder of the initial operator. The decoding connections may be outlined in terms of the phase numbers, as 
shown in Table 1. 

Until now the decoding was limited to the conditions under which the two operators are combined in order to 
form a certain basis operator. The requirements for the parameters are shown in Table 2. 

This is done within the limits of the formalized Raychev’s operators. More common structure of the decoding 
operators occurs when calling the main matrix formulation of the operators. 

When B is a decoder of A, can be found the interference pattern, generated by B, from Table 1. More specifi-
cally, if В is a decoder of A, then there exists some 1, ,g h k ∈  such that h k=  and ,h k g≠ . When B is an 
identity decoder, g characterizes the phase change in the states that identify 1x , i.e. the states left after the de-
coding operation, and the functions h and k determine the interference generated in the states, where 1x  is with 
a negative value. Furthermore, when В is an identity decoder of A, then the amplitude parameter Aα  is equiva-
lent to Bα . From here, when B is an identity decoder of A, Equation (2) can be simplified to Equation (3). 
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Table 1. The negation decoding by phase number γιη.                                                             

 N −N X −X 

( )A
γιη  1A Bα α= −  

000 000 011 110 101 

001 010 001 100 111 

010 001 010 111 100 

011 011 000 101 110 

100 110 101 000 011 

101 100 111 010 001 

110 111 100 001 010 

111 101 110 011 000 

 
Table 2. The decoding operators.                                                                                  

 I Z N −X 

( )A
γιη  A Bα α=  1A Bα α= −  

000 001 100 000 110 

001 000 101 010 100 

010 011 110 001 111 

011 010 111 011 101 

100 100 001 110 000 

101 101 000 100 010 

110 110 011 111 001 

111 111 010 101 011 

 

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 01 0
1

1 01 0
1

1 01 1
1

1 01 1
1

1 01 0
1

1 01 0
1

1 1

1 0 2

1 0 2

1 0 2

1 0 2

1

1 1

1 1

1 1 1

1 1

1 1

1

f x

f x

f x

f x

f x

f x

f x

g x O x
A f x

g x O x
A f x

g x O x
A f x

g x O x
A f x

h x O x
A A f x

k x O x
A A f x

h x O

x x B a

a

x x B a

a

x x B a

a a

x x B

φ α

α

φ α

α

φ α α

α

φ

⊕

 
⊕  

 

⊕

 
⊕  

 

 
⊕  

 

⊕

⊕

= −

+ − −

= − −

+ − − −

= − −

+ − −

= −













 ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

0
1

1

1 01 1
1

1 1

1 1 1f x

x
A A f x

k x O x
A A f x

a a

a a

α

α

 
 
 

⊕

− −

+ − − −

                 (3) 

If an attention is paid to the Oracle operator and how f controls its impact on the development of the system. 
If f is a constant function, then ( ) ( )1 1f x f x=  and Equation (3) can be further simplified, as this means that 
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only one of the two subspace operators, 0V C  and 1V C  will be used by the Oracle operator. 

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1 01 0
1

1 01 0
1

1 01 1
1

1 01 1
1

1 01 0
1

1 01 0
1

1 01 1
1

1 0 2

1 0 2

1 0 2

1 0 2

1

1 1

1 1

1 1 1

1 1

1 1

1 1 1

1

f x

f x

f x

f x

f x

f x

f x

g x O x
A f x

g x O x
A f x

g x O x
A f x

g x O x
A f x

h x O x
A A f x

k x O x
A A f x

h x O x
A A f x

x x B a

a

x x B a

a

x x B a

a a

x x B a a

φ α

α

φ α

α

φ α α

α

φ α

⊕

⊕

⊕

⊕

⊕

⊕

⊕

= −

+ − −

= − −

+ − − −

= − −

+ − −

= − − −

+ −















( ) ( )( ) ( ) ( ) ( )( )1 01 1
1

1 1f xk x O x
A A f xa aα⊕ − −

                   (4) 

In Equation (4) is seen that the encoding, performed by the Oracle operator, in each term of the sum of the 
probability amplitudes is the same. Thus, no interference is generated by the Oracle operator and the final state 
of the circuit is reduces down to the decoding interaction between A and B. The intervention carried out relative  
to the states 1 0x x  and 1 0x x , obviously leads to zero probability amplitudes when f is constant. Thus leaving  

the state in a superposition of 1 0x x  and 1 0x x . It is worth noting that achieving the interference necessary to 
leave 1x  unchanged at f constant, is independent from the initial state of the system. Now the impact of the 
Oracle operator will be considered when f is balanced. As mentioned earlier, the goal is to create a system in 
which the value of 1x  has changed. If f is balanced, both operators 0V C  and 1V C  will be used by the Oracle 
operator. This is implied by the fact that ( ) ( )1 1f x f x≠ . Under the given 1 1NegationV ∈  and 1 1IdentityV ∈ , 
if α  is the amplitude of 0V C , then the amplitude of 1V C  must be 1 α− . This means that ( ) ( )1 1

1f x f x
α α= −  

and allows us to further simplify Equation (3). 

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )

1 01 0
1

1 01 0
1

1 01 1
1

1 01 1
1

1 01 0
1

1 01 0
1

1

1 0 2

1 0 2

1 0 2

1 0 2

1

1 1 1

1 1

1 1

1 1 1

1 1

1

f x

f x

f x

f x

f x

f x

f

g x O x
A f x

g x O x
A f x

g x O x
A f x

g x O x
A f x

h x O x
A A f x

k x O x
A A f x

h x O

x x B a

a

x x B a

a

x x B a

a a

x x B

φ α

α

φ α

α

φ α α

α

φ

⊕

 ⊕  
 

⊕

 ⊕  
 

 ⊕  
 

⊕

⊕

= −

+ − − −

= − −

+ − −

= − − −

+ − −

= −













 ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

01 1
1

1 01 1
1

1

1 1 1

x

f x

x
A A f x

k x O x
A A f x

a a

a a

α

α

 
 
 

⊕

−

+ − − −

                  (5) 

If the goal is the probability amplitudes of 1 0x x  and 1 0x x  to become zero when f is balanced, then it is  

clear that 1
2C Aα α= =  should be established such that ( ) ( )1 1

1f x f xα α= −  and 1A Aα α= − . This will make the  

terms of the probability amplitude sums in 1 0x x  and 1 0x x  equivalent and will enable the interference to 
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reduce the final probability amplitudes to zero. From Equation (9.5) it is seen that, when 

( )( ) ( ) ( )( ) ( )
1 1

0 00 0
f x f x

O x O x≠   and ( )( ) ( ) ( )( ) ( )
1 1

0 01 1
f x f x

O x O x≠   then the entire necessary interference  

will occur; the probability amplitudes of 1 0x x  and 1 0x x  will be inverse to each other, and all other proba-
bility amplitudes will constructively interfere. What was determined is that the desire to have 1 0x x  and  

1 0x x  destructively interfere sets many of the requirements for correctness of the algorithm. The desired inter- 

ference can be guaranteed regardless of the value of 0x , if an Oracle operator O is defined such that  
1 11,0, , , , ,
2 2

O CU f U Uγιη γιη    =     
    

. This construction is not intuitive, as it requires the Oracle operator V  

to be defined not as the 2fU  Oracle typical for the Deutsch’s algorithm, but as an operator in 2ZEROU , which 
carries out a global phase shift that is conditionally upon the function f. The conditional phase shifts are used in 
the Grover’s algorithm and therefore this particular operator is not something new in the quantum computations 
[5]. 

2.1. Formalized Deutsch’s Algorithm: Version 1 
Problem: Upon given Oracle like operator ( )1,0, , ,O CU f I I= − , to be determined whether 1f ∈  is con-
stant or balanced. 

Preconditions: 

1) To be defined В and А such that 1BA Ext∈  and the amplitude parameter of A is 1
2Aα = . 

2) 1 ,
2 CC U p 

 
 

=  

Result: If the function f is balanced 1 0 1 1b P x x x b
∈

 → = ∑  , and otherwise, i.e. when f is constant, then 

1 0 1 1b P x x x b
∈

 → = ∑   (Figure 3). 

For Boolean function mf ∈ , where m < n, the generalized controlled operator can be used to represent op-
erators m n

U


, as well as α  degree version of these operators. Theorem 1 describes the construction of an op-
erator in the set m n

U


 whereas Theorem 2 shows the construction of an α  degree version of a m n
U


 opera-
tor. 

Theorem 1 If operator ( ), , , ,V CU C t f A B=  is such that A ∈ The set of the identity formalized Raychev’s 
operators, B ∈ The set of the negation formalized Raychev’s operators and mf ∈ , where m < n. Then  

m n
V U∈


. 

Proof. If it is assumed that A ∈ The set of the identity formalized Raychev’s operators and B ∈ The set of the 
negation formalized Raychev’s operators, therefore for each n qubit basis x , 

( )
( ) ( )

0
2

2 1
t

t

x f C
V x x f C

x f C

± == = ± ⊕
± ⊕ =

                     (6) 

Theorem 2 If operator ( ), , , ,V CU C t f A B=  is such that ( ), AA pα=  and ( )1 , BB U pα= − . Then V is 
an α  degree m n

U


. 
Proof. If it is assumed that ( ), AA pα=  and ( )1 , BB U pα= − . Then, for each n qubit basis x , 

 

 
Figure 3. Formalized Deutsch’s algorithm: Version 1.        
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 1

0 1

1 | 1 1 2 0

1 2 1 1 1

2 1 2

A t A t

B t B t

p x p x t

p x p xt

t t

x x f C
V x

x x f C

x f C x f C

α α

α α

α α

 − + − − ⊕ == 
− ⊕ + − − =

= ± ⊕ + ± − ⊕

 

             (7) 

Theorem 1 leads to general means for constructing of α  degree m n
U


 operators from an elementary in-
dexed operator and an operator in m n

U


. 
Theorem 3 If V is an n qubit m n

U


 operator with target bit t and [ ]tA  is indexed, formalized operator with  

an amplitude parameter α , such that 0 1α< < . Then the operator VA is α  degree m n
U


 operator. 

Proof. The proof follows from theorems 1 and 2, by noting that when ( ), , , ,V CU C t f U W= , then  
( ), , , ,VA CU C t f UA WA= . 

Theorem 3 is important because, it captures a common occurrence in the quantum algorithms: setting the tar-
get bit of an Oracle operator to a superposition and then applying the oracle operator. In the formalized system 
for designing of algorithmic models for quantum circuits this can be addressed in the context of an α degree 

m n
U


 operator. 
The composition of random formalized operators with main operators can be expressed in terms of the trans-

formations of parameters. 
Formal prerequisite 1 If the operator ( ),A U α γιη= . Then 

00 00A A A= =T T  

01 01A A A= = −T T  

( )( )00 1 ,A U α γιη= −  

( )10 ,A U α γιη=T  

( )( )10 1 ,A U α γηι= −  

( )10 ,A U a γηι=T  

( ) ( ) ( )( )10 1 ,A U α γ γ η γ ι= − ⊕ ⊕                           (8) 

Proof. If A is a base operator. Then 

( ) ( ), 1 1A U a A a a aA aAγη γη γη γηγιη = + − = + −   T T   

If the consideration is limited only to the original formulation of the problem, i.e. 2fU  Oracle only, then the 
problem of Deutsch still can be solved deterministically, by choosing an appropriate starting value for 0x , the  

target big of fU  and C. The amplitude parameter of C can be set to 1
2

. By Theorem 3, the oracle operator  

f nV U∈  is combined with C, to form an C f nUα  Oracle. At ( )0 11,0, , , f nV CU f V V U= ∈  the subspace oper- 

ators of the composite operator [ ]0VC  are 0
1 ,
2 CV C U p ′

 =  
 

 and 1
1 ,
2 CV C U p ′′

 =  
 

. The exact phase of 1V C   

and 0V C  is determined through Theorem 4. 
Remark The generalization of the Deutsch’s algorithm given in Figure 2, also covers the case when are used 

classical, i.e. without a phase change, oracle operators of the form ( )1,0, , ,CU f I X  as the ones used in the 
standard version of the Deutsch’s algorithm. Then the precondition for the value of 0x  is limited to a condition 
on the phase of operator C and the initial value of 0x  only. 

2.2. Formalized Deutsch’s Algorithm: Version 2 
Problem: Upon given Oracle operator ( )0 11,0, , , f nO CU f V V U= ∈ , should be determined whether 1f ∈  is 
constant or balanced. 
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Preconditions: 

1) To be defined В and А such that 1BA Ext∈  and the amplitude parameter of A is 1
2Aα = . 

2) 1 ,
2 CC U p 

 
 

=  

3) For operators 0
1 ,
2 CV C U p ′

 =  
 

 and 1
1 ,
2 CV C U p ′′

 =  
 

, should be chosen initial value for 0x  such that  

( ) ( ) ( ) ( )0 00 0C Cp x p x′ ′′≠   and ( ) ( ) ( ) ( )0 01 1C Cp x p x′ ′′≠  . 

Result: If the function f is balanced 1 0 1 1b P x x x b
∈

 → = ∑  , and otherwise, i.e. when f is constant, then 

1 0 1 1b P x x x b
∈

 → = ∑   
(Figure 4). 

If Cp γιη= . Then should be chosen 0x  such that ( ) ( ) ( ) ( )0 00 0x xγιη γιη≠   and  
( ) ( ) ( ) ( )0 01 1x xγιη γιη≠  . 
Two generalized algorithms for solving the Deutsch’s problem are developed, by re-examining anew the 

standard formulation of the Deutsch’s algorithm. In both cases are used the specific phase encoding and decod-
ing ideas, realized by the developed by the author of the report formalized operators. Both algorithms set the ini-
tial state to be equal to a superposition of all possible two qubit states and in this way set the working bit 0x  to  

an own state of the Oracle operator. Furthermore, the use of Hadamard-like gates with amplitude parameters 1
2

 

is, in general, a requirement of the algorithm if deterministic results are sought. 
Finally, the formalizations of the Deutsch’s algorithm, given in Figure 3 and Figure 4, are reduced to the 

ability to work in many different phases, possible within the quantum computations. Perhaps the most interest-
ing result of the analysis, based on the phase decoding, is the reaching to formalization of the algorithm in Fig-
ure 1 in the style of Grover. This version will lead to results, which would be expected upon solving the 
Deutsch’s algorithm, independently of its input data, but requires an Oracle operator for phase shifting as op-
posed to the traditional formulation of the Oracle operator in the Deutsch’s problem. The result is inherited by 
the explicit characterization of the behavior upon phase encoding / decoding of the operators, based on their 
formalization. 

2.3. Examples of Formalized Algorithm for Solving the Deutsch’s Problem 
The first example deals with a slight variation of the traditional Deutsch’s algorithm. 

Let operator 1 ,000
2

A U  =  
 

 with identity decoder 1 ,100
2

B U  =  
 

 such that BA Z= . If defines Oracle 

operator O VC= , where [ ]0
1 ,100
2

C U  =  
 

 and ( )1,0, , ,V CU f I X= . When the target qubit 0 1x = , O and  

preparation of target qubit are equivalent to traditional Deutsch’s algorithm. From Equation (2) can determine 
the final state of the system, if the input data are given for the traditional algorithm 01 . 

[ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

0 10 0

0 10 0

3 2 3 2
0 0 1 0 1 1

1 1

3 2 3 2
0 1 0 1

1 101 01 1 1
2 2

1 11 1
2 2

f f

f f

ZERO ID O ID ZERO O

ID O ID O

B OA ⊕ ⊕ ⊕ ⊕

⊕ ⊕

= − + −

= − + −

 

 

 

 

 
Figure 4. Formalized Deutsch’s algorithm: Version 2.         
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[ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

0 11 1

0 11 1

3 2 3 2
0 0 1 0 1 1

1 1

3 2 3 2
0 1 0 1

1 100 01 1 1
2 2

1 11 1
2 2

f f

f f

ZERO ID O ID ZERO O

ID O ID O

B OA ⊕ ⊕ ⊕ ⊕

⊕ ⊕

= − + −

= − + −

 

 

 

[ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 00 0

1 00 0

3 2 3 2
0 1 1 0 0 1

1 1

3 2 3 2
0 1 0 1

1 111 01 1 1
2 2

1 11 1
2 2

f f

f f

ID ID O ZERO ZERO O

ONE O ZERO O

B OA ⊕ ⊕ ⊕ ⊕

⊕ ⊕

= − + −

= − + −

 

 

 

[ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 01 1

1 00 0

3 2 3 2
0 1 1 0 0 1

1 1

3 2 3 2
0 1 0 1

1 110 01 1 1
2 2

1 11 1
2 2

f f

f f

ID ID O ZERO ZERO O

ONE O ZERO O

B OA ⊕ ⊕ ⊕ ⊕

⊕ ⊕

= − + −

= − + −

 

 

 

When f is constant, then the phase encoding executed by Oracle operator is the same in both terms of any 
amount. Without loss of generality, let us assume that f ZERO= , then ( )( ) ( )( ) ( )1 0 ,f fO O ID ZERO= =  . 
Thus is obtained the following result 

[ ] [ ]

3 2 3 2

1 1
1 1 101 01
2 2 2

B OA = − − = −  

[ ] [ ]

3 2 3 2

1 1
1 1 100 01
2 2 2

B OA = + =  

[ ] [ ]

3 2 3 2

1 1
1 111 01 0
2 2

B OA = − =  

[ ] [ ]

3 2 3 2

1 1
1 110 01 0
2 2

B OA = − + =  

When f is balanced then [ ]0C , with encoding function ( ),ID ZERO , is applied when ( )1 0f x = , and 

( )[ ] [ ]00

1 ,000
2

XC U  =  
 

, with encoding function ( ),ZERO ID  is applied when ( )1 1f x = . It should be noted  

that for ( ) ( )0 0 01x ID x ZERO x= ≠  and preconditions are met. Thus, when f ID= , 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 3 2 3 2

0 0 1 0 1 1
1 1

1 1 1 101 01 1 1 0
2 2 2 2

ZERO ID ID ID ZERO ZEROB OA ⊕ ⊕ ⊕ ⊕= − + − − + ==  

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 3 2 3 2

0 0 1 0 1 1
1 1

1 1 1 100 01 1 1 0
2 2 2 2

ZERO ID ZERO ID ZERO IDB OA ⊕ ⊕ ⊕ ⊕= − + = −− =  

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 3 2 3 2

0 1 1 0 0 1
1 1

1 1 1 1 111 01 1 1
2 2 2 2 2

ID ID ZERO ZERO ZERO IDB OA ⊕ ⊕ ⊕ ⊕= − + − − = −= −  

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 3 2 3 2

0 1 1 0 0 1
1 1

1 1 1 1 110 01 1 1
2 2 2 2 2

ID ID ID ZERO ZERO ZEROB OA ⊕ ⊕ ⊕ ⊕= − + − − = −= −  

If we consider the example of the algorithm represented in Figure 1. Let operator 1 ,000
2

A U  =  
 

 with 

identity decoder 1 ,001
2

B U  =  
 

 such that BA I= . If it defines such Oracle operator ( )1,0, , ,O CU f I I= − , 

such that for each operator 1 ,010
2

C U  =  
 

, 1 11,0, , , 010 , , 001
2 2

OC CU f U U    =     
    

. It is seen that for any  
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input 1 0x x  this algorithm will have the same result as Deutsch’s Algorithm. 

[ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1 0 1 1 01 10 0

1 0 1 01 10 0

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

f x f x

f x f x

ZERO x ZERO x O x ID x NOT x O x

ZERO x O x ZERO x O x

x x B OA x x
 

⊕ ⊕ ⊕ ⊕  
 

 
⊕ ⊕  

 

= − + −

= − + −

 

 

 

[ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1 0 1 1 01 11 1

1 0 1 01 11 1

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

f x f x

f x f x

ZERO x ZERO x O x ID x NOT x O x

ZERO x O x ZERO x O x

x x B OA x x
 

⊕ ⊕ ⊕ ⊕  
 

 
⊕ ⊕  

 

= − + −

= − + −

 

 

 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 1 0 1 1 011 00

1 0 1 011 00

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

f xf x

f xf x

ID x ZERO x O x ZERO x NOT x O x

ID x O x NOT x O x

x x B OA x x
 

⊕ ⊕ ⊕ ⊕ 
 

 
⊕ ⊕ 

 

= − + −

= − + −

 

 

 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 1 0 1 1 011 11

1 0 1 011 11

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

f xf x

f xf x

ID x ZERO x O x ZERO x NOT x O x

ID x O x NOT x O x

x x B OA x x
 

⊕ ⊕ ⊕ ⊕ 
 

 
⊕ ⊕ 

 

= − + −

= − + −

 

 

 

Without loss of generality, let us assume that for a balanced ( )( ) ( )
1

, ,f xf O ONE ID=  and  

( )( ) ( )
1

,
f x

O ZERO NOT=  such that they correspond to the phases of C and –С, respectively Oracle subspace 

operators. That leaves the following final state. 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1 1 0
3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 1
2 2

ZERO x ZERO x ONE x ID x NOT x ZERO xx x B OA x x ⊕ ⊕ ⊕ ⊕= − + −

= − +

 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 0 1 1 0

0 1

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

ZERO x ZERO x ID x ID x NOT x NOT x

ID x NOT x

x x B OA x x ⊕ ⊕ ⊕ ⊕= − + −

= − + −

 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 0 1 1 0

1 1

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

ID x ZERO x ZERO x ZERO x NOT x ONE x

ID x ID x

x x B OA x x ⊕ ⊕ ⊕ ⊕= − + −

= − + −

 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 0 1 1 0

1 0 1 0

3 2 3 2

1 0 1 01 1

3 2 3 2

1 11 1
2 2

1 11 1
2 2

ID x ZERO x NOT x ZERO x NOT x ID x

ID x NOT x ID x NOT x

x x B OA x x ⊕ ⊕ ⊕ ⊕

⊕ ⊕

= − + −

= − + −

 

In the case where f is a constant, there is the same overall result as the standard formulation of the Deutch’s 
algorithm; the Oracle operator makes no interference between the subspace and the calculation is reduced to the 
decoding effect B has on A. 

3. Conclusions 
Figure 1 and Figure 2 present two formalizations of the Deutsch’s algorithms. The first requires Oracle opera-
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tors, oriented to phase change, while the second formalization effectively establishes, how different operator 
phases can be used in the context of the standard structure of the Deutsch’s algorithm. The analysis which leads 
to the Formalizations, strongly leans to the close relationships and properties of the boolean encoding functions 
of the formalized Raychev’s operators, included in the algorithm. 

The first version of formalized algorithm uses phase change operations where the second version demon-
strates how different phases might be used in the context of the conventional Deutsch’s algorithm. 

The formalized Raychev’s operators separate the parts of phase and amplitude and allow for expression of 
amplitude in terms of probabilities as opposed to more general probability amplitudes. This formalization is fur-
ther improved by the characterization of classes with defined relations and incarnation of formalized logic pa-
rameter γ on the global phase. Under the needed and sufficient conditions to construct a unitary, in this case or-
thogonal operators are incorporated into the formalization. 
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