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Abstract

In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equ-
ation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for
large values of the state and the stochastic nature of the equation appears spatially distributed
temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random
dynamical system and asymptotic compactness for this demonstrated by using uniform estimates
far-field values of solutions. The results are new and appear to be optimal.
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1. Introduction

The understanding of the asymptotic behavior of dynamical system is one of the most important problems of
modern mathematical physics; one way to attack the problem for dissipative deterministic dynamical systems is
to consider its global attractors. This is an invariant set that attracts all the trajectories of the system. Its geome-
try can be very complicated and reflects the complexity of the long-time dynamical of the systems. In this paper
we investigate the asymptotic behavior of solutions to the following stochastic reaction-diffusion equations with
distribution derivatives and additive noise defined in the space R":
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du+(Au—Au)dt :(f (u)+9g(x)+ ngj)dt+zm:hjdwj, (1.1)

j=1
with initial data
u(0,x)=u,(x) in R", (1.2)

where 1 is a positive constant; D; =a% is distribution derivatives; g’ g e L? (R”)(j =1,--,n); fis a
]

nonlinear function satisfying certain dissipative conditions; h; is given functions defined on R"; and wj}

is independent two sided real-valued wiener processes on probability space which will be specified later.

Stochastic differential equations of this type arise from many physical systems when random spatio-temporal
forcing is taken into account. In order to capture the essential dynamics of random systems with wide fluctua-
tions, the concept of pullback random attractors was introduced in [1], being an extension to stochastic systems
of the theory of attractors for deterministic equations found in [2]-[5], for instance. The existence of such ran-
dom attractors has been studied for stochastic PDE on bounded domains; see, e.g. [6] [7], and for stochastic PDE
on unbounded domains, see, e.g. [8] [9], and the references therein. In the present paper, we prove the existence
of such a random attractor for stochastic reaction-diffusion Equation (1.1) defined in R" which is not founded.

Notice that the unboundedness of domain introduces a major difficulty for proving the existence of an attrac-
tor because Sobolev embedding theorem is no longer compact and so the asymptotic compactness of solutions
cannot be obtained by the standard method. In the case of deterministic equations, this difficulty can be over-
come by the energy equation approach, introduced by Ball in [10] and then employed by several authors to
prove the asymptotic compactness of deterministic equations in unbounded domains. This idea was developed in
[5] to prove asymptotic compactness for the deterministic version of (1.1) on R". In this paper, we provide
uniform estimates on the far-field values of solutions to circumvent the difficulty caused by the unboundedness
of the domains. The main contribution of this paper is to extend the method of using tail estimates of the case
stochastic dissipative PDEs and prove the existence of random attractor for the stochastic reaction-diffusion eg-
uation with distribution derivatives on the unbounded domain R".

The paper is organized as follows. In Section 2, we recall some preliminaries and abstract results on the exis-
tence of a pullback random attractor for random dynamical systems. In Section 3, we transform (1.1) into a con-
tinuous random dynamical system. Section 4 is devoted to obtain the uniform estimates of solution as t — .
These estimates are necessary for proving the existence of bounded absorbing sets and the asymptotic compact-
ness of the equation. In Section 5, we first establish the asymptotic compactness of the solution operator by giv-
ing uniform estimates on the tails of solutions, and then prove the estimates of a random attractor.

We denote by ||| and () the norm and the inner product in L*(R") and use , to denote the norm
in L° (R” . Otherwise, the norm of a general Banach space X is written as || |X . The letters C and
C, (i :1,2,---) are generic positive constants which may change their values form line to line or even in the
same line.

m

-1

2. Preliminaries and Abstract Results

As mentioned in the introduction, our main purpose is to prove the existence of a random attractor. For that
matter, first, we will recapitulate basic concepts related to random attractors for stochastic dynamical systems.
The reader is referred to [6] [11]-[13] for more details. Let (X||||X) be a separable Hilbert space with Borel
o-algebra B(X), and let (©,F,P) be a probability space.

Definition 2.1. (Q, F, P,(@t)tem) is called a metric dynamical system if 8: RxQ —Q is (B(R)x F.F)-
measurable, ¢, istheidentityon Q, 6,,, =606, forall s;teR and §P=P forall teR.

Definition 2.2. A continuous random dynamical system (RDS) on X over a metric dynamical system
(Q.F.P.(6),..) isamapping

R xQxX - X,(t,0,x) > ¢(t, @, X),

which is B(R*)x FxB(X),B(X)|—measurable and satisfies, for P-a.e. @eQ, (1) ¢(0,@,) is the iden-
tity on X; (2) #(t+s,o,-)=9(t,6,0,-)°¢(s,@,-) forall t,seR" (3) ¢(t,w,-): X - X is continuous for
all teR". Hereafter, we always assume that ¢ is a continuous RDS on X over (Q,F, P,(Ht )teR).
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Definition 2.3. A random bounded set {B(a))}wQ of X is called tempered with respect to (6,)_, if for
P-ae weQ,

lime'd (B(6.w))=0 forall >0,

t—oo
where d(B)=sup, x|, -
Definition 2.4. Let D be a collection of random subsets of X and {K(a))}wgQ eD. Then {K(a))}

called a random absorbing set for ¢ in D if for every Be D and P-ae weQ, there exists t; (w)>0 such
that

weQ)

#(t,6,0,B(0,0))cK(w) forallt=t;(w).
Definition 2.5. Let D be a collection of random subsets of X. Then ¢ is said to be D-pullback asymptotical-
ly compact in X if for P-a.e weQ, {¢(tn’9—t , X, )}w ) has a convergent subsequence in X whenever t, — oo,
n n=

and x,€B(0, o) with {B(e)] eD.

Definition 2.6. Let D be a collection of random sunsets of X. Then a random set {A(a))} of X is called a
D-random attractor (or D-pullback attractor) for ¢ if the following conditions are satisfiecffe?or P-ae. weQ,
(1) A(w) is compact, and @ d(x,A(w)) is measurable for every xe X ; (2) {A(w)|  is invariant,
that is,

#(t,0,A(w))= A(Gw) forall t=0;
(3) {A(w)}  attractsevery setin D, thatis, for every B={B(w)} €D,
limd (¢(t,0.0,B(0,@)), A(w))=0,

where d is the Hausdorff semi-metric given by d(Y,Z)=sup,., inf,,|y-2z||, forany Y X and Z<X.
The following existence result for a random attractor for a continuous RDS can be found in [8] [13]. First, recall
that a collection D of random subsets is called inclusion closed if whenever E(a))meQ is an arbitrary random
set,and F(w)  isinDwith E(w)cF(w) forall weQ,then E(w)  mustbelong to D.

Definition 2.7. Let D be an inclusion-closed collection of random subsets of X and ¢ a continuous RDS on
X over (Q,F, P,(H[)teR). Suppose that {K(“’)}w is a closed random absorbing set for ¢ in D and ¢ is
D-pullback asymptotically compact in X. Then ¢ Thas a unique D-random attractor {A(a))}mQ which is given

by

A(w)=NUs(t. 0.0 K (0 o))

t>0s>t

In this paper, we will take D as the collection of all tempered random subsets of L (R”) and prove the
stochastic reaction-diffusion equation in R" has a D-random attractor.

3. The Reaction-Diffusion Equation on R” with Distribution Derivatives and
Additive Noise

du-+(Au—Au)dt=(f(u)+g(x)+ ngj)dt+ihjdwj,XER“,t>0 (3.1)
=1

with initial condition
u(x,0)=uy(x) xeR" (3.2)

where A is a positive constant, gj,geLz(R”), h; e HZ(R”)OWZ'”(]R{”), for some p>2, D, =a%

J
j
are distribution derivative, {wj}T1 are independent two-side real-valued wiener processes on a probability
=

space which will be specified below, and f e C! (R) with the following assumptions:
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—a, |9 —k, || < F(s)s<-ays|" +ky 5], (3.3)
—a, 8" K [s| < f(s) <~ [s|" " ks3] (3.4)
[t'(s)|<L, (3.5)

for seR and p>2,where L, o, ,a,, Kk, Kk, arepositive constantsand A > 2k, +k,.
In the sequel, we consider the probability space (Q, F,P) where

Q:{a):(a)l,wz,---,a)m)eC(R,Rm):a)(O):O}.

F is the Borel o-algebra induced by the compact-open topology of Q, and P the corresponding wiener
measure on (€, F). Then we identify « with

W (t)=(@ (1), @, (1), 0, (t)) = 0(t) forteR.
Define the time shift by
Go()=o(-+t)-o(t), weQ, teR
Then (Q, F.P.(6 ):ER) is a metric dynamical system.
We now associate a continuous random dynamical system with the stochastic reaction-diffusion equation over
SQ F,P (9) ) To this end, we need to convert the stochastic equatlon with a random additive term in to a

eterministic equatlon with a random parameter. Given j=1,---,m consider the One-dimensional Ornstein-
uhlenbeck equation

dz; + Az;dt = dw; (t). (3.6)
The solution of (3.6) is given by
(90) )_ /1'[ Htw])(r)dr,teR.

Note that the random variable |z, (a)J) is tempered and  z; (Qw. is P-a.e continuous, therefore, it follows
form proposition 4.3.3 in [11] that there exists a tempered function r(w)>0 such that

JZZ(‘Z] (@ )‘2 +[z, (o )‘p)ﬁ r(o), 3.7)

where r(w) satisfies for P-a.e weQ
A

r(go)<e?'r(v), teR (3.9)
Then it follows form (3.7), (3.8) that, for P-a.e. weQ

51, (60, +[2, 40, )2 e¥'r (o). te @9)
=
Putting z(6,0)= ZTzlhjzj (Hta)j ) by (3.6) we have

dz-+Azdt =" hdw;.

The existence and uniqueness of solutions to the stochastic partial differential Equation (3.1) with initial con-
dition (3.2) which can be obtained by standard Fatou-Galerkin methods. To show that problem (3.1), (3.2) ge-
nerates a random system, we let v(t)=u(t)—z(6,») where u is a solution of problem (3.1), (3.2), then o
satisfies

2—':+/10 Av=f(v+2(6w))+9+D;g’ +Az(00). (3.10)

By a Galerkin method, one can show that if f satisfies (3.3)-(3.5), then in the case of a bounded domain with
Dirichlet boundary conditions, for P-a.e. @< Q,and forall v, e L*, (3.10) has a unigue solution
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v(@,0,) € C([0,%), )N ((0,T); H?)

with v(0,,0,) =v, forevery T >0, one may take the domain to be a sequence of Balls with radius approaching
o to deduce the existence of a weak solution to (3.10) on R", further, one may show that v(t,o,v,) is
unique and continuous with respectto v, in L? (R”) forall t>0. Let

u(t,o,uy) = U('[,a),u0 - Z(a)))+ 2(6).
Then the process u is the solution of problem (3.1), (3.2), we now define a mapping ¢:R* xQx L2 (R”) - (R“)
by
$(t.o,uy) =u(to,uy) =v(to,uy —2(0))+2(o) forall(t,m,u,) e R xQxL*(R"), (3.11)
Then ¢ is satisfies conditions (1)-(3) in Definition 2.2 therefore ¢ is a continuous random dynamical sys-

tem associated with the stochastic reaction-diffusion equation on R". In the next two sections, we establish
uniform estimates for the solutions of problem (3.1), (3.2) and prove the existence of a random attractor for ¢ .

4. Uniform Estimates of Solutions

In this section, we drive uniform estimates on the solutions of (3.1), (3.2) defined on R" when t — oo with
the purpose of proving the existence of a bounded random absorbing set and the asymptotic compactness of the
random dynamical system associated with the equation. In particular, we will show that the tails of the solutions,
i.e. solutions evaluated at large values of |x| are uniformly small when the time is sufficiently large.

We always assume that D is the collection of all tempered subsets of L* (R”) with respect to (Q F,P, (Ht)teR)
the next lemma shows that ¢ has a random absorbing set in D.

Lemma 4.1. Assume that ¢/, g e L? (R”), and (3.3)-(3.5) hold. Then there exists {K (@)} €D such that

{K(@)}  isarandom absorbing set for ¢ in D, that is, for any B={B(w)| D and P-ae weQ,
thereis T, (w)>0 such that

#(t,0,0,B(0,0)) = K(w) forallt>T, (o).

Proof. We first derive uniform estimates on v(t)=u(t)-z(6,w) from which the uniform estimates on
u(t). Multipling (3.10) by o and then integrating over R", we have

Zdt||u|| + Ao +|voff —j f(v+2(00))vdx+(g,0)+ (AZ(Qw),u)+(ngj,u). (4.1)

For the nonlinear term, by (3.3)-(3.5) we obtain
IR f (u+ Z(Ha)))udx
—j (v+2(6w)) u+z(€w))dx—jRnf(u+z(@w))z(@w)dx
—j f (u)udx— I f(u)z(Gw)dx

<-ay, ul® (6, 2(6,0)dx

P;l 1
<y} + ko Julf + . [, (ul) ? .(|z(9tw)|'°)') dx+—k4 ||u||2 +—k4 l2(60) (4.2)
<o ulf +k Juf += a1||u||p+C lz(6e), += k o+ k Jz(60)f

<y |ulf + (k+ kj(||v|| @l )+ a1||u||p+C||z a0, <2k, Jo(00)f

s—g%nung+(k1+5k4j"v"z+c2(||z<@w>||;+||z(@m>||2),

on the other hand, the next two terms on the right-hand side of (4.1) are bounded by
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1 1 1 1
lollol V2 (@@)Iv ol < 321l + ol + L vz(@o)f + Hvol’

the last term on the right-hand side of (4.1) is bounded by
i 12 1
KwakMWMjM”ﬂWW

~112
where § = ﬂg g ) and |g| =
Then it follows from (4.1)-(4.4) th at

j=1
—IIUII Aol + e ully — (2 + k)M

S—||9|| +aff +[vz(go) +2¢,(Je(@o) + 2 (60) )

(4.3)

(4.4)

(4.5)

Note that z(6w)= Z, _h J(Qa) ) and h; e HZ(R”)DWZ'”(R”), therefore, the right-hand side of (4.5) is

bounded as following

¢, |z, (00, +|2, (60, ) +c. =R (g0} v,
i
By (3.9), we find that for P-a.e, weQ

1
R(0.0)< Cseﬂr‘r(a)) forallzeR
it follows from (4.5), (4.6) that, all t>0,

—||v|| + 2ol + el (26 + k)M < R () +C,
which implies that forall t>0,
—||u|| +(2-2k, —k, )[v] < P.(Bw)+C

Let 4 =A4-2k, —k,. Applying Gronwall’s lemma, we find that, for all t>0,

"U(t,a),uo (co))"z <At "Uo || +J‘l (1) (0.0 dr+%.

By replacing @ by 6.,w, we get from (4.10) and (4.7) that for all t>0

lo(t.0.@),0, (0.0 <& c, . C

Note that ¢(t, w,U, (a))) = U(t, Uy (@)— Z(a)))+ 2(6w).
So from (4.11) we get that, forall t>0,

|#(t.60..u,(6.0))
~[o(t.0 00 (0.0)- (@
szknawﬂd@wrzdwu*fu (@)

<2e7 u, (6,0) - 2(6,0)| +Cyr (@) +C, +2|2(o)[

< e (Juy (6.0 +||z(e,tw)||2)+c3r(w)+ C, +2|z(o) -

By assumption {B(w)| €D is tempered. On the other hand, by definition, |z(
therefore, if u, (6 ,»)eB(6 ). Thenthereis Ty (w)>0 suchthatforall t>T, (o)

vy (6., ) " +Tr( o)+ o

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

co)||2 is also tempered,
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47 ("u0 (Qla))uz + ||z (ata))uz) <C;r(w)+C,,
which along with (4.12) shows that, forall t>T; (@),
|4(t.6.0.u, (0,0))| < 2(C3r(a))+C4 +Hez(@ ) (4.13)
Given weQ
K(a))={ueL2(Rn):"u"2SZ(Cr )+C, +|z(@)[ )}

Then {K(w)} D, further, (4.13) indicates that {K (@)} _isarandom absorbing setfor ¢ inD.
Which completes the Proof. O
We next drive uniform estimates for u in Hl(R”) and foruin L° (R” )

Lemma 4.2. Assume that g e LZ(R”) and (3.3)-(3.5) hold, let B={B(w)| €D and u,(w)eB().

Then forevery T, >0 and P-ae o<, the solutions u(t,e,u,(@)) of problem (3.1), (3.2) and v(t,w,v, (@))
of (3.11) with v, (@)=, (@)-2z(w) satisfy, forall t>T,.

J‘TI ettty Hu (s.0.,0,u, (9“(0))”2 ds<e™ |, (té’_ta))"2 +C(1+1(w)), (4.14)
1
I;ell(s‘t) ”u (s.0.0,u, (e_tw))“z ds<e™ |y, (49_ta))||2 +C(1+1(w)), (4.15)

where C is a positive deterministic constant independent of T, and r(a)) is the tempered function in (3.7).
Proof. First, replacing tby T, and then replacing o by 6., in(4.10) we find that

||U 00,0, (0,0 " <eMh "U (6 0 " +J.T1 AP (6, @)ds +C.

Multiply the above by e* A and then simplify to get.

Ay (T,,0,0,0, (0.0
o (T 6:004 : “’))" (4.16)
<e o, (6, || +[ "R (6, ,0)ds + Cet Y
By (4.7), the second term on the right-hand side of (4.16) satisfies
J-T1 A (s-t) 1“’ dS
1 (4.17)
:'[_Ti_e"l’ﬂ(era))drggr( )J'_Ti e dr<%c r(o)e 211(Tl t).
From (4.16), (4.17) it follows that
A0 (T, 0,0,0 (8.0))
1 (4.18)
<™ "UO(H_ta))" +ZC3r(a))ezﬂl(T1 V| cerln,
By (4.8) we find that, for t>T,
||u t,o,0, (@)) ||2+ozl ‘gl ||u 5,0,U () ||pds
+2k .[t A(s) ||u(s,co,u0 || ds+k r Al ||u(s,a),u0(a)))||2 ds (4.19)

= _ t _
<ehl(h™ ”z) T, 0,0, (@) || +jT1ele P (6,0) ds+CITle41(s Yds.

Dropping the first term on the left-hand side of (4.19) and replacing @ by &, ®, we obtain that, for all
t>T,
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alj;eil(s't) ||u (s.0.0,u, (Qta}))"z ds + 2k1'[;e11(5't) ||u (s.0.0.u, (4940)))"2 ds

1 1
+k, J‘Ttlell(s“) ||u (5.6,,u, (H_ta)))uz ds (4.20)
<0 o(T,, 0,0, (0,0)) +[;_e*P(6.0)dr +%

By (4.7), the second term on the right-hand side of (4.20) satisfies, for all t>T,

1
° ¢ (h.0)dr < csr(m)jf_te?lrdr < %Car(a)). (4.21)

-t
Then, using (4.20) and (4.21), it follows from (4.20) that
alj;eil(s’t) ||u (s.0 0., (‘9—1”))"2 ds + 2k1j;1eﬂl(s’t) ||u (5.0.0,u, (Qla)))uz ds

+k, -[Ttleil(sft) ||u (S, 0. ,o,U, (6’7@))"2 ds<e™ "Uo (Hfta))nz +C(1+r(w)).

This completes the proof. (I
Lemma 4.3. Assume that ¢, g e L2 (R”) and (3.3)-(3.5) hold, Let B={B(w)| D and u,(w)eB(o).

Then for P-a.e weQ, there exists T, (a)) >0 such that the solutions u(t,a), U (a))) of problem (3.1), (3.2)
and o(t,w,0,(@)) of 3.11) with v, (o) =u,(w)-2z(e) satisfy, forall t>T,e.

J-t+l
t
J~t+1
t

where C is a positive deterministic constantand r () is the tempered function in (3.7).
Proof. First replacing t by t + 1 and then replacing T, by tin (4.14), we find that

jtmeil(s‘t‘l) “u (5,010 (H_t_la)))uz ds < e 4t

u(s.0,,m,u (6[[7150))||z ds <C(1+r(m)),

u (s, 0. ,m,u, (947150))”2 ds<C (1+ r (“’))

0, (6. ,0)[ +C(1+r(w)). (4.22)

(s-t-1)

Note that e” >eh for se [t.t+1], hence, form (4.22) we have

e’/li J~t+l
t

2 (t+1)

u(s,0.o,u, (H_I_la)))"z ds
<e 0y (0.0)| +C(1+1(w)) (4.23)
Uy (6,0 +]2(0..0)[ +C(L+r(w)).
Since ||u0(a;)||2 and ||z(a))||2 are tempered there is T, (@) >0 suchthat forall t>T, ()

2¢ At (||uO (0.0 +[2(0..0)f ) <C(l+r(w)),

which along with (4.23) shows that, forall t>T, (@),

J‘l+l
t

Then from (4.10) using the same steps of last process applying on (4.15), we get that
¥ 2
[u(s. 0.0, (0, o)) ds<2e"C(1+1 (). (4.25)

The above uniform estimates is a special case lemma 4.2, then the lemma follows from (4.24)-(4.25). C1.
Lemma 4.4. Assume that ¢/, g e L (]R”) and (3.3)-(3.5) hold, let B={B(w)} D and u,(w)eB(w).

Then for P-a.e @ eQ, there exists T, (w) >0 such that the solution u(t,a), uo(w)) of problem (3.1), (3.2)

satisfies, forall t>T; ().

< 2e—ll(t+1)

u(s. 6., 40, (94710)))”z ds < 2e*C(1+r(w)). (4.24)
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vu (s, 6., ,o,U, (.9+la)))||2 ds<C (1+ r (a)))

J~t+1
t

where C is a positive deterministic constantand r () is the tempered function in (3.9).
Proof. Let T, (w) be the positive constant in lemma 4.3, take t>T;(w) and se(t,t+1), by (3.11) we

find that
[7u(50. 000 0)f
=[Vo(s.0..0u, (0., @)+ V2(6, o) (4.26)
<2|Vo(s,0.,0,u, (0. ;o)) || +2|vz(6,. o) .
By (3.9) we obtain
2J92(0, 0 <C3Je, (00, | < (o) sce ™ (4.27)
Now integration (4.26) with respect to s O\J/er (t, t + 1), by lemma 4.3 and inequality (4.27), we have
[[[Vu(s.6. so.u,(6. o)) ds<C, +Cor (). (4.28)

Then the lemma follows from (4.28). O
Lemma 4.5. Assume that ¢/, geL? ]R{”) and (3.3)-(3.5) hold, let B ={B(w)}
Then for P-a.e weQ, there exists T, (w)>0 suchthatforall t>T,e.

eD and uy(w)eB(w).

weQ)

[Vu(t.0. 0.u,(6. o)) <C(1+r(w))

where C is a positive deterministic constantand r(w) is the tempered function in (3.9).
Proof. Taking the inner product of (3.10) with Av in L* (R” ) , We get that

Syvolf + 2w off +aof

(4.29)
—I f (u)Avdx+ g+AZ(Ha)) Au) (ngj,Au).
We estimates the first term in the right-hand side of (4.29) by (3.3), (3.4) we have
[ f(u)Avdx = [ f(u)Au-[ ,f(u)Az(ge)dx
= ﬂ |Vu| dx — J f (u)Az(G,w)dx
< L||Vu|| +ay | .U |AZ (60) (t9ta))|dx
<L |vuf + 2 (P7Y) E U P Pk |az(@a)f 30
<L|vuf +%||u||" %z (B0) +K,Juff +k, |az(G0)f
sc(||u||2+||vu||2+||u||z)+c(||Az G ||p+||Az o) )
On the other hand, the second term on the right-hand side of (4.29) is bounded by
1
|(g,Au)| +|(AZ(9ta)),Au)| < E"AUHZ +||g||2 +||Az(t9[a))"2 . (4.31)
The last term on the right-hand side of (4.29) is bounded by
i ~ 1. 1
(0,6 a0)| < [Valjac] < S valf +Hfaof @32)
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By (4.29)-(4.32) we get that
d 2 2
SVl +24]vy]

<C (o +[wuf +[ul? )+ (Jae(@o) +Jaz(60)f

(4.33)
+2]olf +2|valf +2Jaz(g0)f
<C(Julf +[vuf* +Jul} )+ (laz ()} +|az (o) +1).
Let
P,(60) = (|az(qo) +[az(Go)ff +1) (434)

Since z(Gw)=3"" h;z;(6o;) and h; eHZ(R”)ﬂW“(R”), there are positive constants C, and C,
such that

P, (Qta)) < Cljzr:;(

which along with (3.9) shows that

2; (60, )‘Z +jz; (0, )‘Z)J“CZ'

1
P, (0)<Ce?'r(0)+C, forallte R, (4.35)
By (4.33), (4.34) we have

d
Spvoft <o + vl 1ol )+ Py (). (436)

Let T, (w) be the positive constant in lemma 4.3 take t>T;(w) and se(t,t+1). Then integrate 4.36
over (s, t + 1) to get that

||Vu(t+1,a),uo (a)))"2 S"VU(S,w,UO " +_|‘Hlp2 0.w)dr

+CLH1(

< "VU S, @,0, (w))”z +_f:+1p2 (6.0w)dr

+CIH1(

Now integrating the above equation with respect to s over (t, t + 1), we find that

u(r,a),uo(a)))uz+||Vu(r,a),u0 (o " +||u T, 0,Uq ( a) "E)dz’

7,0,U, (a)))"2 +||Vu(r,w, Uy (ao))"2 +||U(T:0)’ Uy (a)))"Z )dT

||Vu(t+1,a),uo

+CLH1(

Replacing @ by 6, ,» we obtain that

|| t+1

Vu s 0,0, (@ " dS+-[t+lp2 0.0)d

u(r,a),uo (o) " +||Vu 7,0,U, (@) " +||u r,a),uo(a)))"z)dr.

"V v (t +1,0 0,0, (94—1“’))"2

< J~tt+1
+Cr+1( u

+||u 1@, Uy (6., 0) " )dr

t+1

Vo(s.0, 00,0 ,0)| ds+[7p, (6. 0)dr

) (4.37)

z’,&_t_la),uo (6. ,0) " +||Vu 7,0 0, (H_t_la)))"

By lemma 4.3 and 4.4, it follows from (4.37) and (4.35) that, for all t>T, (a))
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[Vo(t+1,6. 0,00, ))|| <C,+C,r(o)+ [ P, (6.)ds

(4.38)
<C;+Cyr(w [Ce2 r +c2st<C +Col (®).

Then by 4.38 and 3.9, we have, forall t>T; ()
"Vu (t +1,0  ,0,u, (H_t_la)))”2 = ”V z)(t +1,0 0,0, (H_t_la))) +Vz (a))"2
<2|Vo(t+1.0,,0,0,(6, )| +2[vz(o) <C,+Cyr (),

which completes the proof. O
Lemma 4.6. Assume that ¢, g e L? (R”) and (3.3)-(3.5) hold, let B={B(w)} €D and u,(e)eB(w).

Then for every >0 and P-ae weQ, thereexists T* =T, (w,e)>0 and R* =R*(w,e)>0 such that the
solution v(t,w,v, (@)) of (3.10) with v, (@) =u,(w)-z(e) satisfies, forall t>T*

J.\x\z]R*

Proof. Choose a smooth function @ definedon R* suchthat 0< 0(5) <1 forall seR" and

U(t, 0.,w,v, (H_Ia)))(x)r dx <e.

9(3)_ 0 for0<s<1
|1 fors>2

2
Then there exists a constant C such that |6’(s)| <C forany seR", multiplying (3.10) by 0(|I)<(_|ZJ'U in
L2 (]R”), and integrating over R" we find that

A e

i i i -
X C [ x
o [ ] udx+j (9+4z2(6,0))0 {k—ZJde+J'Rnngle[k—2]udx.
We now estimate the terms in (4.39) as follows, first we have
-] (Av [' | })dx IR" [' | J|Vu| dx+f vo’ [|k_]_§ -Vodx
, (4.40)
— |dx+ — X Y odx.
k2 k<|x|< 2k k2
Note that the second term on the right-hand side of (4.40) is bounded by
X 2\2 X
Iks\x\s@ue {k_z k_2 Vudx| < __ k<\x\<\/7| |6 kZ |VU|dX
(4.41)
C 2 2
< xs (lof +v ol )

By (4.40), (4.41), we find that

2 2
L., (AU)H('I)((—L] vdx < jRna{i‘_L]Wur dx _%(||U||2 |voff). (4.42)

1800
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From (4.39) the first term on the right-hand side, we have

X i X
-[Rng(k_z] f (u)odx = '[R"Q[k_zJ f (u)udx—_[Rnf (u)e(k—J (Gw)dx

By (3.3), the first term on the right-hand side of (4.43) is bounded by
H ,
k?

J‘Rng[h)((_LJ f(u)udx < -, {| i J

By (3.4), the second term on the right-hand side of (4.43) is bounded by

X [IIJ 1(00)
[':L J|Z(6’ta})|dx

0| — % | 6’(0
Z(G’ta))|p 6’[—k2 ]dx

At
i

dx

<—ay -

1
S__al n
2 R

wot{ g

Then it follows from (4.43)-(4.45) we have that

Rnf(u)@[t—f}dxs—g% o (' i J [%J X
29[||):—|2]dx+C Rn( 2(00) +|z(¢9ta))|2)6’[|l)((—|2de.

For the second term on the right-hand side of (4.39) we have

[.(g+az (Qw))@['li(—f] vdx

(it o 1t ot (o

For the last term on the right-hand side of (4.39), we have that

2
jRnng’9[| [ ] vdx=-|_, gk2 [' [ ]udx [ gVue[t—Lde
o X
gle| 2 vufon

+%k3 U

O

R"

=~
=

C 12 2y 1 |X|2 2 1 ||
<Slal +1of) Rne[k—2]|g| —y [ wof o

Finally, by (4.39), (4.42) and (4.47) (4.48), we have that

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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u

s ateo B ot ocoSap.af o
2B o Zaf oo B o

< o2l o o o[ 25 o+t 0 o B s
oJe{e{etom ftao ) Hstaor o 2

Note that (4.49) implies that

dtj {' [ J|u| dx+A[, [' i J|u| dx

C 2 - 2
S;(uguz+z||u||2+||w||2)+JRn[;|gr+u|g|2)e[':—'2]dx 450)
2
oL ( (2(00)" +[z(00) )+ _4Azea)|]apELde

By lemma 4.1 and 4.5, thereis T, =T,(B,w)>0 suchthatforall t>T,,
lo(t.6.@.05(0.@)).... <C(1+7(w)). (451)

(4.49)

HI(R")

Now integrating (4.50) over (T,,t) we getthat, forall t>T,

IRHH[K—L}U(L o,v, (a)))|2 dx < e Jm”e[%J|U(Tl’ @, Vg (a’))r dx

C
k

2
ety G|g|2 +22|g Izje[t—tj dxds
tei(s t)J‘Rn(c“ (60) +2(60) )+ laz(80) j [' [ }dxds

Replacing @ by 6, ,we obtain from (4.52) that, forall t>T,,

.[R"Q“)((_LJ|U(t'9twluo(etw))| dx< e IR {| | j| (Tlﬂ,ta),uo (9—1“’))|2 o

+% Ttle%sft) (||g||2 +2|o(s,0.,0,0,(6.0))| +|Vo (.00, (H_ta)))uz)ds

2
+ jT‘le”S*t) [ Glgl2 + 21|g|2j9(|l):—|2j dxds
tei(stJ‘ é |Z(9 p 2 K
R" ( s—tw)| +| (6, w|) |AZ )| 0 2 dxds.

e Joff + 2fo(s.00, (@) +[Vo(s 00 (@) Jas
(4.52)

(4.53)
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In what follows, we estimate the terms in (4.53). First replacing t by T, and then replacing @ by 6 ,® in
(4.10), we have the following bounds for the first term on the right-hand side of (4.53)

2
I [ .9[||)((_|2}|U(T1, 0 .o,v, (a_ta)))|2 dx
< (67 oy (0,0)f + [[e" IR (6, ,0)ds +C)

<e’m ||z)0 (Qta))” +Ce*(Y 4 J: “etp (6.0)dr (4.54)

1
Tt AT

<e™ ||UO(4940))||2+C8/1(T1_1)+ e? Cyr(w)dr

<M 2 Am-y 2 ;(H 1)
<e v, (0. @) +Ce +zc3r( )e ,

where we have used (4.7). By (4.54), we find that, given ¢>0, there is T, =(B,w,e)>T, such that for all
t>T,

0] (' i J|u (00,0 (0, < (455)

By lemma 4.2, there is T, =T,(B,¢)>T, such that the fourth term on the right-hand side of (4.53) satisfies

% ta(s-t) ||VU s,6. a,uo(g a) || ds<—(l+r(a)))

And hence, thereis R =R (o, e) >0 suchthatforall t>T, and k>R,
j &0V (s,0,0,0,(0.0))| ds<e. (4.56)

First replacing t by s and then replacing » by 6, in (4.10), we find that the third term on the right-hand
side of (4.53) satisfies

i oo o

SE;e”“" ea)|| ds+ 25 t“‘.[s“s ¢9a)drd5+£ e “Yds
1 k

<2 (T (0.0 + % 20 (L[ R (0.0)decs
s%e‘“(t—Tl)”uo(Ht )||2+2C 2¢ 2RI e R 00)drds
et T 0)f 22 (o] e are
s%e’“ (t=T) oo (0, 0)[ + Zf ¥ 8:( Cor (o).
This implies that there exist T, =T,(B,»,e)>T, and R, =R,(w,¢) suchthatforall t>T, and k>R,,
e (s 0,00 (0.0) do < (457)

Then the second term on the right-hand side of (4.53), there exist T, =T;(B,w,e)>T, and R, =R;(®,¢)
such thatforall t>T, and k>R, we have that

C s 2CA
Zle Yl < =gl <e (4.58)

k -
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Note that g', gel? (R”). therefore, there is R, =R, (¢) suchthat forall k>R,,

2 ~
Ix>k(z|g|z +2/1|g|zjdx <e

For the five term on the right-hand side of (4.53), we have
2
s 2 3 X
ﬂlel( g (;|9|2 + leglzjﬁ{h—t] dxds
tAls 2 3
< J.Tleﬂ( t)J'XZk(I|g|2 + 22|g|2jdXdS <

[fe*Vds <. (4.59)
T

Note that z(60)=>" hz,(6w;) and h; eHZ(R”)ﬂWZ"’(R"). Hence there is R, =R, (@) such
that forall k>R, and j=1,---,m.

P 2 2 . Ae €
Joe Iy () [ o [, () )dxsmm{ 4mpér(w),2mzr(w)}, (4.60)
where r(w) isthe tempered function in (3.7) and C s the positive constant in the last term on the right-hand

side of (4.60), By (4.60) and (3.7), (3.8), we have the following bounds for the last term on the right-hand side
of (4.53):

2
(fJ'Ttleﬂ(S—t) J.uaz" ( z (Hs_ta))r + |z (Hs_ta))| P+ |AZ (t9s_ta))|2 )9{':—'2} dxds

t_a(s-t)
<C Tle J-Mzk(

z(@s_ta))|2 +|z(¢9s_ta))|p +|Az(6?s_tco)|2 )dxds

AL
< mpC.[Tle st ;j‘x‘zk(
Ae

< t A(s-t) ( _
= 2r(w)ITle ,Z:; |ZJ(

Ae A(s—t) Ae 0,
< 2 (@) ITle r(6, w)ds< M'[Tl—te r(6.w)dz

[z, (0o 0L [z, (6 )| +[an[ [z, (6, ) [ o
(4.61)

0, ) o, |2 +|zj (957[)601-|p)ds

Ae J-O Lie
C2r(w)

T -t

Let T, =T,(B,w,e)=max{T,,---, T} and R; =R;(w,e)=max{R, --,R;}. then it follows from (4.53),
(4.55)-(4.61) that, forall t>T, and k>R, we have

2
.[R 9[||)<(_|2]|U(t’ 0..0,0y (‘9—1“’))|2 o < 5e,

which shows that forall t>T, and k>R,

2
j‘xwﬂu(t, 0.0, (0’10)))|2 dx < Rné’(':—tﬁu(t, 0,0, (0460))|2 dx < Be.

This completes the proof. O

Lemma 4.7. Assume that ¢/, g e L (R”) and (3.3)-(3.5) hold. Let B={B(w)} D and u,(»)eB(w).
Then for every ¢>0 andP-ae weQ,thereexists T* =T, (w,€)>0 and R* =R"(w,e)>0 such that, for

1804
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all t>T7*

u(t,0,o,u, (t97ta)))(x)|2 dx <e.

J.\x\zR*

Proof. Let T* and R* be the constant in lemma 4.6 By (4.60) and (3.7) we have, for all t>T* and
k>R*

2

dx < mz_[‘x‘zw |hj |2 ‘zj (o, )‘2 dx

J‘\x\zR*

2(o) dx= [

;hjzj (“’J)
2
Zj (a’j )‘ S%
then by (4.62) and lemma 4.6, we get that, forall t>T* and k >R*
J'MER* u(t,0,o,u, (Qlco))r dx = _[MZR*

= 2J.\x\2R*

which completes the proof. [

(4.62)

v(t,0.,0,0,(0.,))+ z(a))|2 dx

Z(a))|2 dx < 3¢,

U(t’ 9710), Yy (H*tw))r ox+ Z'ﬂx

[>R*

5. Random Attractors

In this section, we prove the existence of a D-random attractor for the random dynamical system ¢ associated
with the stochastic reaction-diffusion Equations (3.1), (3.2) on R". It follows from lemma 4.1 that ¢ has a
closed random absorbing set in D, which along with the D-pullback asymptotic compactness will imply the ex-
istence of a unique D-random attractor. The D-pullback asymptotic compactness of ¢ is given below and will
be proved by using the uniform estimates on the tails of solutions.

Lemma 5.1. Assume that ¢/, ge LZ(R”) and (3.3)-(3.5) hold. Then the random dynamical system ¢ is D-

pullback asymptotically compact in L (R” ) ; that is, for P-a.e @ e Q, the sequence {qﬁ(tn 0, oUy, (Qtn a)))}

has a convergent subsequence in L* (R") provided t, >, B={B(w)| D and u,, (0, »)cB(0, ).
Proof. Let t, >@ B={B(w)| €D and u,, (0, »)eB(6, @) Thenbylemma4.lforP-ae weQ,

we have that

{¢(tn,6[1n ®,Uq (0tw))}w is bounded in L (R" ).

Hence, thereis 7€ L? (R”) such that, up to a subsequence,
B(t10., @y, (6., @)) > weakly in L* (R"). (5.1)

Next, we prove the weak convergence of (5.1) is actually strong convergence. Given >0, by lemma 4.7,
thereis T, =T,(B,w,e) and R =R (w,e) suchthatforall t>T,

.|.|><\2R1

Since t, > oo, thereis N, =N, (B,w,¢) suchthat t >T, for every n>N,. Hence, it follows from (5.2)

that forall n>N,,
-[\Xlle ¢(tn ! 94” @, uo'n <H’tn w))
On the other hand, by lemma 4.1 and 4.5, there T, =T, (B,w) such that forall t>T,,

||¢(t, 0 ,w,U, (6[10)))

Let N, =N, (a)e) be large enough such that t, > T, for n > N,. then by (5.4) we have that, for all n > N,,

#(t.0.,0,U,(0.0))| dx<e. (5.2)

2

dx <e. (5.3)

<C(1+r(w)). (5.4)

2
Han
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2

<C(1+r(w)). (5.5)

(0., 0105, (0, )

HI(R")

Denote by Qg the set {x eR":|x| < Rl}. By the compactness of embedding Hl(QRl)—> L2 (QRI), it fol-
lows from (5.5) that, up to a subsequence,

¢(tn,67tna), Ug (Qtna))) —n strogly in L (QRl),

which shows that for the given ¢ >0, there exists N, = N, (B,w,c) suchthatforall n>N,,

2
“qﬁ(tn,e,tnw,uo,n (0.,@))-7 oy =€ (5.6)
Note that 7 e L? (R”) . Therefore there exists R, =R, (¢) such that
jMsz In(x) dx<e. (.7)

let Ry=max{R,R,} and N, =max{N;,N,,N,}. By (5.3), (5.6), and (6.7), we find that forall n>N,,

”¢ (tn , 6[tn @,Ug, (94" a))) -n

2

L*(Qry)
<[, Bt 0., @5, (0., 0)) —nr dc ‘gﬁ(tn 0., 0,05, (0., ))-7 " dx <5e,
which shows that
¢(tn,6[1"a), Uy, (94”‘0)) —> 77 strong in L (R”),
as wanted. [
LZNHOQV”V we are in a position to present our main result: the existence of a D-random attractor for ¢ in

Theorem 5.2. Assume that g, ge LZ(R”) and (3.3)-(3.5) hold. Then the random dynamical system ¢
has a unique D-random attractor in R".

Proof. Notice that ¢ has a closed random absorbing set {K (a))}weQ in D by lemma 4.1, and is D-pullback

asymptotically compact in R" by lemma 5.1. Hence the existence of a unique D-random attractor for ¢
follows from proposition 2.7 immediately. [J
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