Published Online September 2015 in SciRes. http://dx.doi.org/10.4236/jamp.2015.39145

Existence and Uniqueness of Positive Solution for 2mth-Order Nonlinear Differential Equation with Boundary Conditions

Jiying Liu

School of Mathematics and Statistics, Northeast Petroleum University, Daqing, China Email: liujiying216@126.com

Received 25 July 2015; accepted 22 September 2015; published 25 September 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, we study the existence and uniqueness of positive solution for 2mth-order nonlinear differential equation with boundary conditions, by using the fixed point theorems on compression and expansion of cones.

Keywords

2mth-Order, Uniqueness, Existence, Fixed Point Theorems on Compression and Expansion of Cones

1. Introduction

Recently, many authors studied the existence and multiplicity of positive solutions for the boundary value problem of even-order differential equations since it arose naturally in many different areas of applied mathematics and physics (see [1]-[3]).

In [4] by applying the theory of differential inequalities, the author established the existence of positive solution for the third-order differential equation. In [5], the authors derived the Green function of the 2mth-order nonlinear differential equation, and established the existence of positive solutions for BVP, by using the fixed point theorems on compression and expansion of cones. However, there are a few articles devoted to the uniqueness problem by using the fixed point theorem. In [6], the authors studied the existence and multiplicity of positive periodic solutions for second-order nonlinear damped differential equations by combing the analysis of positiveness of the Green function for a linear damped equation. Our nonlinearity may be singular in its depen-

How to cite this paper: Liu, J.Y. (2015) Existence and Uniqueness of Positive Solution for 2mth-Order Nonlinear Differential Equation with Boundary Conditions. *Journal of Applied Mathematics and Physics*, **3**, 1178-1185. http://dx.doi.org/10.4236/jamp.2015.39145 dent variable. The proof of the main result relies on the Guo-Krasnosel' skii fixed point theorem on compression and expansion of cones.

In this paper, we consider 2mth-order nonlinear differential equation

$$\begin{cases} (-1)^m \ y^{(2m)}(x) = f(x, y(x)), & x \in (0, 1) \\ y^{(i)}(0) = y^{(i)}(1) = 0, & 0 \le i \le m - 1 \end{cases},\tag{1}$$

The existence and the uniqueness of positive solution are obtained, by means of the fixed point theorems on compression and expansion of cones.

Throughout this paper, we always suppose that

- (H_1) $f(x,y):[0,1]\times[0,+\infty)\to[0,+\infty)$ is continuous;
- (H_2) $f(x,y) \neq 0$, for any compact subinterval in $[0,1] \times [0,+\infty)$, f(x,y) is nonincreasing in y > 0, a.e. $x \in [0,1]$;

$$(H_3) \quad \lim_{y \to 0^+} \max_{x \in [0,1]} \frac{f(x,y)}{y} < \lambda_1, \quad \lim_{y \to +\infty} \min_{x \in [0,1]} \frac{f(x,y)}{y} > \lambda_2;$$

$$(H_4) \quad f(x,y) = a(x)h(y), \quad \lim_{y \to 0^+} \frac{h(y)}{y} > \mu_1, \quad \lim_{y \to +\infty} \frac{h(y)}{y} < \mu_2. \text{ where } h \in C([0,+\infty),[0,+\infty)),$$

 $a \in C([0,1],[0,+\infty))$, $a(t) \neq 0$ for any compact subinterval in [0,1]. Here λ_1 , λ_2 , μ_1 , μ_2 satisfied

$$\lambda_{1} \|\beta\| \int_{0}^{1} \gamma(s) ds \leq 1, \quad \lambda_{2} \frac{\alpha_{1}^{2}}{\|\beta\|} \int_{\sigma_{1}}^{1-\sigma_{1}} \gamma(s) ds \geq 1, \quad \mu_{1} \frac{\alpha_{2}^{2}}{\|\beta\|} \int_{\sigma_{2}}^{1-\sigma_{2}} a(s) \gamma(s) ds \geq 1, \quad \mu_{2} \|\beta\| \int_{0}^{1} a(s) \gamma(s) ds \leq 1.$$

$$\sigma_1, \sigma_2 \in \left(0, \frac{1}{2}\right), \text{ with } \left\|\beta\right\| = \max_{x \in [0,1]} \beta\left(x\right), \quad \alpha_1 = \min_{x \in \left[\sigma_1, 1 - \sigma_1\right]} \alpha\left(x\right), \quad \alpha_2 = \min_{x \in \left[\sigma_2, 1 - \sigma_2\right]} \alpha\left(x\right).$$

Definition y(x) is the positive solution of boundary value problem (1), if y(x) satisfied

1)
$$y \in C^{m-1}[0,1], y(x) > 0, x \in (0,1), \text{ and } y^{(i)}(0) = y^{(i)}(1) = 0, 0 \le i \le m-1;$$

2)
$$y^{(2m)} \in L^1_{loc}(0,1)$$
, and $(-1)^m y^{(2m)}(x) = f(x,y(x))$, $a.e.x \in (0,1)$.

2. Preliminary

By a direct calculation, we can easily obtain

$$y(x) = \int_0^1 G(x,s) f(s,y(s)) ds,$$

following from [5], G(x,s) can be written by

$$G(x,s) = \begin{cases} \frac{1}{\left[(m-1)!\right]^{2}} \int_{0}^{s(1-x)} u^{m-1} (x-s+u)^{m-1} du, & 0 \le s \le x \le 1\\ \frac{1}{\left[(m-1)!\right]^{2}} \int_{0}^{x(1-s)} u^{m-1} (u-x+s)^{m-1} du, & 0 \le x \le s \le 1 \end{cases}$$
(2)

Define an operator $\Phi: C[0,1] \to C[0,1]$, $(\Phi y)(x) = \int_0^1 G(x,s) f(s,y(s)) ds$.

Lemma 1 The function G(x,s) defined by (2) satisfied the following conditions

$$\alpha(x)\gamma(s) \leq G(x,s) \leq \beta(x)\gamma(s)$$
,

where

$$\alpha(x) = \frac{x^m (1-x)^m}{2m-1}, \ \beta(x) = \frac{x^{m-1} (1-x)^{m-1}}{m}, \ \gamma(s) = \frac{s^m (1-s)^m}{[(m-1)!]^2}.$$

Proof By Newton binomial formula, we have

$$(u+x-s)^{m-1} = \sum_{i=0}^{m-1} \frac{(m-1)!}{i!(m-1-i)!} u^{i} (x-s)^{m-1-i}$$

$$(u+s-x)^{m-1} = \sum_{i=0}^{m-1} \frac{(m-1)!}{i!(m-1-i)!} u^{i} (s-x)^{m-1-i}$$
(3)

Put (3) into (2), and integral by item

$$G(x,s) = \begin{cases} \frac{1}{\left[(m-1)!\right]^{2}} \sum_{i=0}^{m-1} \frac{(m-1)!(x-s)^{m-1-i} \left[s(1-x)\right]^{m+i}}{i!(m-1-i)!(m+i)}, & 0 \le s \le x \le 1\\ \frac{1}{\left[(m-1)!\right]^{2}} \sum_{i=0}^{m-1} \frac{(m-1)!(s-x)^{m-1-i} \left[x(1-s)\right]^{m+i}}{i!(m-1-i)!(m+i)}, & 0 \le x \le s \le 1 \end{cases}$$

and we can get

$$G(x,s) \leq \begin{cases} \frac{\left[s(1-x)\right]^{m} \left[x(1-s)\right]^{m-1}}{m \left[(m-1)!\right]^{2}}, & 0 \leq s \leq x \leq 1\\ \frac{\left[x(1-s)\right]^{m} \left[s(1-x)\right]^{m-1}}{m \left[(m-1)!\right]^{2}}, & 0 \leq x \leq s \leq 1\\ \end{cases}$$

$$\leq \frac{s^{m} (1-s)^{m} x^{m-1} (1-x)^{m-1}}{m \left[(m-1)!\right]^{2}}, & 0 \leq s \leq x \leq 1\\ \frac{\left[s(1-x)\right]^{m} \left[x(1-s)\right]^{m-1}}{(2m-1) \left[(m-1)!\right]^{2}}, & 0 \leq s \leq x \leq 1\\ \frac{\left[x(1-s)\right]^{m} \left[s(1-x)\right]^{m-1}}{(2m-1) \left[(m-1)!\right]^{2}}, & 0 \leq x \leq s \leq 1\\ \geq \frac{s^{m} (1-s)^{m} x^{m} (1-x)^{m}}{(2m-1) \left[(m-1)!\right]^{2}}, & 0 \leq x \leq s \leq 1\end{cases}$$

If

$$\alpha(x) = \frac{x^m (1-x)^m}{2m-1}, \ \beta(x) = \frac{x^{m-1} (1-x)^{m-1}}{m}, \ \gamma(s) = \frac{s^m (1-s)^m}{\lceil (m-1)! \rceil^2},$$

the upper and lower bound of G(x,s) is

$$\alpha(x)\gamma(s) \le G(x,s) \le \beta(x)\gamma(s)$$
.

Lemma 2 Let E be a Banach space, and $K \subset E$ is a cone, satisfied

$$K = \left\{ y \in C[0,1]; y(x) \ge \frac{\alpha(x)}{\|\beta\|} \|y\| \right\},\,$$

where $||y|| = \max_{x \in [0,1]} |y(x)|$, then *K* is an closed convex cone.

Proof 1) Let $y \in K$, $\lambda \ge 0$, we have

$$\lambda y \ge \lambda \frac{\alpha(x)}{\|\beta\|} \|y\| = \frac{\alpha(x)}{\|\beta\|} \|\lambda y\|,$$

i.e.

$$\lambda y \ge \frac{\alpha(x)}{\|\beta\|} \|\lambda y\|,$$

so

$$\lambda y \in K$$
.

2) Because $y \in C[0,1]$, if $y \in K$, $-y \in K$, and $\alpha(x) \ge 0$, then y = 0. from 1) and 2), we prove that $K = \left\{ y \in C[0,1]; y(x) \ge \frac{\alpha(x)}{\|\beta\|} \|y\| \right\}$ is an closed convex cone.

Lemma 3 $\Phi: C[0,1] \to C[0,1]$ is completely continuous.

Proof Let $D \subset C[0,1]$ is bounded, then $\exists M > 0$, $\forall y \in D$, we have

$$||y|| \leq M$$

and

$$\left\| \Phi y(x) \right\| \leq \max_{0 \leq x \leq 1 \atop 0 \leq y \leq M} f(x, y) \int_0^1 G(x, s) ds \leq \max_{0 \leq x \leq 1 \atop 0 \leq y \leq M} f(x, y) \max_{0 \leq x \leq 1} \beta(x) \int_0^1 \gamma(s) ds,$$

Hence, $\Phi(D)$ is bounded.

Next, we show that $\Phi(D)$ is compact set. In fact

$$\frac{\partial G}{\partial x} = \begin{cases}
\frac{1}{\left[(m-1)!\right]^{2}} \left[s(1-s)x(1-x)\right]^{m-1}(-s) + \frac{1}{\left[(m-1)!\right]^{2}} \int_{0}^{s(1-x)} (m-1)t^{m-1}(t+x-s)^{m-2} dt, & 0 \le s \le x \le 1 \\
\frac{1}{\left[(m-1)!\right]^{2}} \left[s(1-s)x(1-x)\right]^{m-1}(-s) + \frac{-1}{\left[(m-1)!\right]^{2}} \int_{0}^{x(1-s)} (m-1)t^{m-1}(t+s-x)^{m-2} dt, & 0 \le x \le s \le 1
\end{cases}$$

then

$$\left| \frac{\partial G}{\partial x} \right| \le \frac{1}{\left[(m-1)! \right]^2} + \frac{1}{(m-1)! (m-2)!} \int_0^1 t^{m-1} (1+t)^{m-2} dt
\le \frac{1}{\left[(m-1)! \right]^2} + \frac{1}{\left[(m-1)! \right]^2} \left[(1+t)^{m-1} \right]_0^1 = \frac{2^{m-1}}{\left[(m-1)! \right]^2},$$

For $\forall 0 \le x_1 \le x_2 \le 1$, $\forall y \in D$, then

$$\begin{aligned} |\Phi y(x_{2}) - \Phi y(x_{1})| &= \int_{x_{1}}^{x_{2}} |(\Phi y)'(x)| dx = \int_{x_{1}}^{x_{2}} dx \int_{0}^{1} \left| \frac{\partial G(x, s)}{\partial x} \right| f(s, y(s)) ds \\ &\leq \frac{2^{m-1}}{\left[(m-1)! \right]^{2}} \max_{\substack{0 \le x \le 1 \\ 0 \le y \le M}} f(x, y) |x_{2} - x_{1}|, \end{aligned}$$

So $\Phi(D)$ is equicontinuous. By means of the Ascoli-Arzela theorem, $\Phi(D)$ is compact set, Φ is an compact operator.

Let $y_n \in C[0,1]$, $y_0 \in C[0,1]$, with $y_n \to y_0$, because of the convergence properties, $\exists M_0 > 0$ we have $||y_0|| \le M_0$, $||y_n|| \le M_0$, $(n = 1, 2, \cdots)$. Now we show that $\Phi y_n \to \Phi y_0$. In fact $\forall x \in [0,1]$

$$\begin{split} \left| \Phi y_{n}(x) - \Phi y_{0}(x) \right| &\leq \int_{0}^{1} G(x,s) \left| f(s, y_{n}(s)) - f(s, y_{0}(s)) \right| ds \\ &\leq \int_{0}^{1} \max_{0 \leq x \leq 1} \beta(x) \max_{s \in [0,1]} \gamma(s) \left| f(s, y_{n}(s)) - f(s, y_{0}(s)) \right| ds \\ &\leq 2 \int_{0}^{1} \left\| \beta(x) \right\| \max_{0 \leq x \leq 1} f(x, y) \max_{s \in [0,1]} \gamma(s) ds, \end{split}$$

where

$$h_{n}(s) = \max_{0 \le x \le 1} \beta(x) \max_{s \in [0,1]} \gamma(s) |f(s, y_{n}(s)) - f(s, y_{0}(s))|,$$

$$H = 2 ||\beta(x)|| \max_{\substack{0 \le x \le 1 \\ 0 \le y \le M_{0}}} f(x, y) \max_{s \in [0,1]} \gamma(s),$$

and

$$0 \le \int_0^1 H ds < +\infty$$
, and $|h_n(s)| \le H$.

Because $\|\beta(x)\|\max_{s\in[0,1]}\gamma(s)f(s,y)$ is continuous on $[0,1]\times[0,+\infty)$, so $\|\beta(x)\|\max_{s\in[0,1]}\gamma(s)f(s,y)$ is uniformly continuous on $[0,1]\times[0,M_0]$. $\forall \varepsilon>0$, $\exists \delta>0$, $\forall s\in[0,1]$, when $y_1,y_2\in[0,M_0]$, and $|y_1-y_2|<\delta$, $\|\beta(x)\|\max_{s\in[0,1]}\gamma(s)|f(s,y_1(s))-f(s,y_2(s))|<\varepsilon$, $y_n(s)\to y_0(s)$, then $\exists N>0$, $\forall n>N$, with $|y_n(s)-y_0(s)|<\delta$, as $s\in[0,1]$, also notice that

$$\left|h_{n}\left(s\right)-0\right|=\max_{0\leq x\leq 1}\beta\left(x\right)\max_{s\in\left[0,1\right]}\gamma\left(s\right)\left|f\left(s,y_{n}\left(s\right)\right)-f\left(s,y_{0}\left(s\right)\right)\right|<\varepsilon,$$

i.e. $h_n(s) \rightarrow 0$, a.e. [0,1]. And

$$\left| \Phi y_n(x) - \Phi y_0(x) \right| \le 2 \int_0^1 \max_{0 \le x \le 1} \beta(x) \max_{s \in [0,1]} \gamma(s) \left| f(s, y_n(s)) - f(s, y_0(s)) \right| ds < \varepsilon,$$

By using Lebesgue control convergence theorem $\Phi y_0(x) \to \Phi y_n(x)$ as $n \to \infty$, $\forall x \in [0,1]$, so Φ is continuous operator on C[0,1]. In conclusion, Φ is completely continuous operator.

3. Main Results

Theorem 1 suppose (H_1) - (H_3) or (H_1) , (H_2) , (H_4) holds, BVP (1) has at least one positive solution. **Proof** We prove $\Phi(K) \subset K$. Since $\forall y \in K$, we have

$$(\Phi y)(x) = \int_{0}^{1} G(x,s) f(s,y(s)) ds \ge \int_{0}^{1} \alpha(x) \gamma(s) f(s,y(s)) ds$$

$$\ge \int_{0}^{1} \frac{\alpha(x)}{\|\beta\|} \|\beta\| \gamma(s) f(s,y(s)) ds = \frac{\alpha(x)}{\|\beta\|} \max_{x \in [0,1]} \beta(x) \int_{0}^{1} \gamma(s) f(s,y(s)) ds$$

$$= \frac{\alpha(x)}{\|\beta\|} \max_{x \in [0,1]} \int_{0}^{1} \beta(x) \gamma(s) f(s,y(s)) ds = \frac{\alpha(x)}{\|\beta\|} \max_{x \in [0,1]} \int_{0}^{1} G(x,s) f(s,y(s)) ds$$

$$= \frac{\alpha(x)}{\|\beta\|} \|\Phi y\|,$$

then $\Phi y \in K$, for $\forall y \in K$, *i.e.* $\Phi(K) \subset K$.

It follows form (H_3) , $\lim_{y\to 0^+} \max_{x\in[0,1]} \frac{f(x,y)}{y} < \lambda_1$, where $\lambda_1 \|\beta\| \int_0^1 \gamma(s) ds \le 1$, there exist $\delta_1 > 0$, such that

$$\max_{x \in [0,1]} \frac{f\left(x,y\right)}{y} < \lambda_1, \quad \forall \ 0 < y < \delta_1 \quad i.e. \quad f\left(x,y\right) < \lambda_1 y \text{ . Let } \quad \Omega_1 = \left\{y \in C\left[0,1\right]; \left\|y\right\| < N_1, 0 < N_1 < \delta_1\right\},$$

for any $y \in K \cap \partial \Omega_1$, and $||y|| = N_1$, since $y \le ||y|| = N_1 < \delta_1$, we have

$$\begin{split} \left\| (\Phi y)(x) \right\| &= \max_{x \in [0,1]} \int_0^1 G(x,s) f(s,y(s)) ds \le \max_{x \in [0,1]} \beta(x) \int_0^1 \gamma(s) f(s,y(s)) ds \\ &< \|\beta\| \int_0^1 \gamma(s) \lambda_1 y(s) ds \le \lambda_1 \|\beta\| \|y\| \int_0^1 \gamma(s) ds < \|y\|, \end{split}$$

From $\lim_{y \to +\infty} \min_{x \in [0,1]} \frac{f(x,y)}{y} > \lambda_2$, where $\lambda_2 \frac{\alpha_1^2}{\|\beta\|} \int_{\sigma_1}^{1-\sigma_1} \gamma(s) ds \ge 1$, $\sigma_1 \in \left(0,\frac{1}{2}\right)$, there exists M > 0, such that

$$\begin{split} \min_{x \in [0,1]} \frac{f\left(x,y\right)}{y} > \lambda_2 \,, \quad \forall y > M \,, i.e. \quad f\left(x,y\right) > \lambda_2 \, y \,. \\ \text{Let } & \Omega_2 = \left\{y \in \left[0,1\right]; \left\|y\right\| < N_2\right\} \,, \text{ and } \quad N_2 > \max\left\{\frac{M\left\|\beta\right\|}{\alpha_1}, N_1\right\} \,. \text{ Then for any, } \quad y \in K \cap \partial \Omega_2 \,, \text{ and } \\ y(x) \geq \frac{\alpha(x)}{\left\|\beta\right\|} \left\|y\right\| \,, \text{ we have } \quad \min_{x \in \left[\sigma_1, 1 - \sigma_1\right]} y(x) \geq \min_{x \in \left[\sigma_1, 1 - \sigma_1\right]} \frac{\alpha(x)\left\|y\right\|}{\left\|\beta\right\|} = \frac{\alpha_1 N_2}{\left\|\beta\right\|} > M \,, \text{ and } \\ \left\|\left(\Phi y\right)(x)\right\| = \max_{x \in \left[0,1\right]} \int_0^1 G\left(x,s\right) f\left(s,y(s)\right) \mathrm{d}s \geq \max_{x \in \left[0,1\right]} \int_0^1 \alpha(x) \gamma(s) \, f\left(s,y(s)\right) \mathrm{d}s \\ &= \max_{x \in \left[0,1\right]} \alpha(x) \int_0^1 \gamma(s) \, f\left(s,y(s)\right) \mathrm{d}s \geq \left\|\alpha\right\| \int_{\sigma_1}^{1 - \sigma_1} \gamma(s) \, f\left(s,y(s)\right) \mathrm{d}s \\ &> \left\|\alpha\right\| \int_{\sigma_1}^{1 - \sigma} \gamma(s) \lambda_2 y(s) \mathrm{d}s \geq \left\|\alpha\right\| \lambda_2 \int_{\sigma_1}^{1 - \sigma_1} \gamma(s) \frac{\alpha(x)}{\left\|\beta\right\|} \left\|y\right\| \mathrm{d}s \\ &\geq \lambda_2 \left\|\alpha\right\| \min_{x \in \left[\sigma_1, 1 - \sigma_1\right]} \frac{\alpha(x)}{\left\|\beta\right\|} \left\|y\right\| \int_{\sigma_1}^{1 - \sigma_1} \gamma(s) \, \mathrm{d}s \geq \left\|y\right\|, \end{split}$$

According to the theorems on compression and expansion of cones, Φ has at least a fixed point, *i.e.* $\Phi y = y$, $\forall y \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$ an y satisfied integral equation $y(x) = \int_0^1 G(x,s) f(s,y(s)) ds$, so, y is the positive solution of (1).

From (H_4) , we know $\lim_{y \to 0^+} \frac{h(y)}{y} > \mu_1$, where $\mu_1 \frac{\alpha_2^2}{\|\beta\|} \int_{\sigma_2}^{1-\sigma_2} a(s) \gamma(s) ds \ge 1$, $\sigma_2 \in \left(0, \frac{1}{2}\right)$. There exists $\delta_2 > 0$, such that $\forall \ 0 < y < \delta_2$, we have $h(y) > \mu_1 y$. Let $\Omega_1 = \left\{ y \in C[0,1]; \|y\| < M_1, 0 < M_1 < \delta_2 \right\}$, for any $y \in K \cap \partial \Omega_1$, we have

$$\|y\| = M_1, \ y \le \|y\| = M_1 < \delta_2, \text{ thus } \min_{x \in [\sigma_2, 1 - \sigma_2]} y(x) \ge \min_{x \in [\sigma_2, 1 - \sigma_2]} \frac{\alpha(x)\|y\|}{\|\beta\|} = \frac{\alpha_2 M_1}{\|\beta\|},$$

i.e.

$$\begin{split} & \left\| (\Phi y)(x) \right\| = \max_{x \in [0,1]} \int_{0}^{1} G(x,s) a(s) h(y(s)) ds \ge \max_{x \in [0,1]} \alpha(x) \int_{0}^{1} \gamma(s) a(s) h(y(s)) ds \\ & \ge \left\| \alpha \right\|_{\sigma_{2}}^{1-\sigma_{2}} \gamma(s) a(s) h(y(s)) ds > \left\| \alpha \right\|_{\sigma_{2}}^{1-\sigma_{2}} \gamma(s) \mu_{1} a(s) y(s) ds \\ & \ge \left\| \alpha \right\|_{\mu_{1}} \int_{\sigma_{2}}^{1-\sigma_{2}} a(s) \gamma(s) \frac{\alpha(x)}{\|\beta\|} \|y\| ds \ge \mu_{1} \|\alpha\|_{x \in (\sigma_{2}, 1-\sigma_{2})} \frac{\alpha(x)}{\|\beta\|} \|y\| \int_{\sigma_{2}}^{1-\sigma_{2}} a(s) \gamma(s) ds \\ & \ge \frac{\mu_{1} \alpha_{2}^{2}}{\|\beta\|} \|y\| \int_{\sigma_{2}}^{1-\sigma_{2}} a(s) \gamma(s) ds > \|y\|, \end{split}$$

From $\lim_{y \to +\infty} \frac{h(y)}{y} < \mu_2$, where $\mu_2 \|\beta\| \int_0^1 a(s) \gamma(s) ds \le 1$. We know $\exists N > 0$, $\forall y > N$, such that $h(y) < \mu_2 y$. In the following, we consider two cases:

1) If
$$h(y)$$
 bounded on $y \in [0, +\infty)$, Let $h(y) \le H$, $M_2 = \max \{2M_1, H \|\beta\| \int_0^1 a(s) \gamma(s) ds \}$, $\Omega_2 = \{y \in C[0,1]; \|y\| < M_2\}$, since $y \in K \cap \partial \Omega_2$ and $\|y\| = M_2$, so
$$(\Phi y)(x) = \int_0^1 G(x,s) a(s) h(y(s)) ds \le H \int_0^1 \beta(x) \gamma(s) a(s) ds \le H \|\beta\| \int_0^1 \gamma(s) a(s) ds \le M_2 \Phi y = y,$$

i.e. $\|\Phi y\| \le \|y\|$.

2) If h(y) is unbounded on $y \in [0, +\infty)$, Let $M_2 > \max\{2M_1, N\}$, such that $h(y) \le h(M_2)$, $\forall 0 < y \le M_2$. Since h(y) is unbounded, then $\forall y \in K \cap \partial \Omega_2$, we have

$$(\Phi y)(x) = \int_0^1 G(x, s) a(s) h(y(s)) ds \le \|\beta\| \int_0^1 \gamma(s) a(s) h(M_2) ds$$

$$\le \mu_2 M_2 \|\beta\| \int_0^1 \gamma(s) a(s) ds \le M_2,$$

i.e. $\|\Phi y\| \le \|y\|$.

In conclusion, according to the theorems on compression and expansion of cones, Φ has at least one fixed point $y \in K \cap (\overline{\Omega}_2 \setminus \Omega_1)$. This showed that $\Phi y = y$, and y satisfied integral equation

$$y(x) = \int_0^1 G(x,s)a(s)h(y(s))ds = \int_0^1 G(x,s)f(s,y(s))ds$$

So, y(x) is the positive of BVP (1), where f(x, y) = a(x)h(y).

Theorem 2 If condition (H_1) - (H_4) holds, then the BVP (1) has a uniqueness positive solution.

Proof If $y_1(x)$, $y_2(x)$ are the positive solution of BVP (1), Let $y(x) = y_1(x) - y_2(x)$, where y(x) satisfied boundary value problem

$$\begin{cases} \left(-1\right)^{m} y^{(2m)}\left(x\right) = f\left(x, y_{1}\right) - f\left(x, y_{2}\right), \\ y^{(i)}\left(0\right) = y^{(i)}\left(1\right) = 0, & 0 \le i \le m - 1 \end{cases},$$

Notice that $(-1)^m y(x) y^{(2m)}(x) \le 0 \quad \forall x \in [0,1]$, integral the left from 0 to 1, notice that

$$(-1)^{m} \int_{0}^{1} y(x) y^{(2m)}(x) dx$$

$$= (-1)^{m} \left[y(x) y^{(2m-1)}(x) \Big|_{0}^{1} - y'(x) y^{(2m-2)}(x) \Big|_{0}^{1} + (-1)^{2} y''(x) y^{(2m-3)}(x) \Big|_{0}^{1} + \cdots + (-1)^{m-1} y^{(m-1)}(x) y^{(m)}(x) \Big|_{0}^{1} + (-1)^{m} \int_{0}^{1} \left[y^{(m)}(x) \right]^{2} dx \right]$$

$$= (-1)^{2m} \int_{0}^{1} \left[y^{(m)}(x) \right]^{2} dx = \int_{0}^{1} \left[y^{(m)}(x) \right]^{2} dx,$$

So we obtain

$$0 \le \int_0^1 \left[y^{(m)}(x) \right]^2 dx \le 0,$$

Thus $\int_0^1 \left[y^{(m)}(x) \right]^2 dx = 0$, *i.e.* $y^{(m)}(x) = 0$, $\forall x \in [0,1]$. And since $y^{(m-1)}(x) = c$, we have $y^{(m-1)}(0) = 0$, c = 0, *i.e.* $y^{(m-1)}(x) = 0$. Repeat above process, and conditions $y^{(i)}(0) = 0$, $0 \le i \le m-1$,

In the last, we have y(x) = 0, $\forall x \in [0,1]$. It is obvious that $y_1(x) = y_2(x)$, $\forall x \in [0,1]$. The uniqueness has been proved.

References

- [1] Zhang, S.Q. (2010) A Class Nonlinear Boundary Value Problem for Third-order Differential Equation with Singular Perturbation. *Journal of Sanming University*, **27**, 106-108.
- [2] Liu, Y. (2007) Two-point Boundary Value Problems for n-Order Nonlinear Differential Equation. *Journal of Shenyang Institute of Aeronautical Engineering*, **24**, 95-96.
- [3] He, J.H., Hu, L. and Wang, L.L. (2007) Positive Solutions of BVPs for a System of Even-Order ODEs. *Journal of Anhui University Natural Science Edition*, **31**, 1-4.
- [4] Lin, H.F. (2013) Existence and Uniqueness of Solutions for Boundary Value Problems of Nonlinear Differential Equations. Master's Thesis, Qufu Normal University, Qufu.
- [5] Kong, L.B. and Wang, J.Y. (2001) The Green's Function of (k, n k) Conjugate Boundary Value Problem and Its Ap-

plications. *Journal of Mathematical Analysis and Applications*, **255**, 404-422. $\underline{\text{http://dx.doi.org/10.1006/jmaa.2000.7158}}$

[6] Li, S.J., Liao, F.F. and Zhu, H.L. (2014) Multiplicity of Positive Solutions to Second-Order Singular Differential Equations with a Parameter. *Boundary Value Problems*, **1**, 1-12. http://dx.doi.org/10.1186/1687-2770-2014-115