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Abstract 
We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third 
order fluid under long-wavelength and low Reynolds number approximation. The governing equa-
tions are solved analytically with the appropriate boundary conditions by using perturbation 
technique. The formula of velocity with temperature and concentration is obtained analytically as 
a function of the physical parameters of the problem. 
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1. Introduction 
Many fluids in biological system are transported by peristalsis. The word peristalsis stems from the Greek word 
peristaltikos, which means clasping and compressing. Physically, it means the mechanism for pumping fluid in a 
tube by means of a moving contractile ring around the tube, which pushes the material onward. The need for pe-
ristaltic pumping may arise in circumstances where it is desirable to avoid using any internal moving parts such 
as pistons to be one of the main mechanisms of fluid transport in a biological system. The application of peristal-
tic motion as a mean of transporting fluid has aroused interested in engineering fields. Latham [1] was probably 
the first to study the mechanism of peristaltic pumping in his M. S. Thesis. Several researches have analyzed the 
phenomenon of peristaltic transport under various assumptions. Haroun [2] studied the effect of a third-order 
fluid on the peristaltic transport in an asymmetric channel. In his study, the wavelength of the peristaltic waves is 
assumed to be large compared to the varying channel width, whereas the wave amplitudes need not be small 
compared to the varying channel width. Eldabe et al. [3] analyzed the incompressible flow of electrically con-
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ducting biviscosity fluid through an axisymmetric nonuniform tube with a sinusoidal wave under the considera-
tions of long wavelength and low Reynolds number. 

In the last years, several simple flow problems of classical hydrodynamics have received new attention in the 
more general context magnetohydrodynamics (MHD). The study of the motion of non-Newtonian fluids in the 
presense of the magnetic field has applications in many devices such as magneto hydrodynamic (MHD) power 
generator, MHD pumps, bioengineering devices and accelerators. Also it has been established that the biological 
systems are greatly affected by the application of the external magnetic field. Moreover, the MHD flow of a fluid 
in a channel with elastic, rhythmically contracting walls (peristaltic flow) is of interest in connection with certain 
problems of the movement of conductive physiological fluids. Some recent investigations made to discuss the 
mechanism of MHD include the works. Hayat et al. [4] studied the peristaltic transport of a third order fluid un-
der the effect of a magnetic field. Srinivas and Kothandapani [5] have studied the influence of heat and mass 
transfer on MHD peristaltic flow through a porous space with compliant walls. Another important aspect in 
MHD is related to Hall effect. Such effect cannot be overlooked when flow subject to high magnetic field is con-
sidered. Siddiqui et al. [6] studied effects of Hall current and heat transfer on MHD flow of a Burgers fluid due 
to a pull of eccentric rotating disks. Hall effects on peristaltic flow of a Maxwell fluid in a porous medium have 
been studied by Hayat et al. [7] studied effects of Hall current and heat transfer on rotating flow of a second 
grade fluid through a porous medium. Khalid Nowar [8] studied Peristaltic Flow of a Nanofluid under the effect 
of Hall Current and Porous Medium. 

The study of the influence of mass and heat transfer on non-Newtonian fluids has become important in the last 
few years. This importance is due to number of industrial processes. Examples are food processing, biochemical 
operations and transport in polymers, biomedical engineering; micro fabrication technologies etc., besides these 
biological tissues with heat transfer involve modes like heat conduction in tissues, heat convection by blood flow 
through the pores of tissue and radiation heat transfer between surface and its environment. Motivated by such 
facts, the peristaltic flow with heat transfer has been explored. El-Dabe et al. [9] studied magnetohydrodynamic 
flow and heat transfer for a peristaltic motion of carreau fluid through a porous medium.  El-Dabe et al. [10] 
studied Peristaltic Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in 
Channel under Uniform Magnetic Field. El-Dabe et al. [11] analyzed the Magnetohydrodynamic Peristaltic mo-
tion with heat and mass transfer of a Jeffery fluid in a tube through porous medium. 

With the above discussion in mind, we propose to study the peristaltic motion of non-Newtonian fluid through 
a porous medium in the channel under the effect of magnetic field. A third order non-Newtonian constitutive 
model is employed for the transport fluid. The effects of hall, body temperature and concentration are taken into 
consideration. The governing equations of motion, energy, and concentration have been reduced under the as-
sumption of long wavelength. The reduced equations are then solved analytically via perturbation method. The 
physical behaviors of emerging parameters are discussed through graphs.  

2. Mathematical Analysis 
Consider a two-dimensional channel of uniform thickness 2a , filled with incompressible homogeneous electri-
cally conducting non-Newtonian third order fluid through a porous medium with heat and mass transfer. The 
channels walls are considered and flexible the vertical displacements for the upper and lower walls are H  and 

H− , see Figure 1, where H  is defined by 

( ) ( )* * * * *2π, sin ,H X t a b X ct
λ

= + −                                (1) 

where In the above equation b  is the wave amplitude, λ  is the wave length and *t  is the time. A uniform 
magnetic field with magnetic flux density vector ( )00,0,B B=  is applied, neglecting the induced magnetic 
field under the assumption that the magnetic Reynolds number is small, the expression for the current density J  
including the Hall effect and neglecting ion-slip and thermoelectric effects is given by 

( )* 1 ,
e

J E V B J B
en

σ
 

= + ∧ − ∧ 
 

                               (2)  

where σ  is the electric conductivity of the fluid is, *V  is the velocity vector, It is also assumed that 0E =   
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Figure 1. Sketch of the problem.                         

 

(since there is no applied polarization voltage), 0

e

B
m

en
σ

=  is the Hall parameter, e  is the electric charge and  

en  is the number of density of electron. The constitutive equation for the non-Newtonian third order fluid can be 
written as in [4]. 

Consider 
* * * ,P I Sτ = − +                                      (3) 

( )* * * *2 *2 *
1 1 2 2 1 1 1 .S A A A tr A Aµ α α β= + + +                            (4) 

Here *τ  is the extra stress tensor, *P I−  is the indeterminate part of the stress due to the constraint of in-
compressibility and *

nA  are the Rivlin-Ericksen tensors, defined by 

( ) ( )

( ) ( )

T* * *
1

* T* * * * *1
1 1*

,

d
, 1,

d
n

n n n

A grad V grad V

A
A A grad V grad V A n

t
−

− −

= +

= + + >
                     (5) 

where grad denotes the gradient operator, *

d
dt

 the material time derivative, µ  is the coefficient of shear vis-  

cosity, the normal stress coefficients 1α  and 2α , and the coefficient β , 

1 2 1 20, 0, 0, 0, 24µ α α β α α µβ≥ ≥ ≥ ≥ + ≤                      (6) 

The fundamental equations governing this model together with the generalized Ohm’s law taking the effects of 
Hall currents and Maxwell’s equations into account are 

* 0,V∇⋅ =                                       (7) 
*

* *
*

d ,
d
V P J B
t

ρ τ= −∇ +∇ ⋅ + ∧                              (8) 

( )* 2
* ,p r

Tc V T T q
t

ρ κ∂ + ⋅∇ = ∇ +Φ +∇ ⋅ ∂ 
                         (9) 

( ) ( )* 2 2
2* .T

c
m

DC V C D C T L C C
Tt
κ∂ + ⋅∇ = ∇ + ∇ − − ∂ 

                   (10) 

where ρ  is the density of the fluid is, *P  is the pressure, pc  is the specific heat capacity at constant pressure, 
T  is the temperature, κ  is the thermal conductivity, Φ  is the dissipation function, rq  is the radiative heat 
flux, C  is the concentration of the fluid, D  is the coefficient of mass diffusivity, Tκ  is the thermal diffusion 
ratio, mT  is the mean fluid temperature and cL  is the reaction rate constant. 

By using Rosselant approximation we have 
4

0

0

4
.

3Y
Tq

K Y
σ ∂

=
∂

                                     (11) 
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where 0σ  is the Stefan Boltizman constant and 0K  is the mean absorption coefficient. We assume that the 
temperature differences within the flow are sufficiently small such that 4T  may be expressed as a linear func-
tion of temperature. This is accomplished by expanding 4T  in a Taylor series about 2T , and neglecting higher 
order terms, we get 

4 3 4
2 24 3 .T T T T≈ −  

The equations governing the two-dimensional motion of this model (7)-(10) 
* *

* * 0,U V
X Y
∂ ∂

+ =
∂ ∂

                                     (12) 

( )* * * *
* * 2*

* * * * * *0
* * * * * * 2 ,

1
X X X Y

S S BPU V U U mV U
kt X Y X X Y m

σµρ
∂ ∂∂ ∂ ∂ ∂ + + = − + + − + − ∂ ∂ ∂ ∂ ∂ ∂ + 

         (13) 

( )* * * *
* * 2*

* * * * * *0
* * * * * * 2 ,

1
X Y Y Y

S S BPU V V V mU V
kt X Y Y X Y m

σµρ
∂ ∂∂ ∂ ∂ ∂ + + = − + + − − + ∂ ∂ ∂ ∂ ∂ ∂ + 

         (14) 

where  

( )
( ) ( )

* * * * * * * *

* * * * * * * * * * * * * * *

* * * *2 * * *2
1*

*2 * * *2 *2 *3 * *2 * *2 * * * * *2
2

2 2 2 2 4 2 2

4 2 2 2 2 2 4 ,

tX XXX X X X Y X X Y Y

X X Y Y X X X X X Y X X Y X Y

S U U UU VU U V U U

U V U U V U U V U U V U U U V

µ α

α β

= + + + + + +

+ + + + + + + + +
     (15) 

( )
( ) ( )

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *
1

* * * * *2 * *3 *2 * *2 * * *2 * *2 *3 *2 *
2

( 2 2

2 2 2 2 6 4 6 2 4 ,
X Y Y X X t t Y X X X X Y Y X Y X Y X Y

X Y X Y X Y Y X Y Y Y X Y X X X Y X

S U V V U UU UV VU VV U U V V

U U V V U U U V U V U V U V U V V V

µ α

α β

= + + + + + + + + +

+ + + + + + + + + +
 (16) 

and 

( )
( ) ( )

* * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * *2 * * *2
1

*2 * * *2 *2 *3 * *2 * * * *2 *
2

2 2 2 2 2 2 4

2 4 2 4 2 2 4 ,
Y Y Y tY X Y Y Y Y X Y Y

YY X Y Y X Y Y X X X Y Y Y

S V V UV VV U V U V

U V U V V V UV V V V U U U V

µ α

α β

= + + + + + +

+ + + + + + + + +
        (17) 

where ( )* *,U V  is the velocity components in fixed frame of reference ( )* *,X Y  

The dissipation function Φ  can be written as follows 
*

*
* ,i

ij
j

V
X

τ
∂

Φ =
∂

                                        (18) 

* * * * * *

* * * *
* * *

* * * *X X X Y Y Y

U V U VS S S
X X Y Y

 ∂ ∂ ∂ ∂
Φ = + + + 

∂ ∂ ∂ ∂ 
                         (19) 

* * * * * *

* *
* * *

* * * *2 2 2
* * * 30

2*2 *2 * * * * *2
0

16
,

3

p

X X X Y Y Y

T T Tc U V
t X Y

U V U VT T TS S S T
KX Y X X Y Y Y

ρ

σ
κ

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂∂ ∂ ∂
= + + + + + +   

∂ ∂ ∂ ∂ ∂ ∂ ∂   

           (20) 

( )
2 2 2 2

* *
2* * * *2 *2 *2 *2 ,T

c
m

DC C C C C T TU V D L C C
Tt X Y X Y X Y
κ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + + − −    ∂ ∂ ∂ ∂ ∂ ∂ ∂     

           (21) 

The appropriate boundary conditions taken as follows: 
* * *

2 2
* * *

1 1

0, , at ,

0, , at ,

U T T C C Y H

U T T C C Y H

= = = =

= = = = −
                              (22) 

Consider a wave frame ( )* *,x y  which moving with speed c . Coordinates and velocity components in wave 
frame are related by the following transformations  
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( ) ( )* * * * * * * * * * * * * *, , , , , , ,x X ct y Y u U c v V p x y P X Y t= − = = − = =                (23) 

In which ( )* *,u v  are components of the velocity in the moving coordinates system.  
Then, the system of Equations (12)-(22) can be written as: 

* *

* * 0,u v
x y
∂ ∂

+ =
∂ ∂

                                        (24) 

( )* ** *
** 2*

* * * * * *0
* * * * * 2 ,

1
x yx x

ss Bpu v u u mv u
kx y x x y m

σµρ
∂∂ ∂ ∂ ∂

+ = − + + − + − ∂ ∂ ∂ ∂ ∂ + 
              (25) 

( )* * * *
* * 2

* * * * * *0
* * * * * 2 ,

1
x y y y

s s BPu v v v mu v
kx y y x y m

σµρ
∂ ∂ ∂ ∂ ∂

+ = − + + − − + ∂ ∂ ∂ ∂ ∂ + 
              (26) 

where 

( ) ( )
( )

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * *2 * * *2 *2 * * *2 *2
1 2

*3 * *2 * *2 * * * * *2

2 2 2 4 2 2 4 2

2 2 2 2 4 ,

x x x x x x y x x y y x x y y x

x x x x y x x y x y

s u u u v u u v u u u v u u v

u u v u u v u u u v

µ α α

β

= + + + + + + + + +

+ + + + +
      (27) 

( ) ( ) ( )
( )

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *
1 2

*2 * *3 *2 * *2 * * *2 * *2 *3 *2 *

2 2 2 2

2 2 6 4 6 2 4 ,

x y y x x x x x y y x y x y x y x y x y

x y y x y y y x y x x x y x

s u v u u u v v u v v u u v v u u v v

u u u v u v u v u v u v v v

µ α α

β

= + + + + + + + + +

+ + + + + + + +
  (28) 

And  

( ) ( )
( )

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * *2 * * *2 *2 * * *2 *2
1 2

*3 *2 * *2 * * * * *2 *

2 2 2 2 2 4 2 4

2 4 2 2 4 ,

y y y x y y y y x y y y x y y x

y x y x y x x y y y

s v u v v v u v u v u v u v v

v u v v v v u u u v

µ α α

β

= + + + + + + + + +

+ + + + +
      (29) 

* * * * * *

2 2 * * * * 2
* * * * * 30

2* * *2 *2 * * * * *2
0

16
,

3p x x x y y y

T T T T u v u v Tc u v s s s T
Kx y x y x x y y y
σ

ρ κ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
    (30) 

( )
2 2 2 2

* *
2* * *2 *2 *2 *2 ,T

c
m

DC C C C T Tu v D L C C
Tx y x y x y
κ    ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + − −    ∂ ∂ ∂ ∂ ∂ ∂     
               (31) 

The boundary conditions become: 
* *

2 2
* *

1 1

, , at ,

, , at ,

u c T T C C y H

u c T T C C y H

= − = = =

= − = = = −
                             (32) 

We introduce the following non-dimensional quantities: 

( )
( )

( )

* * * * 2 *

* 2 2

1 2 1 2

2
1 2

0 1 22 2

2
0
3

1 0 0 2

2
1 0

1 0

, , , , ,

2 , , , , , ,

, , , , ,

, , , ,
4

,

e

a

p p
r c n c

p

T
r C

m

x y u v a px y u v p
a c c c

T T C Ca ca H aR h S S
a c T T C C

c ck cD M B a
a aa a

c c KcP E R S
c T T DT

DK T T a L
S R

T C C

λ δ λµ
π ρδ θ φ
λ µ µ

α ασ βλ λ
µ µ µ µ

µ µ µ
κ ρσ

ρ ρ
µ

= = = = =

− −
= = = = = =

− −

= = = = Γ =

= = = =
−

−
= =

−
( )1 2 .c C C
µ

−

                 (33) 
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where the non-dimensional wave number δ , the Reynolds number eR , the material coefficients are ( )1 2,λ λ , 
Deborh number is Γ , Darcy number is aD , M  is the Hartman number, rP  is the Prandtl number, cE  is the 
Eckert number, nR  is the Radiation parameter, cS  is the Schmidt number, rS  is the Soret number and CR  is 
the Chemical reaction parameter. 

Substituting (33) into Equations (24)-(32) we obtain the following non-dimensional equations: 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                       (34) 

( ) ( )( )2

1Re 1 1 ,
1

xyxx

a

ssp Mu v u u m v u
x y x x y D m

δ δ δ
∂∂ ∂ ∂ ∂

+ = − + + − + + − + ∂ ∂ ∂ ∂ ∂ + 
            (35) 

( )( )
2

3 2
2Re 1 ,

1
xy yy

a

s sp Mu v v v m u v
x y y x y D m

δ δδ δ δ δ
∂ ∂ ∂ ∂ ∂

+ = − + + − − + + ∂ ∂ ∂ ∂ ∂ + 
            (36) 

where  

( ) ( )
( )

2 3 2 2 3 2 2 2 2 2 4 2
1 2

3 3 5 2 2 3 2

2 2 2 4 2 2 4 2

2 2 2 2 4 ,

xx x xx xy x x y x x y y xx

x x x x y x x y x y

s u uu vu u v u v u v u u v

u u v u u v u u u v

δ λ δ δ δ δ δ λ δ δ δ

δ δ δ δ δ

= + + + + + + + + +

+ Γ + + + +
    (37) 

( ) ( ) ( )
( )

2 2 3 3 2 3
1 2

2 2 3 4 2 2 2 2 2 4 2 3 3 3 2

2 2 2 2

2 2 6 4 6 2 4 ,

xy y x xx xx yy xy x y x y x y x y

x y y x y y y x y x x x y x

s u v uu uv vu vv u u v v u u v v

u u u v u v u v u v u v v v

δ λ δ δ δ δ δ δ λ δ δ

δ δ δ δ δ δ δ

= + + + + + + + + +

+ Γ + + + + + + +
   (38) 

and  

( ) ( )
( )

2 2 2 2 2 2 2 2 2 2 4 2
1 2

3 3 2 2 5 2 3 2

2 2 2 2 2 4 2 4

2 4 2 2 4 ,

yy y xy yy y x y y y x y y x

y x y x y x x y y y

s v uv vv u v u v u v u v v

v u v v v v u u u v

δ λ δ δ δ δ λ δ δ δ

δ δ δ δ δ

= + + + + + + + + +

+ Γ + + + +
      (39) 

2 2 2
2

2 2 2

1 4Re ,
3c xx c xy c yy

r n

u v u vu v E s E s E s
x y P x x y y Rx y y
θ θ θ θ θδ δ δ δ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + + + − + +    ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    

      (40) 

2 2 2 2
2 2

2 2 2 2

1Re ,r c
c

C Cu v S R
x y S x y x y

φ φ θ θδ δ δ φ
    ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + −    ∂ ∂ ∂ ∂ ∂ ∂     
                (41) 

With conditions: 
1, 0, 0 at ,
1, 1, 1 at ,

u y h
u y h

θ φ
θ φ

= − = = =
= − = = = −

                              (42) 

We also note that h  represents the dimensionless form of the surface of the peristaltic wall. 
1 sinh xχ= +                                      (43) 

where, b
a

χ =  is the amplitude ratio or the occlusion 

under the assumptions of long wavelength ( )1δ  . The Equations (35)-(42) take the following form: 

( )2

1 1 ,
1

xy

a

sp M u
x y D m

∂  ∂
= − + + ∂ ∂ + 

                             (44) 

0,p
y
∂

=
∂

                                        (45) 

( ) 2
1 22 ,xx ys uλ λ= +                                     (46) 

3

2 ,xy
u us
y y

 ∂ ∂
= + Γ ∂ ∂ 

                                   (47) 
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( ) 2
1 22 ,yy ys uλ λ= +                                      (48) 

2

2

1 4 0,
3 c xy

r n

uE s
P R yy

θ  ∂ ∂
+ + =  ∂∂ 

                               (49) 

2 2

2 2c c c rS R S S
y y
φ θφ∂ ∂
− = −

∂ ∂
.                                 (50) 

Eliminating p  from Equations (44) and (45), we have the following equation 
2

2 2

1 0,
1

xy

a

s M u
D yy m

∂   ∂
− + =  ∂∂ + 

                               (51) 

2

1 ,
1

xy

a

S M u A
y D m

∂  
− + = ∂ + 

 where A  is a constant. 

3. Series Solution 
For perturbation solution we write 

0 1

0 1

0 1

,
,
.

u u u
θ θ θ
φ ϕ φ

= + Γ

= + Γ

= + Γ
                                       (52) 

Substituting (52) in the Equations (45)-(49), equating the coefficients of like powers of Γ , we get the follow-
ing 

Zeroth order system: 
2

20
02 ,

u
N u A

y
∂

− =
∂

                                     (53) 

22
0 0

2 0,c
u

E G
yy

θ∂ ∂ 
+ = ∂∂  

                                  (54) 

2 2
0 0

02 2 ,c c c rS R S S
y y
φ θ

φ
∂ ∂

− = −
∂ ∂

                                (55) 

The subjected boundary conditions are: 

0 0 0

0 0 0

1, 0, 0 at ,
1, 1, 1 at ,

u y h
u y h

θ φ
θ φ

= − = = =

= − = = = −
                             (56) 

First order system 
32

201
12 2 0,

uu N u
y yy

∂ ∂ ∂
+ − = ∂ ∂∂  

                              (57) 

2 42
01 1

2 2 0,c
uuE G

y yy
θ  ∂   ∂ ∂

+  +  =   ∂ ∂∂      
                            (58) 

2 2
1 1

12 2 ,c c c rS R S S
y y
φ θ

φ
∂ ∂

− = −
∂ ∂

                               (59) 

1 1 1

1 1 1

0, 0, 0 at ,
0, 0, 0 at .

u y h
u y h

θ φ
θ φ

= = = =
= = = = −

                             (60) 

The solution of zero order system can be obtained analytically as 
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0 1 2Cosh ,Au W Ny
N

= −                                     (61) 

2 2
21

0 12

Cosh2 ,
4 22

cE GN W Ny yy B
hN

θ  = − − − + 
 

                           (62) 

2 2
1

0 1 2

Cosh2 12 Cosh .
2 42Sinh

c cS R y
c r c

c c
c cc cc c

S S E GN We NyC S R y
S RN S RS R h

φ
−  

= + + + 
− 

             (63) 

Also, the solution of first order system can be obtained analytically as 

4 3
1 2 1 2

3 Cosh32 Cosh Sinh ,
4 4

Ny yu W Ny N W Ny
NN

 = − − 
 

                       (64) 

2
2 2 5 4

1 1 2 12 3 2 3

4 4
21

22 2

Cosh2 3 3 Cosh4 Sinh2 3Cosh2
2 8 42 16 8 32

Cosh4 2Cosh2 3 ,
8 8

c
Ny Ny y Ny Ny yE G W W N y N W

NN N N N

N W Ny Ny y B
N N

θ
   = − − − − − +       

 + − + + 
 

  (65) 

5 4
2 2 1

1 1 2 2 3

4 42
21

22 3 2 2

3Cosh2 3 Cosh4 Sinh2
2 162 8

1 11 Cosh4 Cosh2 3Cosh2 .
2 4 22 32 16

c r c
N WNy Ny y NyS S E G W W N y

NN N

N Wy Ny NyNy y C
NN N N N

φ
   = − − −   

  
   + + − + − + +      

         (66) 

where 

2
2

1 ,
1a

MN
D m

= +
+

 

1 2

1 1 ,
Cosh

AW
Nh N

 = − 
 

 

4 3
1

2 2

3 Cosh3 Sinh ,
8Cosh 4

N W Nh hW Nh
Nh NN

 = − 
 

 

2 2
21

1 2

Cosh2 1 ,
4 22

cE GN W NhB h
N

 = − + 
 

 

2 2 5 4
2 1 2 12 3 2

4 42
21

3 2 2

Cosh2 3 3 Cosh4 Sinh2
2 82 16 8

3Cosh2 Cosh4 2Cosh2 3 ,
4 832 8

c
Nh Nh h NhB E G W W N h N W

N N N

N WNh h Nh Nh h
NN N N

   = − − −   
  

  − + + − +     

 

2 2
1

1 2

1 e Cosh2 1 .
2 42Cosh 2Sinh

c cS R h
c r c

c cc cc c c c

S S E GN A NhC
S RN S RS R h S R h

−  −
= + +   −  

 

4. Results and Discussion 
In order to obtain the physical insight of the problem, velocity, temperature and concentration are computed nu-
merically for different values of the emerging parameters, viz., Darcy number is aD , M  is the Hartman num-
ber, rP  is the Prandtl number, cE  is the Eckert number and nR  is the Radiation parameter using Mathematica 
and are presented in Figures 2-10. 
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Figure 2. Velocity profiles ( )u y  for varying values of M .                               

 

 
Figure 3. Velocity profiles ( )u y  for varying values of m .                               

 

 
Figure 4. Velocity profiles ( )u y  for varying values of aD .                               
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Figure 5. Temperature profiles ( )yθ  for varying values of rP .                               

 

 
Figure 6. Temperature profiles ( )yθ  for varying values of cE .                               

 

 
Figure 7. Temperature profiles ( )yθ  for varying values of nR .                               
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Figure 8. Concentration profiles ( )yφ  for varying values of nR .                     

 

 
Figure 9. Concentration profiles ( )yφ  for varying values of rS .                     

 

 
Figure 10. Concentration profiles ( )yφ  for varying values of cR .                           
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Figure 2 presents the effect of Hartman number M  on the velocity. It is noted that the velocity increases by 
increasing the Hartman number in the interval [−0.6, 0.6] and vice versa in the other intervals. 

Figure 3 shows the effect of the Hall parameter m on the velocity. It is observed that as m increases the veloc-
ity decreases in the interval [−0.6, 0.6] and vice versa in the other intervals. 

Figure 4 shows the effect of Darcy parameter aD  against the velocity. It is found that the velocity decreases 
by the increasing of aD  in the interval [−0.6, 0.6] and vice versa in the other intervals. 

Figures 5-7 describe the effect of different parameters on the temperature distribution θ . It is found that the 
temperature increases as the Prandtle number rP  increases this is shown in Figure 5, also in Figure 6 it is ob-
served that the temperature increases as the Eckert number cE  increases. In Figure 7 the temperature increases 
as the Radiation parameter nR  increases. 

Figures 8-10 display results for the concentration φ  profiles. It is clear that the concentration decreases as 
the Schmidt number cS  increases this is shown in Figure 8, also in Figure 9 and Figure 10 the concentration 
decreases as the Soret number rS , Chemical reaction parameter CR  respectively. 

5. Conclusions 
In this paper, we studied the effects of the physical parameters of the considered problem on peristaltic transport 
in a tube, filled with an incompressible non-Newtonian (Third order) fluid, and considered the effects of hall 
current, body temperature and concentration. The system is solved analytically by perturbation technique. The 
effects of various emerging parameters on the flow, the temperature and the concentration distributions are 
shown and discussed with the help of graphs. The main findings can be summarized as follows.   

1) The velocity decreases in the interval [−0.6, 0.6] and vice versa in the other intervals with the increase of 
each of m  and aD , whereas it increases as M  increase. 

2) The temperature T  increases with the increase of each of as the Prandtle number rP , the Eckert number 
and the Radiation parameter nR . 

3) The concentration decreases as the Schmidt number cS , the Soret number rS  and Chemical reaction pa-
rameter CR  increases. 

Caption of Figures 
Figure 2 the velocity profiles are plotted versus y  for different values of M  for a system have the particu-  

lars π0.2, 1, 0.08,
3am D xφ = = = = . 

Figure 3 the velocity profiles are plotted versus y  for different values of m  for a system have the particu-  

lars π0.2, 10, 0.09,
3aM D xφ = = = = . 

Figure 4 the velocity profiles are plotted versus y  for different values of aD  for a system have the parti-  

culars π1, 0.2, 1,
3

M m xφ= = = = . 

Figure 5 the temperature profiles are plotted versus y  for different values of rP  for a system have the par-  

ticulars π5, 0.2, 1, 0.08, , 2
3a cM m D x Eφ= = = = = = . 

Figure 6 the temperature profiles are plotted versus y  for different values of cE  for a system have the  

particulars π5, 0.2, 1, 0.08, , 1, 2
3a r nM m D x P Rφ= = = = = = = . 

Figure 7 the temperature profiles are plotted versus y  for different values of nR  for a system have the  

particulars π5, 0.2, 1, 0.08, , 1, 0.3
3a r cM m D x P Eφ= = = = = = = . 

Figure 8 The concentration profiles are plotted versus y  for different values of cS  for a system have the  

particulars π5, 0.2, 1, 0.08, , 1.5, 0.9, 2, 1, 1
3a r c n r cM m D x P E R S Rφ= = = = = = = = = = . 



N. T. M. Eldabe et al. 
 

 
1150 

Figure 9 the concentration profiles are plotted versus y  for different values of rS  for a system have the  

particulars π5, 0.2, 1, 0.03, , 1.5, 0.9, 2, 1, 1
3a r c n c cM m D x P E R S Rφ= = = = = = = = = = . 

Figure 10 the concentration profiles are plotted versus y  for different values of cR  for a system have the  

particulars π5, 0.2, 1, 0.03, , 1.5, 0.9, 2, 1, 2
3a r c n c rM m D x P E R S Sφ= = = = = = = = = = . 
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