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Abstract 
The paper outlines the development of a new, spectral method of simulating the Schrödinger equ-
ation in the momentum domain. The kinetic energy operator is approximated in the momentum 
domain by exploiting the derivative property of the Fourier transform. These results are com-
pared to a position-domain simulation generated by a fourth-order, centered-space, finite-differ- 
ence formula. The time derivative is approximated by a four-step predictor-corrector in both do-
mains. Free-particle and square-well simulations of the time-dependent Schrödinger equation are 
run in both domains to demonstrate agreement between the new, spectral methods and estab-
lished, finite-difference methods. The spectral methods are shown to be accurate and precise. 
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1. Introduction 
This paper outlines the development of simulations of the time-dependent Schrödinger equation produced in 
both position and momentum domains. In the position domain this is the x-y plane. In the momentum domain 
this is the kx-ky plane, as it is the Fourier transform of the position domain [1]. The simulations demonstrate the 
accuracy of the spectral methods used in the momentum domain. 

All simulations are advanced in time using a four-step predictor-corrector method. The predictor-corrector 
can be applied independently in both position and momentum domains to step the simulation forward in time. 
The predictor-corrector is generated using Lagrange polynomials, outlined by [2] and [3]. The predictor formula 
found here is shown to be consistent with established Adams-Bashforth formulas [3]. 
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The position-domain approximation of the kinetic energy operator is derived using Lagrange polynomials and 
consistent with results from [4]. In the position domain the approximation to the kinetic energy operator is 
fourth-order accurate. In the momentum domain, the kinetic energy operator approximation is global-order 
accurate because it relies on the derivative property of the Fourier transform [5]. The software written to ge- 
nerate these simulations uses the Fastest Fourier Transform in the West (FFTW) to transform between position 
and momentum domains [6]. Simulating the time-dependent Schrödinger equation in the momentum domain 
achieves higher orders of spatial accuracy. The performance and precision of momentum-domain simulations is 
comparable to position-domain simulations. 

Given an initial state 0y  at 0t = , the four-step predictor-corrector requires the creation of n j ny y j t− = − ∆  
for 1, , 4j =   in order to compute the first predictor-corrector time-step. A simple backwards Euler method, 
outlined in [4], [7]-[12], is used to generate the wave function at these early time-steps. Each of these early 
states for 1, , 4j =   is re-normalized after their creation to ensure minimum initial error. 

The first simulation is a free particle with no imposed boundary conditions, when the Hamiltonian consists 
only of the kinetic energy operator. This simulation demonstrates the difference in boundary conditions of each 
domain. In the position domain, this is equivalent to an infinite square-well potential, or particle-in-a-box. When 
the wave function reaches one boundary, it is reflected back. In the momentum domain, this is equivalent to 
periodic boundary conditions. When the wave function disappears into one boundary it will reappear in the 
opposite boundary, travelling in the same direction. This is to establish a relative performance benchmark when 
only the kinetic energy operator is applied. 

Second, a finite square-well potential of 100 eV is imposed in both domains. This simulation demonstrates the 
computational burden associated with imposing the same initial and boundary conditions in both domains. 
Application of the potential function in the position domain is carried out by entry-wise multiplication of the 
wave function and potential function lattices. In the momentum domain, this operation is equivalent to 
convolution. Rather than carry out this time-consuming operation, the wave function in the momentum domain 
is transformed back to the position domain at every time-step in the simulation in order to apply the potential 
function. The kinetic energy operator is applied when the wave function has been transformed forward into the 
momentum domain. 

Each of the simulations begins with an initial state of a two-dimensional wave packet with a Gaussian 
envelope. The simulations are stepped forward in time and the complex-valued wave function components and 
densities, as well as some expectation values, are captured incrementally. The wave function components and 
densities are converted to image format and animated [13]. 

2. Methods  
The following subsections outline the numerical methods used to generate solutions to the Schrödinger equation.  

2
2

2
i V

t m
∂ −
Ψ = ∇ Ψ + Ψ

∂


                                     (1) 

2.1. Time Derivative  
The same four-step predictor-corrector method is used to step the position and momentum domain simulations 
forward in time. The predictor and corrector start with the basic form of the differential equation ( )y f y′ = . 
The substitutions ( ), n ny r t y=  and ( ),n n nf y t f=  are made for the following formulas. A four-step 
predictor-corrector requires five equally-spaced sample points in time. The leading, or current step is ny . The 
sample points are distributed in time according to n j ny y j t− = − ∆  for 0, , 4j =   and a fixed t∆ . 

2.1.1. Predictor  
The predictor uses the integral form of the differential equation.  

( )
1

1 1d
n

n

t
n n nt

y f y y y f t
−

− −′ = ⇒ − = ∫                                (2) 

The function f is approximated by Lagrange polynomials [2]. Once the polynomial approximation to f has 
been substituted, the integral is straightforward to compute. This yields Adams-Bashforth coefficients which 
calculate the predicted value ny  [3].  
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1 1 2 3 4
55 59 37 9
24 24 24 24n n n n n ny y t f f f f− − − − −

 = + ∆ − + − 
 

                          (3) 

2.1.2. Corrector  
The corrector uses the original form of the differential equation.  

( ) n ny f y y f
t
∂′ = ⇒ =
∂

                                    (4) 

For the corrector, y is approximated by Lagrange polynomials [2]. Once the polynomial approximation to y 
has been substituted, the first derivative is straightforward to compute. This yields the following coefficients 
which calculate the value nf .  

1 2 3 4
25 48 36 16 3

12 12 12 12 12n n n n n ny y y y y f
t t t t t− − − −− + − + =

∆ ∆ ∆ ∆ ∆
                   (5) 

The predicted value ny  is substituted for ny  in the function f  to get nf .  

1 2 3 4
12 48 36 16 3

25 25 25 25 25n n n n n n
ty f y y y y− − − −

∆
= + − + −                       (6) 

2.1.3. Application to the Schrödinger Equation 
In the position domain, the Schrödinger equation is written as follows using operator notation as shorthand. The 
Hamiltonian operator Ĥ  is written with a P superscript to denote the position domain and with superscript M 
to denote the momentum domain.  

2 ˆ
2

Pi i iV H
t m
∂ − −
Ψ = ∇ Ψ + Ψ = Ψ

∂


 

                              (7) 

At every time step, the predictor calculation is carried out.  

1 1 2 3 4
55 59 37 9ˆ ˆ ˆ ˆ
24 24 24 24

P P P P
n n n n n n

i i i it H H H H− − − − −
− − − − Ψ = Ψ + ∆ Ψ − Ψ + Ψ − Ψ 

 


   

          (8) 

That result is plugged in to the corrector calculation to advance the simulation forward one time-step.  

1 2 3 4
12 48 36 16 3ˆ

25 25 25 25 25
P

n n n n n n
t i H − − − −

∆ −
Ψ = Ψ + Ψ − Ψ + Ψ − Ψ



                 (9) 

The following sections outline the development of the Hamiltonian operator ˆ PH  in the position domain and 
ˆ MH  in the momentum domain. 

2.2. Free Particle, Kinetic Energy Operator  
The first simulations in the position and momentum domains assume free particle conditions. The particle is 
given the mass of an electron. Only the kinetic energy operator applies in the Hamiltonian.  

2
2 ˆ

2
Pi H

t m
∂ −
Ψ = ∇ Ψ = Ψ

∂


                             (10) 

Before the simulations are started, the position- and momentum-domain lattices must be constructed. This 
requires fixing the position-domain step sizes x∆  and y∆  as well as the number of columns xN  and  

number of rows yN . It is also helpful to define an origin point, 
2

x
c

N
x =  and 

2
y

c

N
y = . The position domain  

is defined by ( )j cX j x x= − ∆  for 0, , 1xj N= −  and ( )j cY y j y= − ∆  for 0, , 1yj N= − . The reversal  
of the y-direction accounts for the fact that computer storage increments the row index as the row moves down. 

The momentum domain lattices are constructed according to the relationship 1
x

x

k
N x

∆ =
∆

. The momentum 
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domain is defined by ( )
,

c
x j

x

j x
K

N x
−

=
∆

 for 0, , 1xj N= −  and 
( )

,
c

y j
y

y j
K

N y
−

=
∆

 for 0, , 1yj N= − . The  

high frequencies have been shifted into the negative frequencies. Use of the FFTW library requires applying a 
phase-shift to the position domain before transforming into the momentum domain if negative frequencies are 
used instead of high frequencies [6]. 

2.2.1. Position Domain  
The approximation to the kinetic energy operator in the position domain was generated using Lagrange 
polynomials. This was accomplished by approximating the second derivative in one dimension, as the same 
formula can be applied to all dimensions. This is a centered-space formula accurate to fourth order, requiring 
five sample points. In terms of the generalized coordinate q , the sample points ( )2 2jq q j q= + − ∆  for 

0, , 4j =   and a fixed q∆  describe the set of sample points centered around 2q . For a function ( )f q , 
where ( )j jf f q= , the polynomial approximation to f  is substituted and the second derivative is calculated. 
This procedure yields the following approximation to the Laplacian operator:  

( )2
2 0 1 2 3 42

1 16 30 16
12

f f f f f f
q

−
∇ = − + − +

∆
                       (11) 

The real and imaginary parts of the wave function R iIΨ = +  are calculated independently, yielding a pair 
of coupled equations.  

2ˆ
2

Pi H I R
m

−
= ∇




                                 (12) 

2ˆ
2

Pi H R I
m

− −
= ∇




                                 (13) 

Denote spatial sample points with subscripts: ( )
2 22 2 ,, x yf x y f=  and substitute the approximation to the 

Laplacian. The simulation can be stepped forward in time once the approximation to the Hamiltonian has been 
substituted into the predictor corrector formula.  

( )

( )

2 2 0 2 1 2 2 2 3 2 4 2

2 0 2 1 2 2 2 3 2 4

, , , , , ,2

, , , , ,2

1ˆ 16 30 16
2 12

1 16 30 16
12

P
x y x y x y x y x y x y

x y x y x y x y x y

i H I R R R R R
m x

R R R R R
y

− −  = − + − +  ∆ 
 

+ − + − +  ∆  





          (14) 

( )

( )

2 2 0 2 1 2 2 2 3 2 4 2

2 0 2 1 2 2 2 3 2 4

, , , , , ,2

, , , , ,2

1ˆ 16 30 16
2 12

1 16 30 16
12

P
x y x y x y x y x y x y

x y x y x y x y x y

i H R I I I I I
m x

I I I I I
y

−  = − + − +  ∆ 
 

+ − + − +  ∆  





          (15) 

2.2.2. Momentum Domain  
The approximation to the kinetic energy operator in the momentum domain was generated using the transform 
of the derivative operator. Because the momentum domain is the Fourier transform of the position domain, the 
derivative operator is transformed as well. In terms of the generalized position-domain coordinate q , let the  
function ( )F s  be the Fourier transform of the function ( )f q , where ( ){ } ( )f q F s=  and s  is the ge- 
neralized momentum-domain coordinate.  

( ) ( ) ( ) ( )
2

2 2
2

d d2π 4π
d d

f q i sF s f q s F s
q q

  
= ⇒ = −   

   
               (16) 

The initial position-domain state Ψ  is transformed forward into the momentum-domain state Φ , where 
( ){ } ( ), ,x yx y k kΨ = Φ . The real and imaginary parts of iΦ = +   are calculated independently,  
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yielding a pair of coupled equations. The simulation can be stepped forward in time once the approximation to 
the Hamiltonian has been substituted into the predictor corrector formula.  

( )( )2 2 2
, ,

ˆ 4π
2x y x y

M
k k x y k k

i H k k
m

−  = − + 
 





                            (17) 

( )( )2 2 2
, ,

ˆ 4π
2x y x y

M
k k x y k k

i H k k
m

−  = + 
 





                             (18) 

2.3. Square Well, Potential Energy Operator  
A square-well potential was chosen to test the effectiveness and relative performance of the simulations of both 
domains, when the particle interacts with an electrostatic potential. The particle is again given the mass of an 
electron. For the purposes of this demonstration, the chosen potential must be high enough to reflect most of the 
particle off the potential step, back into the region where the potential is zero.  

2
2 ˆ

2
Pi V H

t m
∂ −
Ψ = ∇ Ψ + Ψ = Ψ

∂


                              (19) 

The lattice describing the potential must have the number of columns xN  and number of rows yN . Before 
the simulations are started, it is helpful to choose a well boundary index constant stepj  and potential step size 

stepV . Construction of the potential well will simply set the value of ,x y stepV V=  if the row or column index is  
less than stepj , ,x y stepV V=  if the row index is greater than x stepN j−  or column index is greater than 

y stepN j−  and , 0x yV =  elsewhere. 

2.3.1. Position Domain  
The application of the potential operator is straightforward in the position domain. The lattices representing the 
real and imaginary parts of the wave-function Ψ  are multiplied entry-wise by the lattice representing the 
potential function. The simulation can be stepped forward in time once the approximation to the Hamiltonian 
has been substituted into the predictor corrector formula.  

2 2
2 2 2 2 2 2

,2
, , ,

ˆ
2

x yP
x y x y x y

Vi H I R R
m

−
= ∇ −


 

                        (20) 

2 2
2 2 2 2 2 2

,2
, , ,

ˆ
2

x yP
x y x y x y

Vi H R I I
m

− −
= ∇ +


 

                        (21) 

2.3.2. Momentum Domain  
In the momentum domain, application of the potential operator transforms to the convolution operation, 

{ }VΨ = ∗Φ  , where { }V =   and * represents convolution [5]. Rather than carry out this computa-
tionally expensive operation, the operator is applied in the position domain. This requires transforming back and 
forth between the position and momentum domains at every time-step. Use of the predictor-corrector compli- 
cates this procedure somewhat, because the potential operator must be applied at the predictor step and the 
corrector step. 

For simplicity and readability the procedure below does not write the state functions Ψ  and Φ  
decomposed into their real and imaginary components. 

First, the potential operator is applied in the position domain and transformed to the momentum domain.  

{ }VΨ = ∗Φ                                   (22) 

The kinetic energy operator is applied to Φ  and added to ∗Φ  to produce the predictor Hamiltonian 
ˆ M

predH .  

( )( )2 2 2ˆ 4π
2

M
pred x y

i iH k k
m

− − Φ = − + Φ + ∗Φ 
 



 

                        (23) 
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Following the example of Equation (8) in Section 2.1.3, the predictor formula is applied to produce the 
predicted value Φ .  

1 1 2 3 4
55 59 37 9ˆ ˆ ˆ ˆ
24 24 24 24

M M M M
n n pred n pred n pred n pred n

i i i it H H H H− − − − −
− − − − Φ = Φ + ∆ Φ − Φ + Φ − Φ 

 


   

      (24) 

At the corrector step, apply only the kinetic energy operator to the predicted value Φ  to produce the 
corrector Hamiltonian ˆ

corrH .  

( )( )2 2 2ˆ 4π
2

M
corr x y

i H k k
m

−  Φ = − + Φ 
 



 



                         (25) 

Following the example of Equation (9) in Section 2.1.3, the corrector formula is applied to produce the 
corrected value Φ .  

1 2 3 4
12 48 36 16 3ˆ

25 25 25 25 25
M

n corr n n n n n
t i H − − − −

∆ −
Φ = Φ + Φ − Φ + Φ − Φ



                (26) 

Both the corrected value nΦ  and the predicted value nΦ  are transformed back to nΨ  and nΨ . The 
potential energy operator is applied to the predicted value nΨ  and added to nΨ .  

n n n
i V−

Ψ = Ψ + Ψ


                                 (27) 

3. Results  
All simulations are run under the same constraints and initial conditions to illustrate similarities and differences 
in the particle’s position over time. The free particle simulations show differences in position due to the 
differences in boundary conditions between the two domains, despite having the same initial conditions. The 
square well simulations will show strong agreement in position due to the boundary conditions and initial 
conditions being the same. Regarding precision, all simulations were shown to be accurate to 8 decimal places. 
This value is stable for the duration of the simulations and was measured by finding the difference between the 
current state’s density function and 1. 

The physical constants of electron mass m , electron charge q  and Planck’s constant   are given in 
standard units. This helps scale the simulations to real-world dimensions, although the simulated particles are 
much larger than real electrons to show detail. For the square-well simulations, the electrostatic potential is set 
to +100.0 eV, although this is also expressed in standard units. The well boundary is established at 20 index 
units inside the lattice boundaries. 

The row and column sizes are set to 256x yN N= =  for both position- and momentum-domain simulations. 
This sets the lattice sizes at a power of two for the FFTW. The geometric origin is set to ( ) ( ), 128,128c cx y = , in 
index units. The lattice step sizes are set to 102.0 10x y −∆ = ∆ = ×  meters. The time step is set to 181.0 10t −∆ = ×   
seconds. Each simulation is run for 100,000 time steps. The lifetime of each simulation is 0.1 picoseconds. The 
components, densities and expectation values are measured and recorded every 500 time steps. This increment is 
referred to as a “frame” in the graphs below and each frame is equal to 165.0 10−×  seconds. 

All initial condition parameters are given in index units and the actual parameters are multiplied by the 
appropriate lattice step size. The initial conditions set the particle on the +x-axis at index +70.0, relative to the 
origin point and close to the vertical boundary at the end of the +x-axis. The particle is given positive 
momentum, which will propel the particle into the boundary. The particle’s spatial wavelength λ  is set to 10.0 
index units. The particle’s predicted velocity can be found by the conservation of momentum.  

2πk mv v
mλ

= ⇒ =


                                  (28) 

The initial velocity of the particle in all simulations is 53.64 10×  meters per second in the +x-direction. The 
initial momentum xk  is therefore 9π 10×  kilogram-meters per second. In units normalized by 2π , as shown 
in the momentum domain simulations, the initial momentum is 85.0 10× . 
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3.1. Free Particle 
Based on the initial conditions and predicted velocity, the particle is expected to reach the boundary at time 

143.19 10t −= ×  seconds, corresponding to the 64th frame of the simulation. The position-domain particle reflects 
off the boundary while the momentum-domain particle travels through the boundary and reappears in the 
opposite boundary, travelling in the same direction at the same velocity. Figure 1 charts the relative position 
along the x-axis of the position-and momentum-domain particles. The position is given by the expectation value 

X . A marker has been placed at the 64th frame to show where the paths are expected to diverge. 
Four free-particle animations are produced for the position domain. One overhead view and one cross- 

sectional view are produced for the finite-difference free-particle simulation and one overhead view and one 
cross-sectional view are produced for the spectral free-particle simulation. 

Figure 2 shows the cross-sectional view of the free particle’s components and density produced by finite- 
difference methods. The cross-section is along the x-axis in the position domain. 

Figure 3 shows the overhead view of the free particle’s position-domain density produced by finite-difference 
methods. The particle diffracts as it reflects off the boundary. 

Figure 4 shows the cross-sectional view of the free particle’s components and density produced by spectral 
methods. The cross-section is along the x-axis in the position domain. 

Figure 1. Comparing X  of free particle produced by finite-difference and spectral methods.     

Figure 2. Cross-sectional animation still at 64th frame of free particle simulation produced by 
finite-difference methods.
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Figure 3. Overhead animation still at 64th frame of free particle simulation produced by finite-differ- 
ence methods.  

Figure 4. Cross-sectional animation still at 64th frame of free particle simulation produced by spectral 
methods.

Figure 5 shows the overhead view of the free particle’s position-domain density produced by spectral 
methods. The particle continues to diffuse in space as it pass through the boundary. 

3.2. Square Well 
Based on the initial conditions and predicted velocity, the particle is expected to reach the boundary at time 

142.09 10t −= ×  seconds, corresponding to the 42nd frame of the simulation. The particles in both domains reflect 
off the boundary imposed by the electrostatic potential. Figure 6 charts the positions of the particles, given by 
the expectation value X . 
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Figure 5. Overhead animation still at 64th frame of free particle simulation 
produced by spectral methods.  

Figure 6. Comparing X  of bound particle in square well produced by finite- 
difference and spectral methods.

3.2.1. Position Domain  
Four square-well animations are produced for the position domain. One overhead view and one cross-sectional 
view are produced for the finite-difference square-well simulation and one overhead view and one cross- 
sectional view are produced for the spectral square-well simulation. 

Figure 7 shows the cross-sectional view of the bound particle’s components and density produced by finite- 
difference methods. The cross-section is along the x-axis in the position domain. 
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Figure 8 shows the overhead view of the bound particle’s position-domain density produced by finite- 
difference methods. The particle diffracts as it reflects off the potential wall. 

Figure 9 shows the cross-sectional view of the bound particle’s components and density produced by spectral 
methods. The cross-section is along the x-axis in the position domain. 

Figure 10 shows the overhead view of the bound particle’s position-domain density produced by spectral 
methods. The particle diffracts as it reflects off the potential wall. 

Figure 7. Cross-sectional animation still at 42nd frame of square well simulation produced by finite-difference methods.      

Figure 8. Overhead animation still at 42nd frame of square well simulation produced by finite-difference methods. 
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Figure 9. Cross-sectional animation still at 42nd frame of square well simulation produced by spectral methods.    

Figure 10. Overhead animation still at 42nd frame of square well simulation produced by spectral methods.

3.2.2. Momentum Domain 
One additional animation is produced for the momentum-domain, square-well simulation that shows the cross- 
sectional view of the momentum density function. The cross-section is taken along the xk  axis. Figure 11 
shows a cross-sectional view of the density function in the momentum domain at the 42nd frame. As the particle 
interacts with the electrostatic potential, the particle is reflected and reverses direction. In the momentum 
domain, this is indicated by the density function disappearing from the positive axis and reappearing on the 
negative axis. 

Figure 12 illustrates this reversal of direction over time by measuring the expectation value xK . A marker 
has been placed at the 42nd frame indicating when the particle interacts with the boundary and reverses direction. 
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Figure 11. Cross-sectional, momentum-domain animation still at 42nd frame of square well simulation produced by spectral 
methods.

Figure 12. xK  of bound particle in square well produced by spectral methods.     

4. Discussion
Momentum-domain simulations of the time-dependent Schrödinger equation provide precise and accurate 
results; however, the application of these techniques is not limited to the Schrödinger equation. The methods 

described in this paper are also suitable to simulate the heat equation 2f f
t

α∂
= ∇

∂
, where f  describes 

temperature in space and time and α  is the thermal diffusivity. The spectral methods described here may be 
applied to any parabolic differential equation. The spectral methods also transform the Hartree-Fock operation in 
a many-body problem from convolution in the position domain to entry-wise multiplication in the momentum 
domain, although this application is not explored here due to resource constraints. 
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These simulations were produced on single-core, AMD Athlon X2 processor. The spectral methods demon-
strated faster performance for the free-particle simulation, while the finite difference methods demonstrated 
faster performance for the square-well simulation. None of the simulations employed parallel computing tech-
niques due to the limitations of the hardware. Multiple cores would allow multiple Fourier transforms to be cal-
culated at the same time. Because the spectral-method, square-well simulation requires multiple Fourier trans-
forms at every time step, introducing parallel computing techniques would increase performance substantially. 
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