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Abstract 
In this paper, we obtained some sufficient conditions for the oscillation of all solutions of the 

second order neutral differential equation of the form ( ) ( )( ) ( ) ( )( )( )   ′′r t z t q t f x t t t00, 0σ+ = ≥ ≥  

where ( ) ( ) ( ) ( ) ( ) ( )z t x t a t x t b t x tτ δ= + − + + , and 
( )
1 ∫t t

r t0
d

∞
< ∞ . Examples are provided to ill- 

ustrate the main results. 
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1. Introduction 
In this paper, we are concerned with the oscillatory behavior of solutions of the second order nonlinear neutral 
differential equation of the form   

( ) ( )( ) ( ) ( )( )( ) 00,  0r t z t q t f x t t tσ′′ + = ≥ ≥                          (1) 

where ( ) ( ) ( ) ( ) ( ) ( )z t x t a t x t b t x tτ δ= + − + + , subject to the following conditions:   
(C1) [ )( ) ( ) ( )0, , , , , 0 , 0a b q C t a t a b t b∈ ∞ ≤ ≤ < ∞ ≤ ≤ < ∞ , and ( ) 0q t >  for all 0t t≥ ;  
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(C2) [ )( ) ( )0 , , , 0r C t r t∈ ∞ > , and 
( )0

1 d
t

t
r t

∞
< ∞∫ ;  

(C3) , τ δ  are nonnegative constants, [ )( ) ( )0 , , , 0C t tσ σ ′∈ ∞ > , ( ) ( ), limtt t tσ σ→∞≤ = ∞ , and  
( ) ( )t tσ α σ α± = ±  for any 0α > ;  

(C4) ( ) ( )
, , 0

f u
f C k

u
∈ ≥ > 

 for u ≠ , k is a constant. 

By a solution of Equation (1), we mean a continuous function x defined on an interval [ ),xt ∞  such that 
( ) ( )r t z t′  is continuously differentiable and x satisfies Equation (1) for all [ ),xt t∈ ∞ . We consider only solu-  

tions satisfying condition ( ){ }sup : 0xx t t T t≥ ≥ > , and tacitly assume that Equation (1) possess such solu-  

tions. As usual, a solution of Equation (1) is called oscillatory if it is neither eventually positive nor eventually 
negative; otherwise we call it nonosicllatory. 

From the literature, it is known that second order neutral functional differential equations have applications in 
problems dealing with vibrating masses attached to an elastic bar and in some variational problems. For further 
applications and questions regarding existence and uniqueness of solutions of neutral functional differential 
equations, see [1]-[3]. 

In recent years, there has been an increasing interest in establishing conditions for the oscillation or nonoscilla- 
tion of solution of neutral functional differential equations, see [4]-[20] for example, and the references cited 
therein. 

In [21], Xu and Meng obtained some sufficient conditions which guarantees that every solution x of equation 
(1) when ( ) 0b t ≡ , oscillates or ( )lim 0t x t→∞ = . 

Ye and Xu [22] studied equation when ( ) 0b t ≡ , and established some new oscillation criteria for Equation 
(1). 

In [23], Han et al. considered Equation (1) with ( ) 0b t ≡  and ( )0 1a t≤ ≤ , and obtained some sufficient 
conditions which ensure that every solution of Equation (1) is oscillatory. 

In [24], the present authors established some sufficient conditions for the oscillation of all solutions of  

Equation (1) when 
( )0

1 d
t

t
r t

∞
= ∞∫ . Therefore in this paper we try to obtain some new oscillation criteria for  

Equation (1). In Section 2, we use Riccati transformation technique to obtain some sufficient conditions for the 
oscillation of all solutions of Equation (1). Examples are provided in Section 3 to illustrate the main results. 

2. Oscillation Results 
In this section, we obtain some new oscillation criteria for the Equation (1). We begin with the following 
theorem.  

Theorem 2.1 If   

( )
0

d
t

Q t t
∞

= ∞∫                                       (2) 

and 

( ) ( ) ( )
( ) ( )0

2

2

1
limsup d

4
t n

ntt

n a b
kQ s s s

r s s
δ

δ −→∞

 + +
− = ∞ 

  
∫                        (3) 

where 1n ≥ , ( ) ( ) ( ) ( ){ }min , ,Q t q t q t q tτ δ= − + , and ( ) ( )
1 d

t
t s

r s
δ

∞
= ∫  then every solution of Equation (1)  

is oscillatory.  
Proof. Suppose that ( )x t  is a nonsocillatory solution of Equation (1). Without loss of generality, we may 

assume that there exists 1 0t t≥  such that. ( ) ( ) ( )0, 0, 0x t x t x tτ δ> − > + >  and ( )( ) 0x tσ >  for all 1t t≥ . 
From the definition of ( )z t , we have ( ) 0z t > , and from Equation (1), ( ) ( )r t z t′  is nonincreasing eventually. 
Hence, it is easy to conclude that there exist two possible cases of the sign of ( )z t′ , that is, ( ) 0z t′ >  or 
( ) 0z t′ <  for all 2 1t t t≥ ≥ . 
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First assume that ( ) 0z t′ >  for all 2t t≥ . From the Equation (1), we have  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) 0,

r t z t kq t x t a r t z t akq t x t

b r t z t bkq t x t

σ τ τ τ σ τ

δ δ δ σ δ

′ ′′ ′+ + − − + − −

′′+ + + + + + ≤
 

or 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 20,  .r t z t a r t z t b r t z t kQ t z t t tτ τ δ δ σ′ ′ ′′ ′ ′+ − − + + + + ≤ ≥            (4) 

Integrating (4) from 2t  to t  and using the fact ( ) 0z t c≥ >  for 2t t≥ , we obtain  

( )
2

d
t

t
Q s s < ∞∫  

a contradiction to (2.1). 
If ( ) 0z t′ < , then we define the function w  by   

( ) ( ) ( )
( ) 2, .

r t z t
w t t t

z t
′

= ≥                                     (5) 

Clearly ( ) 0w t < . Nothing that ( ) ( )r t z t′  is nonincreasing, we obtain  

( ) ( ) ( ) ( ) 2, .r s z s r t z t s t t′ ′ ′≤ ≥ ≥  

Dividing the last inequality by ( )r s  and integrating it from t  to 


, we obtain  

( ) ( ) ( ) ( ) ( ) 2
d , .

t

sz z t r t z t t t
r s

′≤ + ≥ ≥∫


   

Letting →∞
 in the last inequality, we see that  

( ) ( ) ( ) ( ) 20 ,  .z t r t z t t t tδ′≤ + ≥  

Therefore,   

( ) ( )
( ) ( ) 21,  .

r t z t
t t t

z t
δ

′
≥ − ≥                                    (6) 

From (5), we have   

( ) ( ) 21 0, .w t t t tδ− ≤ ≤ ≥                                     (7) 

Next, we introduce another function u  by   

( ) ( ) ( )
( ) 2, .

r t z t
u t t t

z t
τ τ′− −

= ≥                                  (8) 

Clearly ( ) 0u t < . Noting that ( ) ( )r t z t′  is nonincreasing, we have ( ) ( ) ( ) ( )r t z t r t z tτ τ′ ′− − ≥ . Then, 
( ) ( )u t w t≥ . From (6), we obtain   

( ) ( ) 21 0,  .u t t t tδ− ≤ ≤ ≥                                    (9) 

Similarly, we introduce another function v  by 

( ) ( ) ( )
( ) 2,  .

r t z t
v t t t

z t
δ δ′+ +

= ≥                                 (10) 

Clearly ( ) 0v t < . Since ( ) ( )r t z t′  is nonincreasing, we have  

( ) ( ) ( ) ( ) 2, .r s z s r t z t s t tδ δ δ′ ′≤ + + ≥ + ≥  

Dividing the last inequality by ( )r s  and integrating it from t  to 


, we obtain  
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( ) ( ) ( ) ( ) ( ) 2
1 d , .

t
z z t r t z t s t t

r s
δ δ δ′≤ + + + ≥ + ≥∫



   

Letting →∞
, we see that   

( ) ( ) 21 0, .v t t t tδ δ− ≤ ≤ + ≥                                  (11) 

Differentiating (5), we obtain   

( )
( ) ( )( )

( )
( )
( )

2

3 2, .
r t z t w t

w t t t t
z t r t

δ
′′

′ ≤ − ≥ ≥ +                           (12) 

Differentiating (8), we have   

( )
( ) ( )( )

( )
( )
( )

2

3, .
r t z t u t

u t t t
z t r t
τ τ ′′− −

′ ≤ − ≥                            (13) 

Differentiating (10), we have   

( )
( ) ( )( )

( )
( )
( )

2

3, .
r t z t v t

v t t t
z t r t

δ δ ′′+ +
′ ≤ − ≥                            (14) 

Inview of (12), (13) and (14), we can obtain  

( ) ( ) ( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( )
( )

( )
( )

( )
( )

2 2 2

3, .

r t z t r t z t r t z t
w t au t bv t a b

z t z t z t

w t u t v t
a b t t

r t r t r t

τ τ δ δ′ ′ ′′ ′ ′− − + +
′ ′ ′+ + ≤ + +

− − − ≥

           (15) 

From (4) and (15), we obtain   

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

2 2 2

3, .
w t u t v t

w t au t bv t kQ t a b t t
r t r t r t

′ ′ ′+ + ≤ − − − − ≥                   (16) 

Multiplying (16) by ( )n tδ  and integrating from 3t  to t , we have  

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

3 3

3 3

3 3 3

1 2

3 3

1 2

3 3

1 2

3 3

d d

d d

d d d 0.

n n
t tn n n
t t

n n
t tn n
t t

n n
t t tn n
t t t

w s s w s s
t w t t w t n s n s a t u t

r s r s

u s s u s s
a t u t an s an s b t v t

r s r s

v s s v s s
b t v t bn s b s k s Q s s

r s r s

δ δ
δ δ δ

δ δ
δ δ

δ δ
δ δ

−

−

−

− + + +

− + + +

− + + + ≤

∫ ∫

∫ ∫

∫ ∫ ∫

 

From the above inequality, we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )3 3

3 3 3 3 3 3

2
2

1 dd  0.
4

n n n n n n

t tn
nt t

t w t t w t a t u t a t u t b t v t b t v t

a b sk s Q s s n
r s s

δ δ δ δ δ δ

δ
δ −

− + − + −

+ +
+ − ≤∫ ∫

 

Thus, it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3

2
2

3 3 3 3 3 3

1 d
4

.

tn n n n
nt

n n n

a bt w t a t u t b t v t k s Q s n s
r s s

t w t a t u t b t v t

δ δ δ δ
δ

δ δ δ

−

 + +
+ + + − 

  
≤ + +

∫  
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By (7), (9) and (11), we obtain that  

( ) ( ) ( )
( ) ( )

( )( ) ( ) ( ) ( ) ( )( )
3

2 1
3 3 3 3 32

1
d 1

4
t n n n

nt

a b
k s Q s n s t a b t w t au t bv t

r s s
δ δ δ

δ
−

−

 + +
− ≤ + + + + + 

  
∫  

which contradicts (3). The proof is now complete.                                                
Corollary 2.1. Assume that ( )t tσ τ= −  with σ τ≥  for 0t t≥ . Further assume that (2.1) and (3) hold. 

Then every solution of Equation (1) is oscillatory.  
Proof. The proof follows from Theorem 2.1.                                                    
Theorem 2.2. Assume that ( )t tσ τ≤ −  for 0t t≥ . If condition (2.1) holds and   

( ) ( )
0

2limsup d
t

tt
s Q s sδ

→∞
= ∞∫                                   (17) 

then every solution of Equation (1) is oscillatory.  
Proof. Let ( )x t  be a nonsocillatory solution of Equation (1). Without loss of generality, we may assume that 

there exists 1 0t t≥  such that ( ) ( ) ( )0, 0, 0x t x t x tτ δ> − > + >  and ( )( ) 0x tσ >  for all 1t t≥ . By equation 
(1), ( ) ( )r t z t′  is nonincreasing eventually. Hence, it is easy to conclude that there exist two possible cases of 
the sign of ( )z t′ , that is, ( ) 0z t′ >  or ( ) 0z t′ <  for all 2 1t t t≥ ≥ . If ( ) 0z t′ > , then we are back to the case 
of Theorem 2.1, and we can obtain a contradiction to (2.1). If ( ) 0z t′ < , then we define , w u  and v  as in 
Theorem 2.1. Then proceed as in the proof of Theorem 2.1, we obtain (7), (9), (11) and (16) for 3 2t t t≥ ≥ . 
Multiplying (16) by ( )2 tδ  and integrating from 3t  to t  yields  

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3

3 3

3 3 3

2 2
2 2 2

3 3

2 2
2 2

3 3

2 2
2 2

3 3

2 d

2 d d

( ) ( )2 d 0.

t t

t t

t t

t t

t t t

t t t

w s s w s s
t w t t w t s ds a t u t

r s r s

u s s u s s
a t u t a s a s b t v t

r s r s

v s s v s sb t v t b ds b ds k s Q s s
r s r s

δ δ
δ δ δ

δ δ
δ δ

δ δδ δ

− + + +

− + + +

− + + + ≤

∫ ∫

∫ ∫

∫ ∫ ∫

              (18) 

It follows from (C2) and (7) that  

( ) ( )
( )

( ) ( )
( ) ( )3 3 3

1d d ,
t t t

w s sw s s
ds s s

r s r s r s
δδ∞ ∞ ∞

≤ ≤ < ∞∫ ∫ ∫  

( ) ( )
( ) ( )3 3

2 2 1d d .
t

t t

w s s
s s

r s r s
δ ∞

≤ < ∞∫ ∫  

Inview of (9), we have  

( ) ( )
( )

( ) ( )
( ) ( )3 3 3

1d d d ,
t t t

u s su s s
s s s

r s r s r s
δδ∞ ∞ ∞

≤ ≤ < ∞∫ ∫ ∫  

( ) ( )
( ) ( )3 3

2 2 1d d .
t

t t

u s s
s s

r s r s
δ ∞

≤ < ∞∫ ∫  

From (11), we obtain  

( ) ( )
( )

( ) ( )
( ) ( )3 3 3

1d d d ,
t t t

v s sv s s
s s s

r s r s r s
δδ∞ ∞ ∞

≤ ≤ < ∞∫ ∫ ∫  

( ) ( )
( ) ( )3 3

2 2 1d d .
t

t t

v s s
s s

r s r s
δ ∞

≤ < ∞∫ ∫  

Therefore from (18), we obtain  

( ) ( )
0

2limsup d ,
t

tt
s Q s sδ

→∞
< ∞∫  
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which is a contradiction with (17). The proof is now complete.                                        
Corollary 2.2. Assume that ( )t tσ τ≤ −  for 0t t≥ . In condition (2.1) and (17) hold, then every solution of 

Equation (1) is oscillatory.  
Proof. The proof follows from Theorem 2.2.                                                    
To prove our next theorem, we need a class of function γ  and the operator T defined as follows: 
Following [16], we say that a function ( ), ,t sφ φ=   belongs to the function class Y , denoted by Yφ ∈  if 

( ),C Eφ ∈  , where ( ){ }0, , :E t s t s t= ≤ ≤ ≤ < ∞  , which satisfies ( ) ( ), , 0, , , 0t t tφ φ= =    and  

( ), , 0t sφ >  for s t< <
, and has the partial derivative 

s
φ∂
∂

 on E  such that 
s
φ∂
∂

 is locally integrable with  

respect to s  in E . 
Define the operator T  by   

[ ] ( ) ( ); , , , d ,
t

T g t t s g s sφ= ∫


                                   (19) 

for 0t s t≥ ≥ ≥  and [ )0 ,g C t′∈ ∞ . The function ( ), ,t sψ ψ=   is defined by   

( ) ( ) ( ), , , , , ,t s t s t s
s
ψ ψ φ∂

=
∂

                                   (20) 

then, it is easy to see that T  is a linear operator and   
[ ] [ ] [ )0; , ; ,    for  , .T g t T g t g C tψ′ ′= − ∈ ∞                             (21) 

Theorem 2.3. Assume that ( )t tσ τ≤ − , and there exist functions Yφ ∈  and [ )( )0 , ,C tρ +′∈ ∞   such 
that   

( ) ( )
( ) ( )

( )
( ) ( )( ) ( )

2

1
limsup ; , 0

4t

s
a b

s
T k s Q s r s s t

s

ρ
ψ

ρ
ρ σ ρ

σ→∞

 ′ 
 + + +    − > ′ 
 
 


                (22) 

and   

( ) ( ) ( ) 21
limsup ; , 0

4t

a b r s
T kQ s t

ψ
→∞

 + +
− > 

  
                           (23) 

where ( )Q t  is defined as in Theorem 2.1, the operator T  defined by (19), and ( ), ,t sψ ψ=   is defined by 
(20). Then every solution of Equation (1) is oscillatory.  

Proof. Let ( )x t  be a nonoscillatory solution of Equation (1). Then there exists a 1 0t t≥  such that ( ) 0x t ≠  
for all 1t t≥ . Without loss of generality, we may assume that ( ) ( ) ( )0, 0, 0x t x t x tτ δ> − > + >  and  

( )( ) > 0x tσ  for all 1t t≥ . Then proceeding as in the proof of Theorem 2.1 we have  

( ) ( ) ( ) ( )( )0, 0, 0z t z t r t z t ′′ ′> > ≤  or ( ) ( )0, 0z t z t′> <  and ( ) ( )( ) 0r t z t ′′ ≤  for all 1t t≥ . 

First assume that ( ) ( )0, 0,z t z t′> >  and ( ) ( )( ) 0r t z t ′′ ≤  for all 1t t≥ . Define   

( ) ( ) ( ) ( )
( )( ) 1,  .

r t z t
w t t t t

z t
ρ

σ

′
= ≥                                  (24) 

Then ( ) 0w t > , and  

( ) ( )
( ) ( )( )

( )( )
( )
( ) ( ) ( )

( )( ) ( )( ) ( )

( )
( ) ( )( )

( )( )
( )
( ) ( ) ( )

( ) ( )( ) ( )
2

.

r t z t t w t
w t t w t z t t

tz t z t

r t z t t w t
t w t t

tz t t r t

ρ
ρ σ σ

ρσ σ

ρ
ρ σ

ρσ ρ σ

′′ ′
′ ′ ′= + −

′′ ′
′≤ + −

                  (25) 
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Since ( ) ( )r t z t′  is nonincreasing and ( )z t  is increasing. Next, define   

( ) ( )
( ) ( )( )

( )( ) 1,  .
r t z t

u t t t t
z t
τ τ

ρ
σ

′− −
= ≥                               (26) 

Then ( ) 0u t > , and  

( ) ( )
( ) ( )( )

( )( )
( )
( ) ( ) ( )

( )( ) ( )( ) ( )

( )
( ) ( )( )

( )( )
( )
( ) ( ) ( ) ( )

( ) ( )( )
2

.

r t z t t u t
u t t u t z t t

tz t z t

r t z t t u t t
t u t

tz t t r t

τ τ ρ
ρ σ σ

ρσ σ

τ τ ρ σ
ρ

ρσ ρ σ

′− − ′
′ ′ ′= + −

′′− − ′ ′
≤ + −

                (27) 

Since ( ) ( )r t z t′  is nonincreasing, ( )z t  is increasing and ( )t tσ τ≤ − . Again, define   

( ) ( )
( ) ( )( )

( )( ) 1,  .
r t z t

v t t t t
z t
δ δ

ρ
σ

′+ +
= ≥                               (28) 

Then ( ) 0v t > , and  

( ) ( )
( ) ( )( )

( )( )
( )
( ) ( ) ( )

( )( ) ( )( ) ( )

( )
( ) ( )( )

( )( )
( )
( ) ( ) ( ) ( )

( ) ( )( )
2

.

r t z t t v t
v t t v t z t t

tz t z t

r t z t t v t t
t v t

tz t t r t

δ δ ρ
ρ σ σ

ρσ σ

δ δ ρ σ
ρ

ρσ ρ σ

′+ + ′
′ ′ ′= + −

′′+ + ′ ′
≤ + −

                 (29) 

Since ( ) ( )r t z t′  is nonincreasing, ( )z t  is increasing and ( )t tσ δ≤ + . Combining (25) and (29), and then 
using (4), we obtain  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )
( ) ( )

( ) ( )

( )
( )( ) ( )

( ) ( )
( ) ( ) ( )

( )( ) ( )
( )

2

2 2 .

t t t
w t au t bv t k t Q t w t w t a u t

t tr t t

t t t
a u t b v t b v t

tr t t r t t

ρ σ ρ
ρ

ρ ρσ ρ

σ ρ σ
ρσ ρ σ ρ

′ ′ ′
′ ′ ′+ + ≤ − + − +

′ ′ ′
− + −

          (30) 

Now applying the operator T  to (30) and then using (21), we have  

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )
( ) ( )

( ) ( )

( )
( )( ) ( )

( ) ( )
( ) ( ) ( )

( )( ) ( )
( )

2

2 2

; ,

; , .

s s s
T k s Q s t T w s w s a u s

s sr s s

s s s
a u s b v s b v s t

sr s s r s s

ρ σ ρ
ρ ψ ψ

ρ ρσ ρ

σ ρ σ
ψ

ρσ ρ σ ρ

 ′ ′ ′   
≤ + − + +             

′ ′ ′ 
− + + −      





 

From the last inequality, we obtain  

( ) ( ) ( )
( )

( )
( ) ( )( ) ( )

2
1

; , ; ,
4

a b s
T k s Q s t T r s s t

s s
ρ

ρ ψ σ ρ
σ ρ

 ′ + +
 ≤ +      ′   

 
 

or  

( ) ( ) ( )
( )

( )
( ) ( )( ) ( )

2
1

; , 0.
4

a b s
T k s Q s r s k s t

s s
ρ

ρ ψ σ
σ ρ

 ′ + +
 − + ≤  ′   


 

Taking the sup limit in the last inequality, we obtain a contradiction with (22). 
Next consider the case ( ) ( )0, 0z t z t′> <  and ( ) ( )( ) 0r t z t ′′ ≤  for all 2t t≥ . From the proof of Theorem 

2.1, we have the inequality (16). Now apply the operator T  to (16) and then using (21), we have  
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2 2 2

; , ; ,
w s u s v s

T kQ s t T w s a u s a b v s b t
r s r s r s

ψ ψ ψ
 

≤ − + − + −    
  

   

From the last inequality, we obtain  

( ) ( ) ( ) 21
; , ; ,

4
a b r s

T kQ s t T t
ψ + +

≤    
  

   

or  

( ) ( ) ( )21
; , 0.

4
a b

T kQ s r s tψ
+ + 

− ≤ 
 

  

Taking the sup limit in the last inequality, we obtain a contradiction with (23). The proof is now completed.   
Remark 2.1. With different choices of functions ρ  and φ , Theorem 2.3 can be stated with different con- 

ditions for oscillations of Equation (1). 

For example, if we take ( ) ( ) ( ), ,t s t s sα βφ = − −   for 1 1, 
2 2

α β> > , then  

( ) ( )
( )( )

, , .
t s

t s
t s s

β α β α
ψ

− + +
=

− −






 

From Theorem 2.3, we obtain the following oscillation criteria for Equation (1).  
Corollary 2.3. Assume that ( )t tσ τ≤ − , and there exists a function [ )( )0 , ,C tρ +′∈ ∞   such that  

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )( ) ( )

0

2

0

1
limsup d > 0

4
t

tt

s
a b

s
k t s s t s Q s r s s s

s
βα

ρ
ψ

ρ
ρ σ ρ

σ→∞

 ′ 
 + + +    − − − ′ 
 
 

∫  

and  

( ) ( ) ( ) ( ) ( )
0

2

0

1
limsup d 0

4
t

tt

a b r s
k t s s t Q s sβα ψ

→∞

 + +
− − − > 

  
∫  

where 1 1, 
2 2

α β> >  and 
( )

( )( )
0

0

t a b s t
t s s t

β α
ψ

− + +
=

− −
. Then every solution of Equation (1) is oscillatory.  

3. Examples 
In this section, we provide three examples to illustrate the main results.  

Example 3.1. Consider the neutral differential equation   

( ) ( ) ( )( ) ( )2 3 2 5 0,  1.t x t x t x t tx t tπ π π ′+ − + + + − = ≥ 
 

                    (31) 

Here ( ) ( ) ( ) ( )2 , 3, 2 , 5 , r t t a t b t q t t τ δ π= = = = = = , and ( )t tσ π= − . By taking 1n =  and ( ) 1t
t

δ = , it  

is easy to see that all conditions of Theorem 2.1 are satisfied and hence every solution of Equation (31) is 
oscillatory.  

Example 3.2. Consider the neutral differential equation   

( ) ( ) ( )( )
( )

( )2
2

1002 2 2 1 3 0,  4.
1

t x t x t x t x t t
t

 ′+ − + + + − = ≥ 
  −

                   (32) 



R. Arul, V. S. Shobha 
 

 
1088 

Here ( ) ( ) ( ) ( )
( )

2
2

100, 2, 1 , , 2, 1
1

r t t a t b t q t
t

τ δ= = = = = =
−

, and ( ) 3t tσ = − . By taking 2α β= =  and  

( ) 1tρ = , it is easy to see that all conditions of Corollary 2.3 are satisfied and hence every solution of Equation 
(32) is oscillatory.  

We conclude this paper with the following remark. 
Remark 3.1. The results presented in [24] are not applicable to Equations (31) and (32) since in these  

equations 
( )0

1 d
t

t
r t

∞
< ∞∫  and the neutral term contains advanced arguments. Therefore, our results com-  

plement and generalize some of the known results in the literature. 
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