

Study on Compilation of Bi Li Shu Biao

Zezhong Yang

The School of Mathematics, Shandong Normal University, Jinan, China Email: zhongzee@163.com

Received 5 June 2015; accepted 28 August 2015; published 31 August 2015

Copyright © 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Bi Li Shu Biao is a logarithm table compiled by Jean Nicolas Smogolenski and Xue Fengzuo in the beginning of Qing dynasty and it has ten thousand common logarithm values of natural number. By analyzing these values, we found that they were obtained through cutting western logarithm values and adopting the method of five homes six into on the basis of reference to the Western logarithmic table. Almost logarithm values is correct, its false rate is only 0.76 percent.

Keywords

Xue Fengzuo, Jean Nicolas Smogolenski, Bi Li Shu Biao, Logarithm

1. Introduction

Bi Li Shu Biao is a common logarithm table compiled by Jean Nicolas Smogolenski and Xue Fengzuo in the beginning of Qing dynasty. With this table, they introduced the western logarithm to China, and improved the development of Chinese mathematics and astronomy. Qian Baocong ever said (Qian, 1964), "It (the logarithm) is very useful, and it was used in Chinese astronomy and Calendar immediately at that time." So many researchers have studied this table, such as Mei Wending, Ruan Yuan, Li Yan and so on. Through studying this table even they have got many results, the question about how the table is compiled at that time does not have answer yet. However, it is necessary to find the answer, since it not only can improve our understanding to this table, but also help us know the works of Jean Nicolas Smogolenski and Xue Fengzuo well. So we are going to study it.

2. Content of Bi Li Shu Biao

Bi Li Shu Biao had definitely only one volume, even though it marked with twelve volumes on its first page (Guo, 2011). It included ten thousand common logarithm values of natural numbers which were from 1 to 10,000. The way that the numbers was arrayed was the natural numbers are on the left and their logarithm values were on the right. So indeed the table totally had twenty thousand numbers. This table is as shown Figure 1.

Each logarithm values of natural number in this table is reserved six digits after decimal point, so every loga-

rithm values in this table has seven digits. It is definitely different from the western logarithm table appeared at that time.

The logarithm was created by John Napier (1550-1617) in 1614, and developed by Briggs Henry (1561-1630). Logarithm can help mathematician calculate quickly when the meet large numbers, so it is quite valuable and many mathematician ever created different logarithm tables (Graham, 2003), such as John Napier, Briggs Henry and Adrien Vlacq (1600-1667) and so on. Two logarithm tables created by Briggs Henry and Adrien Vlacq respectively in 1624 and in 1628 are as shown in Figure 2 and Figure 3 (Herny, 1624 & Adrien, 1628).

3. Obtaining of Logarithm Values in Bi Li Shu Biao

Jean Nicolas Smogolenski ever said in the beginning of the table, "The old book written long time ago had one hundred thousand numbers, unfortunately I lost most of them on the way, only ten thousand numbers left." (Han 2007). So the logarithm values in *Bi Li Shu Biao* must be obtained on the basis of reference to the Western logarithmic table and by processing.

Then how did Jean Nicolas Smogolenski and Xue Fengzuo process? How many works did they do?

教问出	數	有 教育社	數	系 教何此	教原
大大六大町五三	THE	回いと一貫五三	二八百三	五八六六三五三	一中和三
三一九六	Ξ	三五九一	THE .	七三九六	10 B
たまーと	如五	1201	三四五	三大のと カバーと	E
	六と		*	五一三七	3
ALTIL	٨	九五	セス	七六五七	セバカ
モモスセ	1 0333	エルニ	九四三	三九六七 九一八七	たの五明三

Figure 1. A part of Bi Li Shu Biao.

Chiline r

Chilias nonavelima octava.

	C	, ·	
		garithini. Abfolue	
97501 4, 98900, 9069	9,7808 97534 4,98	915,60355,7952 9756	4, 98930, 295 14, 6453
97502 4 08001 2524	2,3385 975354.98	44517,2680	44512,2077 4,98930,74026,8530
4454	1,8817	44526,8115	44511.7514
975034,98901,7978	4,0010 97530 4,98	916,49409,8747 9750	4,98931,18538,6044
975044. 98902.2432	5,4259 97537 1,98	016.03936.1296 9757	4,98931,63049,8996
4454	0,9680	44525,8985	44510,8200
975054,98902,08800	0,3939 975304,98	44525,4410	4,98932,07560,7386
		917,82987,5700 9757	24,98932,52071,1214
4454	0,0 544	44514,9855	44509,9167

Figure 2. A part of Briggs Henry's logarithm table.

Unilias 1.

Chinas 1.	Cillias I.	Cininas -
Nu. Logarithmi Differ. 151 2,17897,69473 286,664.06 152 2,18184,35879 284,78429 153 2,18469,14308 284,78429 154 2,18972,07208 281,09774 157 2,19033,16982 281,09774 157 2,1923,47984 279,29002 156 2,1985,90524 277,50540 158 2,1685,70870 275,74346	20f 2,3505,3074 212,36937 20f 2,31175,38611 211,33593 20d 2,31386,72204 210,31251 20d 2,31597,03455 209,29895	Nu Logarithmi Differ. 251 2,39967,37215 172,68193 252 2,40140,05408 171,99804 253 2,40312,05212 171,31954 255 2,40654,01804 170,64638 255 2,40654,01804 169,97849 256 2,40533,1233 169,31580 257 2,40513,19233 168,65827
1) 2,19,10,59,01,24 275,74346 158 2,19865,70870 274,00373 150 2,20139,71243 272,28584 160 2,20411,99827 270,58933	208 2,31806,33350 209 2,32014,62861 209 2,32014,62861	258 2,41161,97060 259 2,41329,97641 260 2,41329,97641 260 2,41497,33480 166,71593

Chilias r

Figure 3. A part of Adrien Vlacq's logarithm table.

To find the answer, we calculated the all ten thousand logarithms values with the formula $A = 10^6 \lg N$ by modern computer. The results are shown as **Table 1**.

Comparing **Table 1** and *Bi Li Shu Biao*, we found there are over thousand logarithm values of natural numbers are different. Such as the logarithm value of 231, the logarithm value of 274 and the logarithm value of 312 and so on. These new logarithm values usually are 1 bigger than old logarithm values in *Bi Li Shu Biao*.

What happened? Is it the method of four homes five into led to those differences? Since our default setting about carry method is four homes five into. To find the reason, we calculate all ten thousand logarithm values again. We arranged all logarithm values must be reserved three digits after decimal point at this time. New results are shown as Table 2.

From Table 2, we know that the first digit after decimal point of those different logarithm values which got after first calculation all are 5. So the logarithm values which first digit after the decimal point is 5 seems not be

Table 1. New logarit	iiii values.				
Logarithm value	Natural number	Logarithm value	Natural number	Logarithm value	Natural number
2,489,958	309	2,429,752	269	2,359,835	229
2,491,362	310	2,431,364	270	2,361,728	230
2,492,760	311	2,432,969	271	2,363,612	231
2,494,155	312	2,434,569	272	2,365,488	232
2,495,544	313	2,436,163	273	2,367,356	233
2,496,930	314	2,437,751	274	2,369,216	234
2,498,311	315	2,439,333	275	2,371,068	235
2,499,687	316	2,440,909	276	2,372,912	236
2,501,059	317	2,442,480	277	2,374,748	237
2,502,427	318	2,444,045	278	2,376,577	238
2,503,791	319	2,445,604	279	2,378,398	239
2,505,150	320	2,447,158	280	2,380,211	240

Table 1. New logarithm values

Table 2. Logarithm values reserved three digits after decimal point.

Logarithm value	Natural number	Logarithm value	Natural number	Logarithm value	Natural number
2,489,958.479	309	2,429,752.280	269	2,359,835.482	229
2,491,361.694	310	2,431,363.764	270	2,361,727.836	230
2,492,760.389	311	2,432,969.291	271	2,363,611.980	231
2,494,154.594	312	2,434,568.904	272	2,365,487.985	232
2,495,544.338	313	2,436,162.647	273	2,367,355.921	233
2,496,929.648	314	2437750.563	274	2,369,215.857	234
2,498,310.554	315	2,439,332.694	275	2,371,067.862	235
2,499,687.083	316	2,440,909.082	276	2,372,912.003	236
2,501,059.262	317	2,442,479.769	277	2,374,748.346	237
2,502,427.120	318	2,444,044.796	278	2,376,576.957	238
2,503,790.683	319	2,445,604.203	279	2,378,397.901	239
2,505,149.978	320	2,447,158.031	280	2,380,211.242	240

carried, that is all 5 that is after decimal point had been canceled. Is the carry method that Jean Nicolas Smogolenski and Xue Fengzuo adopted when they compiled *Bi Li Shu Biao* the method of five homes six into?

We checked all other logarithm values again, and found the values which first digit after decimal point are 6, 7, 8, 9 were carried, and the others values were not carried. So the previous conjecture must be true.

We calculated all ten thousand logarithm values with new carry method one more time, the results are shown as **Table 3**.

Comparing logarithm values in **Table 3** with logarithm values in *Bi Li Shu Biao*, it is easy to find that there are only several different values. Exactly the different values only are 76. They are shown as **Table 4**.

Table 3. Logarithm values obtained with new carry method.							
Logarithm value	Natural number	Logarithm value	Natural number	Logarithm value	Natural number		
2,491,362	309	2,429,752	269	2,376,577	229		
2,492,760	310	2,431,364	270	2,378,398	230		
2,494,154	311	2,432,969	271	2,380,211	231		
2,495,544	312	2,434,569	272	2,322,219	232		
2,496,930	313	2,436,163	273	2,324,282	233		
2,498,310	314	2,437,750	274	2,326,336	234		
2,499,687	315	2,439,333	275	2,328,380	235		
2,501,059	316	2,440,909	276	2,330,414	236		
2,502,427	317	2,442,480	277	2,332,438	237		
2,503,791	318	2,444,045	278	2,334,454	238		
2,505,150	319	2,445,604	279	2,336,460	239		
2,450,249	320	2,447,158	280	2,338,456	240		

Table 3. Logarithm values obtained with new carry method.

Ta	ble	4. <i>I</i>	All fa	lse l	logari	thm	values	\$.
----	-----	--------------------	--------	-------	--------	-----	--------	-----

New value	Old value	Natural number	New value	Old value	Natural number
3,629,308	3,629,306	4259	2,344,392	2,344,391	221
3,652,343	3,652,341	4491	2,363,612	2,363,618	231
3,675,412	3,675,413	4736	2,604,226	2,604,221	402
3,697,229	3,697,226	4980	2,606,381	2,606,386	404
3,779,236	3,779,231	6015	2,674,861	2,674,862	473
3,809,896	3,809,806	6455	2,732,394	2,732,399	540
3,813,381	3,813,383	6507	2,764,923	2,764,933	582
3,826,852	3,826,853	6712	2,869,232	2,869,237	740
3,852,541	3,852,540	7121	2,939,519	2,939,516	870
3,889,582	3,889,581	7755	2,972,203	2,972,202	938
3,890,533	3,890,523	7772	3,012,415	3,012,425	1029
3,898,780	3,898,784	7921	3,035,029	3,035,025	1084

Z. Z. Yang

Continued					
3,901,513	3,901,511	7971	3,037,028	3,037,029	1089
3,905,580	3,905,560	8046	3,046,105	3,046,103	1112
3,912,328	3,912,322	8172	3,049,993	3,049,992	1122
3,932,372	3,932,371	8558	3,203,033	3,203,035	1596
3,933,031	3,933,032	8571	3,278,982	3,278,983	1901
3,938,920	3,938,919	8688	3,280,351	3,280,353	1907
3,939020	3,939,010	8690	3,288,920	3,288,930	1945
3,939,419	3,939,416	8698	3,310,481	3,310,482	2044
3,943,791	3,943,761	8786	3,354,493	3,354,481	2262
3,946,010	3,946,000	8831	3,357,554	3,357,594	2278
3,946,452	3,946,450	8840	3,360,593	3,360,593	2294
3,948,511	3,948,501	8882	3,362,294	3,362,292	2303
3,953,421	3,953,426	8983	3,366,423	3,366,426	2325
3,957,368	3,957,366	9065	3,406,029	3,406,028	2547
3,982,859	3,982,856	9613	3,406,199	3,406,189	2548
3,985,965	3,985,962	9682	3,423,410	3,423,412	2651
3,989,227	3,989,217	9755	3,425,045	3,425,044	2661
3,990,561	3,990,563	9785	3,441,538	3,441,558	2764
3,991,713	3,991,712	9811	3,446,382	3,446,383	2795
3,994,361	3,994,141	9871	3,460,146	3,460,145	2885
3,994,405	3,994,158	9872	3,478,711	3,478,712	3011
3,994,449	3,994,229	9873	3,493,319	3,493,316	3114
3,994,493	3,994,272	9874	3,522,314	3,522,313	3329
3,994,537	3,994,317	9875	3,529,302	3,529,303	3383
3,997,998	3,997,968	9954	3,532,882	3,532,881	3411
3,998,782	3,998,783	9972	3,563,481	3,563,484	3660

4. Conclusion

Bi Li Shu Biao is an important logarithm table that is compiled by Jean Nicolas Smogolenski and Xue Fengzuo. Through analyzing the characteristic of logarithm values in *Bi Li Shu Biao*, it is known that all logarithm values are obtained on the basis of reference to the Western logarithmic table and by cutting western logarithm values and by processing with the method of five homes six into. So the course that Jean Nicolas Smogolenski and Xue Fengzuo compiled the *Bi Li Shu Biao* must be as follows: First, the Jean Nicolas Smogolenski introduced the knowledge about logarithm to Xue Fengzuo and Xue Fengzuo translated the logarithm into Chinese; secondly Xue Fengzuo cut all values and reserved six digits after decimal point with the method of five homes six into which was usually used in Chinese daily life. At last, Xue Fengzuo arranged all logarithm values according Chinese read custom. Maybe the last 76 mistakes appearing in this phase are due to haste or neglect.

Funding

Supported by "Shan Dong Province Society Science Planning program: Research on Mathematics Content in Li

Xue Hui Tong" 11CZXZ02.

References

Adrien, V. (1628). Arithmetica Logarithma. Govdae: Excudebat Petrus Rammafenius.

Graham, J. (2003). The Making of Logarithm Tables. In: M. Campbell-Kelly, M. Croarken, R. Flood, & E. Robson, Eds., *The History of Mathematical Tables* (pp.49-78). Oxford: Oxford University Press.

Guo, SH. R. (2011). New Research on Xue Fengzuo's Mathematics Achievement. Jinan: Qilu Press.

Han, Y. Q. (2007). Collections of Documents in Shandong (Volumes 23). Jinan: Shandong University Press.

Herny, B. (1624). Arithmetica Logarithmica. Londini: Excudebat Gulielmus Iones

Qian, B. C. (1964). The Mathematical History of China. Beijing: Science Press.