
Open Journal of Optimization, 2015, 4, 61-68 
Published Online September 2015 in SciRes. http://www.scirp.org/journal/ojop 
http://dx.doi.org/10.4236/ojop.2015.43008  

How to cite this paper: Sağlam, V., Sağır, M., Yücesoy, E. and Zobu, M. (2015) On Optimal Ordering of Service Parameters 
of a Coxian Queueing Model with Three Phases. Open Journal of Optimization, 4, 61-68. 
http://dx.doi.org/10.4236/ojop.2015.43008  

 
 

On Optimal Ordering of Service Parameters 
of a Coxian Queueing Model with Three 
Phases 
Vedat Sağlam1, Murat Sağır1, Erdinç Yücesoy1, Müjgan Zobu2 
1Department of Statistics, Ondokuz Mayıs University, Samsun, Turkey 
2Department of Statistics, Amasya University, Amasya, Turkey 
Email: vsaglam@omu.edu.tr, istatistikci_murat@hotmail.com, erdincyucesoy@gmail.com,  
mujganzobu@hotmail.com 
 
Received 8 June 2015; accepted 23 August 2015; published 26 August 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We analyze a Coxian stochastic queueing model with three phases. The Kolmogorov equations of 
this model are constructed, and limit probabilities and the stationary probabilities of customer 
numbers in the system are found. The performance measures of this model are obtained and in 
addition the optimal order of service parameters is given with a theorem by obtaining the loss 
probabilities of customers in the system. That is, putting the greatest service parameter at first 
phase and the second greatest service parameter at second phase and the smallest service para-
meter at third phase makes the loss probability and means waiting time minimum. We also give 
the loss probability in terms of mean waiting time in the system. jα  is the transition probability 
from j-th phase to ( ) -j th+ 1  phase ( )j = 1,2 . In this manner while =1 0α  and ≥2 0α  this sys-
tem turns into | | |M M 1 0  queueing model and while ≥ =1 20, 0α α  the system turns into Cox(2) 
queueing model. In addition, loss probabilities are graphically given in a 3D graph for corres-
ponding system parameters and phase transient probabilities. Finally it is shown with a numeric 
example that this theorem holds. 

 
Keywords 
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1. Introduction 
Phase-type queueing models are one of the essential parts of the stochastic queueing models. There is an urgent 
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need to construct phase-type distributions for complex representations of queueing models. The recent works 
being done in this field are: D. R. Cox shows how any distribution having a rational Laplace transform can be 
represented by a sequence of exponential phases [1]. S. Asmussen, O. Nerman and M. Olsson gave a paper on 
fitting phase-type distributions with the EM Algorithm [2]. Q. -M. He and H. Zhang presented an algorithm for 
computing minimal ordered Coxian representations of phase-type distributions whose Laplace-Stieltjes trans-
form had only real poles [3]. The optimal ordering of the tandem server with two stages is given by [4]. R. Ma-
rie studied on calculating equilibrium probabilities for Coxian queueing systems in [5]. X. A. Papaconstantinou 
analyzed the stationary Ek/C2/s queueing system in [6]. P. M. Snyder and W. J. Stewart considered two ap-
proaches to the numerical solution of single node queueing models with phase-type [7]. In [8], an exact analysis 
of a fork/join station in a closed queueing network with inputs from servers with two-phase Coxian service dis-
tributions is represented. Q. -M. He and H. Zhang studied the approximation of matrix-exponential distributions 
by Coxian distributions in [9]. M. Fackrell gave a survey of where the phase-type distributions were used in the 
healthcare industry and purposed some ideas on how they were further utilized [10]. A. B. Zadeh studied a batch 
arrival queue system with Coxian-2 server vacations and admissibility restricted in [11]. V. Sağlam et al. give a 
paper on optimization of a Coxian queueing model with two phases in [12]. 

There is not enough work on the studies of optimizing the orders of service parameters for Coxian queueing 
model so far. Considering this fact in this paper we analyze a Coxian stochastic queueing model with three 
phases, and the Kolmogorov equations of this model are constructed, limit probabilities and the stationary prob-
abilities of customer numbers in the system are found. The performance measures of this model are obtained and 
in addition the optimal order of service parameters is given by a theorem by obtaining the loss probabilities of 
customers in the system. We also give the loss probability in terms of mean waiting time in the system. Finally it 
is shown with a numeric example that this theorem holds. 

2. Stochastic Model 
We have obtained stochastic equation systems of a Coxian queueing model with three servers in which the 
stream is Poisson with λ parameter. The service time of any customer at server i ( )1,2,3i =  is exponential with 
parameter iµ . Two or more customers can not have service in the system at the same time. Let tξ  be the state 
of server 1, tη  be the state of server 2 and tζ  be the state of server 3 at any t time. jα  is the transition prob-
ability from -j th  phase to ( )1 -j th+  phase ( )1, 2j =  and 1 − αi be the loss probability of the system. This 
stochastic queueing model is illustrated in Figure 1. Limit probabilities, differential and difference equations of 
this system given later. 

Limit Probabilities 

Here ( ){ }, , , 0t t t tξ η ζ ≥  is a three-dimensional Markov chain with continuous parameter and state space 

is ( ) ( ) ( ) ( ){ }0,0,0 , 1,0,0 , 0,1,0 , 0,0,1Ω =
 

( ) { } ( )
1 2 3, , 1 2 3 1 2 3, , , , ,n n n t t tp t Prob n n n n n nξ η ζ= = = = ∀ ∈Ω                      (1) 

 

 
Figure 1. A three phase coxian queueing model.                                               
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Kolmogorov differential equation for these probabilities is obtained. The probabilities of the process 
( ){ }, , , 0t t t tξ η ζ ≥  will be found for ( ),t t h+ , namely 

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )
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                 (2) 

We write Equation (2) as follows as 0h →  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

000 000 1 1 100 2 2 010 3 001
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1 1p t p t p t p t p t
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               (3) 

Furthermore, it is supposed that limiting distribution of ( )
1 2 3, ,n n np t  are exist as follow: 

( ) ( )
1 2 3 1 2 3 1 2 3, , , , , ,lim , lim 0n n n n n n n n nt t

p t p p t
→∞ →∞

′= = .                             (4) 

Steady-state equations for ( ){ }, , , 0t t t tξ η ζ ≥  are obtained as following: 
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1n n n
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p
∈Ω

=∑                                       (6) 

We define ( )1,2,3 .,i i iρ λ µ ==  If we solve Equation (5) under condition (6), we obtain the following 
three dimension probability function: 

( )
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                         (7) 

3. Obtaining the Measures of Performance 
Let 𝑁𝑁 be the random variable that describes the number of customers in the system. The mean number of cos-
tumers: 

[ ]
( )

( )
1 2 3

1 2 3

1 1 2 1 2 3
1 2 3

, , 1 1 2 1 2 31n n n
n n n

E N n n n p
ρ α ρ α α ρ
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+ +
= + + =

+ + +∑                     (8) 
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[ ] [ ]
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3.1. The Coxian Queue Using Laplace Transform 
Let W be the random variable that describes waiting time of customers in the system. Laplace transform of W 

( ) ( ) ( )1 1 2 2 31 1 1 1 2 2

1 1 2 1 2 3

1 1
W s

s s s s s s
α µ α µ µα µ α µ α µ

µ µ µ µ µ µ
− −
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 .                   (10) 

Mean waiting time in system of a customer for Cox(3) is found by formula (10) 

[ ] ( ) 1 1 2

1 2 30

d 1
d
W

s

s
E W

s
α α α

µ µ µ
=

= − = + +


                          (11) 

3.2. The optimization of Measures of Performance 
Loss probability 
Let lossP  be the loss probability of customer in the system. In this regards, since there is no queue in the sys-

tem, loss probability is calculated as following: 

loss 100 010 001P p p p= + + .                               (12) 

3.3. Optimal Order of Servers 
We can put three different service parameters to three stages in 3! different position. In this case there are 6 dif-
ferent loss probabilities. 

The following theorem is given on minimization of loss probability. 
Theorem 1. Putting the greatest service parameter at first phase and the second greatest service parameter at 

second phase and the smallest service parameter at third phase makes the loss probability minimum. That is, 
( ) ( )1 , 2, ,6i

loss lossP P i≤ =                                 (13) 

Proof. Let’s suppose 1 2 3µ µ µ≥ ≥ . In this case we have, 
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( ) ( )1 2
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1 1 2 1 2 3 3 1 2 1 2 1ρ α ρ α α ρ ρ α ρ α α ρ+ + ≤ + +  
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( ) ( )1 6
loss lossP P≤  

Corollary. Since, 

[ ]
loss

1
11

P

E Wλ

=
+

                                   (14) 

the minimum value which makes lossP  minimum also makes [ ]E W  mininmum. 

4. Numerical Example 
In this section the loss probabilities are calculated for some values of system probabilities and 1 2,α α  probabil-
ities. The calculated loss probabilities are given in Table 1. For the values 2.2λ = , 1 8.6µ = ; 2 6.8µ = , 

3 4.4µ =  and for various values of 1 2andα α  it is seen in Table 1 that ( )1
lossP  has its minimum value, this 

shows that Theorem1 holds. 
Under condition given in Theorem1, for the values 2.2λ = , 1 8.6µ = ; 2 6.8µ = , 3 4.4µ =  and for all 

values of 1 2andα α  in domain set, the loss probabilities are calculated in Table 2 and graphically given in 3D 
Figure 2 in two different view angle. ( )1

lossP  is indicated by green surface in this figure. As it is seen in this 
graph, ( )1

lossP  is minimum for all values of 1 2andα α . For a customer to have service at each stage it must be 
1 2 1α α= =  or it must be 1 0α =  for the customer to leave the system after first stage. 

5. Conclusion 
By constructing this stochastic queueing model, transient probabilities are obtained. Depending on these proba-
bilities, mean number of customer in the system, the mean waiting time in this system by Laplace transform and 
the loss probability of any customer are given. It is shown by Theorem 1 that putting the greatest service parameter 
at first phase and the second greatest service parameter at second phase and the smallest service parameter at 
third phase makes the loss probability minimum. For the values 2.2λ = , 1 8.6µ = ; 2 6.8µ = , 3 4.4µ =  and  
 

   
Figure 2. The loss probabilities for 1 2andα α  and system parameters.                                             
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Table 1. Placing the service parameters to phases and corresponding loss probabilities.                                     

Placing service parameters to phases 
Loss probabilities 

Phase 1 Phase 2 Phase 3 

1µ  2µ  3µ  ( )1 1 1 2 1 2 3
loss

1 1 2 1 2 31
P ρ α ρ α α ρ

ρ α ρ α α ρ
+ +

=
+ + +

 

1µ  3µ  2µ  ( )2 1 1 3 1 2 2
loss

1 1 3 1 2 21
P ρ α ρ α α ρ

ρ α ρ α α ρ
+ +

=
+ + +

 

2µ  1µ  3µ  ( )3 2 1 1 1 2 3
loss

2 1 1 1 2 31
P ρ α ρ α α ρ

ρ α ρ α α ρ
+ +

=
+ + +

 

2µ  3µ  1µ  ( )4 2 1 3 1 2 1
loss

2 1 3 1 2 11
P ρ α ρ α α ρ

ρ α ρ α α ρ
+ +

=
+ + +

 

3µ  1µ  2µ  ( )5 3 1 1 1 2 2
loss

3 1 1 1 2 21
P ρ α ρ α α ρ

ρ α ρ α α ρ
+ +

=
+ + +

 

3µ  2µ  1µ  ( )6 3 1 2 1 2 1
loss

3 1 2 1 2 11
P ρ α ρ α α ρ

ρ α ρ α α ρ
+ +

=
+ + +

 

 
Table 2. For 2.2λ = , 1 8.6µ = ; 2 6.8µ = , 3 4.4µ = .                                                               

1α  2α  ( )1
lossP  ( )2

lossP  ( )3
lossP  ( )4

lossP  ( )5
lossP  ( )6

lossP  

0 0 0.203703 0.203704 0.244444 0.24444444 0.33333333 0.33333333 

0.2 0 0.242722 0.262436 0.272564 0.29752066 0.35532233 0.36090225 

0.4 0.8 0.352845 0.358704 0.369425 0.37709835 0.4137837 0.41563943 

0.5 0.5 0.351734 0.36976 0.365658 0.3893066 0.41479035 0.42053111 

0.8 0.4 0.402855 0.431606 0.407646 0.44610302 0.44695789 0.45672369 

1 0 0.366825 0.430464 0.366825 0.4516129 0.43046357 0.4516129 

1 1 0.519078 0.519079 0.519079 0.51907894 0.51907894 0.51907894 

 
for various values of 1 2andα α  it is seen in Table 1 that ( )1

lossP  has its minimum value, this shows that Theo-
rem1 holds. In the case 1 2 1α α= = , the loss probabilities are all equal to each other. This is seen in both Table 
1 and Graph 1. While 1 0α =  and 2 0α ≥  this system turns into | |1 | 0 |M M  queueing model and while 

1 20, 0α α≥ =  the system turns into Cox(2) queueing model. For further studies, higher moments of meanwait-
ing time in the system can be obtained and by using these moments some various statistical measures can be 
calculated such as variance, skewness, kurtosis and coefficient of variation. Also this model can be expanded to 
k-phases. 
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