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Abstract 
A numerical scheme based on hybrid central finite-volume and finite-difference method is pre- 
sented to model Green-Naghdi water wave equations. The governing equations are reformulated 
into the conservative form, and the convective flux is estimated using a Godunov-type finite vo- 
lume method while the remaining terms are discretized using finite difference method. To en- 
hance the robustness of the model, a central-upwind flux evaluation and a well-balanced non- 
negative water depth construction are incorporated. Numerical tests demonstrate that present 
model has the advantages of stability preserving and numerical efficiency. 
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1. Introduction 
Water wave is an important dynamic factor in ocean, coastal and port engineering. Accurate simulation of the 
propagation, breaking and runup of coastal waves has been the research topic for engineers and scientists. Serre 
[1] derived a one-dimensional system of shallow water equations including frequency dispersion for fully non-
linear and weakly dispersive wave over flat bottom. Green and Naghdi [2] developed the corresponding two- 
dimensional equations for wave propagation over non-flat bottom topography. Incorporating both weak disper-
sion and full nonlinearity, the Green-Naghdi equations are applicable to a wide range of problems such as small to 
large amplitude waves on both shallow and deep water. Until recently, finite difference (FD) method is the main 
approach to numerically solve Green-Naghdi equations though other methods are also proposed in the literature. 
Finite volume (FV) method requires significantly less computational effort than the finite element (FE) method 
and can treat nonlinear advection terms more easily compared to the FD method. However, the application of FV 
or hybrid FV/FD to fully nonlinear Green-Naghdi is rather limited [3]-[5]. Moving shoreline dominates the wave 
motion in the swash zone and its accurate simulation is another issue that should be address when developing 
numerical scheme for Green-Naghdi equations [6]. 

This paper aims to propose an efficient numerical scheme to 1D Green-Naghdi equations. A hybrid FV/FD 
scheme is used to solve the governing equations in conservative form. A central upwind scheme is used to com- 
pute the convective flux, which is simple to implement and free of solving complex Riemann problem, while the 
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rest terms are solved by the FD scheme. Anon-hydrostatic reconstructiontechnique [7] is incorporated to enhance 
the robustness of the model for dealing with wet-dry fronts. The resulting numerical code is validated for its ac-
curacy and efficiency. 

2. Model Description 
2.1. Governing Equations 
According to [2], the 1D Green-Naghdi equations can be written in the following form 

( ) 0
(1 [ , ])[ ] [ , ]( ) 0

t x

b t x x b

du
T d z u uu g Q d z u

η
η

+ =
 + + + + =

                            (1) 

where d = h + η is the total water depth, h is still water depth and η is the free surface elevation, u is the depth 
averaged velocity, zb is the bottom topography and g is the gravity acceleration. The subscripts x and t denote the 
partial derivative with respect to the spatial variable x and the time variable t. The linear operator T[d, zb] and the 
quadratic form Q[d, zb](·) for arbitrary function ω are defined as 
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To facilitate the FV method implementation, Equation (1) is rewritten in the following conservative form [6] 
( ) ( )t x+ =U F U S U                                       (3) 

where U is vector variable and F is flux vector along x direction, they are expressed as 

U
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with 

31 1( ) (1 )
3 2x x x x xxU d u d h dh uη= + + + .                              (5) 

In Equation (4), a new variable, the water level ζ = zb + d, is introduced. This rearrangement is done in such a 
way the linear construction technique proposed by Wang et al. [7] for nonlinear shallow water (NSW) equations 
can be easily incorporated, which aids present model in handling wet-dry fronts accurately and efficiently. S in 
Equation (3) is the source vector and can be grouped in three parts namely, bottom slope Sb, bottom friction Sf and 
dispersive terms Sd 

0 00
b f d x x

b xgdz τ ψ
    

= + + = + +    −     
S S S S                          (6) 

where the superscript x denotes the value of variable in x direction. And the bottom friction term is expressed as
2x fuτ = − , in which f is the bottom friction coefficient. The dispersive term ψx in Equation (6) is written as 

2
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where A = dux and B = hxu. 

2.2. Well-Balanced Central Finite Volume Method 
In present model, the flux terms are solved using Godunov-type FV method while the rest terms are discretized 
using FD method [6]. The central upwind scheme is used for flux evaluation, which is efficient than the usually 
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used HLL scheme or Roe scheme without the loss of accuracy. 
We discretize the computation domain into finite rectangular cells indexed as xi = i ∆x (i = 1, … M) (M is the 

gird number in x direction, whereas ∆x is the grid size). Taking the numerical flux through the right-cell interface 
(Fi+1/2) as an example, its calculation using the central upwind scheme is given by [8] 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1/2
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where the superscripts L and R denote the left and right states at the cell interface respectively and the one-sided 
local speeds of the propagation are calculated as 

1/2 1/2 1/2 1/2 1/2max{ , ,0}R R L L
i i i i ia u gd u gd+
+ + + + += + +                        (9) 

1/2 1/2 1/2 1/2 1/2min{ , ,0}R R L L
i i i i ia u gd u gd−
+ + + + += − −                       (10) 

Evidently, the central upwind scheme is free of solving complex Riemann problem and quite easy to implement 
than the commonly used upwind Roe, HLL or central MUSTA scheme. 

The aforementioned flux calculation method is only first order, which is not sufficiently accurate for ap-
proximating the convective flux embodied in Green-Naghdi formulations, hence the fourth-order MUSCLis 
used for variable construction [6]. The hydrostatic construction technique proposed byWang et al. [7] is used 
during variable construction to obtain a well-balanced scheme for both wet cells and wet-dry fronts, which helps 
to capture the moving shore line in an accurate and efficient manner, see [6] and [7] for details. 

2.3. Time Integration 
The third-order strong stability preserving Runge-Kutta scheme with TVD property is applied to performing time 
integration of Equation (3). The velocities can then be obtained by solving atridiagonal system, resulting from 
discretizing Equation (5) using a second-order finite difference formula [6]. The time increment Δt is restricted 
by the courant number, which is 0.2 for all the simulations. 

3. Model Validations and Discussions 
3.1. Exact Solitary Wave Propagation 
The one-dimensional Green-Naghdi equations have an exact solitary wave solution for horizontal bottom [9], 
which can be used to test the accuracy of the present numerical scheme. 

In this test, the long-time propagation of a highly nonlinear solitary wave with a height of H = 0.6 m over a 
constant water depth 1.0 m is performed. The computational domain is 450 m in length and discretized with the 
grid size Δx = 0.10 m. The single solitary wave is initially centered at x0 = 50 m with the exact surface and ve-
locity profiles and then it propagates from left to right. Bottom friction is neglected and solid wall boundary 
conditions are used in this simulation. 

Figure 1(a) shows the computed results using at different instants t = 0 s, 20 s, 40 s, 60 s and 80 s. The free 
surface elevations are deliberately shifted to illustrate the evolution of the solitary wave in time. The amplitude  

 

 
Figure 1. Computed water surface for exact solitary wave propagation. 
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and shape of the solitary wave are well preserved during the long-time propagation, indicating that the governing 
equations have been correctly discretized and accurately time marched. The computed results at t = 80 s is further 
compared to the analytical solution in Figure 1(b), they are in excellent agreement. 

3.2. Head-On Collision of Two Solitary Waves 
This simulation concerns an experiment of collision between two solitary waves propagating in opposite direc-
tions (head-on collision), which is described in detail in [10]. Numerical and experimental studies of this problem 
have been performed by many researchers with different models and numerical methods. The experimental data 
of this case is only from the carriage window with 1.6 min length as described by Craig et al. [10]. So the com-
putational domain is set 3.6 m long for the simplification and discretized using a grid size of Δx = 0.01 m. The still 
water depth h is 5 cm. The left wave is initially located at x = 0.5 m with the wave height H1 = 1.063 cm while the 
right one is initially located at x = 3.1 m with the wave height H2 = 1.217 cm.  

Figure 2 shows the profiles of the head-on collision at different experimental time. The numerical simulations 
computed by present model are compared with the experimental data and the numerical simulating results of Li et 
al. [5]. It shows that there is a very good agreement these three results. The collision wave reaches a maximum 
height at the time t = 19.50109 s. The wave amplitude during the head-on collision is larger than the sum of the 
amplitudes of the two incident solitary waves. After the collision, two main waves appear with amplitudes below 
their initial amplitudes in the beginning. Then they regain amplitude and return to the initial form of two solitary 
waves when separating from each other finally. As a conscience of the collision, the height of the two forming 
solitary waves are slightly smaller than the initial amplitudes and the phase has a slightly lag. Meanwhile, there is 
a small residual from the inelastic nature of the collision. 

3.3. Overtaking Collision of Two Solitary Waves 
This example concerns the propagation of the collision between two solitary waves travelling in the same direction. 
The length of computational domain in this case is 13 m and grid size Δx is 0.01 m. Figure 3 displays the over-
taking collision at different experimental time. The numerical results obtained from present model are compared 
with the experimental data form Craig et al. [10] and numerical solution from Li et al. [5]. What should be noted 
is that the comparison is shown in a relative location along the wave interaction (see [10] for more details). From 
Figure 3, one can see that the process of this overtaking collision simulation using present model seems to occur 
faster and the emerging waves have larger amplitude than the experimental data. Despite that, the overall features 
of the collision shows a good agreement with the experimental data and previous numerical results. Since the 
overtaking collision expresses a relatively long period of time, it is expected that the accumulated dispersive ef-
fects play an important role. Meanwhile, the experimental date after the interaction shows much lower wave 
amplitude, which is contribute to the dissipative mechanisms in the wave tank [10]. 

 

 
Figure 2. Water surface (η) of the head-on collision with two solitary waves. 
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3.4. The Simulation of Solitary Wave Runup 
The proposed model is tested for solitary wave runup on a sloping beach following the experimental work of 
Synolakis [11]. The bottom consists of a plan beach with a slope of 1:19.85.The present model is used to simu-
late Synolakis’ experimental cases for testing the accuracy of the numerical scheme in modeling solitary wave 
runup. The experimental data are obtained from [11] and the bed friction coefficient is cf = 0.001 in all cases. A 
non-breaking solitary wave run up modeling, the wave amplitude H = 0.0185 m and the still water depth h is 1.0 
m. 

The length of computational domain is 90 m and the grid size Δx is 0.05 m.  
Figure 4 shows the free surface evaluation comparison of the numerical results with experimental data and 

simulation results by Li et al. at different non-dimensional times t* = t(g/h)0.5 = 30, 40, 50, 60, 70 from (a) to 
(e).  

One can see that the results computed by present model match the experimental data and previous numerical 
results well in runup and rundown phases. Differences appear at (e) near the shoreline where the water surface 
and the sloping beach meet. These differences are likely the consequences of viscous effects [5]. Despite that, 
the present Green-Naghdi model appears sufficiently to predict the features of non-breaking solitary wave runup 
on the sloping beach.  

4. Conclusion 
In this paper, an efficient hybrid central finite volume and finite difference method is proposed to solve the one- 
dimensional Green-Naghdi equations. The flux terms are discretized using the central upwind flux evaluation 
which is a simple and free of solving complex Riemann problem. The rest terms are handed with finite difference  

 

 
Figure 3. Water surface (η) of the overtaking collision of two solitary waves. 

 

 
Figure 4. Runup of a non-breaking solitary wave with wave crest H = 0.0185 mon a 1:19.85 slope.                      
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scheme. In addition, the hydrostatic reconstruction method is applied to ensure well-balanced and non-negative 
water depth during computation. The accuracy and efficiency of present model are demonstrated through simu-
lating a series of experiments. The numerical results presented in this paper agree well with the experimental data 
and the numerical results from other schemes, confirming the capability of the model to simulate coastal water 
waves accurately and efficiently. 
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