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Abstract 
This paper implements the method of estimating functions (EF) in the modelling and forecasting 
of financial returns volatility. This estimation approach incorporates higher order moments which 
are common in most financial time series, into modelling, leading to a substantial gain of infor- 
mation and overall efficiency benefits. The two models considered in this paper provide a better 
in-sample-fit under the estimating functions approach relative to the traditional maximum likely- 
hood estimation (MLE) approach when fitted to empirical time series. On this ground, the EF ap-
proach is employed in the first order EGARCH and GJR-GARCH models to forecast the volatility of 
two market indices from the USA and Japanese stock markets. The loss functions, mean square 
error (MSE) and mean absolute error (MAE), have been utilized in evaluating the predictive ability 
of the EGARCH vis-à-vis the GJR-GARCH model. 
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1. Introduction 
Asset return volatility is an imperative factor in pricing of derivatives and portfolio allocation in the financial 
world. As a result, many conventional methods for measuring the risk associated with financial assets are done 
through studies on the variance (volatility) of the asset price [1]. Volatility is considered as a measure of risk 
which is used by investors as a premium for investing in risky assets and therefore an efficient model for fore-
casting an asset’s price volatility is a crucial ingredient in financial decision making. 

The GARCH family of models and their extensions have proved through empirical evidence, to be successful 
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in explaining the dynamics of return volatility in the financial markets. This has led to their extensive applica-
tion to modelling and forecasting stock market returns volatility, in developed economies [2]-[5] as well as in 
emerging markets [6]-[10]. 

Consequently, much attention has been paid to the estimation of this class of models in a bid to provide an ef-
ficient framework for modelling and forecasting return volatility. Different approaches among them, the maxi-
mum likelihood (ML), the estimating functions (EF) and the Bayesian adaptive Markov chain Monte Carlo 
(MCMC) methods, have been utilized in estimation of the symmetric/asymmetric GARCH models and volatility 
prediction [11]-[13]. An efficient estimation method translates to an improved predictive ability of the model. 
The ultimate goal of volatility analysis must be to explain the causes and predict future volatility values. 

The focus of this paper is to implement the method of estimating functions based on [14]’s optimal estimating 
functions for stochastic processes, in the asset return volatility prediction in the Asymmetric GARCH family of 
models. First order EGARCH and GJR-GARCH models estimated in [13] are utilised in forecasting asset return 
volatility of empirical time series from the USA and Japanese stock markets. A brief overview of the first order 
EGARCH and GJR-GARCH models is presented in Section 2. Optimal estimating functions for the Asymmetric 
GARCH—class of models in general and the first order EGARCH and GJR-GARCH models are presented in 
Section 3. Forecast ability of the two first order Asymmetric GARCH models is evaluated in Section 4. Finally, 
a conclusion of this paper is presented in Section 5. 

2. GARCH Models with Asymmetry 
There is extensive empirical evidence that stock returns exhibit asymmetric volatility, that is, there is existence 
of asymmetric effects of positive and negative past returns on volatility [15]-[18]. To model this aspect, this pa-
per considers two of the most popular asymmetric GARCH models. 

2.1. EGARCH Model 
The EGARCH model by [19] addresses some of the key limitations of the conventional GARCH model. This 
model captures asymmetric responses of the conditional variance to shocks in the market. The EGARCH 
( ),p q  is specified as; 
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where, ( )1 1 21, ,  t t t t t t tz h g z z z E zα ε γ γ  = = = + −  . 
The model specifies the variance equation as the log of the variance series hence the leverage effect is exponential 

and therefore the parameters , andi iκ β α  are not restricted to be non-negative. iα  is the asymmetry parameter. 
The quantity ( )tg z  is a function of both magnitude and sign of tz  in order to accommodate the asymmet-

ric effect [19]. The components 1 2andt t tz z E zγ γ  −   represent the sign effect and magnitude effect respec-
tively and each has a zero mean. 

Over the range 0 tz< < ∞ , ( )tg z  is linear in tz  with slope 1 2γ γ+  while over the range 0tz−∞ < < , 
( )tg z  is linear in tz  with slope 1 2γ γ− . Thus ( )tg z  allows the conditional variance th  to respond asym-

metrically to changes in stock returns. 

2.2. GJR-GARCH Model 
The GJR-GARCH model was introduced by [20]. It is a variant of the GARCH model with the ability to capture 
asymmetries between positive and negative shocks of the same magnitude on the volatility of returns. The vari-
ance equation in GJR-GARCH ( ),p q  model is specified as; 
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where, ( )~  0,1tz iid N . 
The model reduces to the traditional GARCH model whenever 0tε ≥ . The indicator term ts− captures the 

asymmetric effect of past returns on current volatility. With 0,γ >  negative shocks ( )1 0tε − <  increase vola-
tility more than positive shocks ( )1 0tε − >  of equal magnitude. The necessary and sufficient conditions to 
guarantee positivity of the conditional variance th  are 0, 0, 0 and 0.κ α β α γ> > > + >  γ  is the asymmetry 
parameter. 

3. Estimation of the Asymmetric GARCH Models Using Estimating Functions 
In this section we state some important results on estimating functions for the asymmetric GARCH models. [13] 
derived the optimal estimating functions for the Asymmetric Garch family of models, based on the works of [21] 
and [14]. The optimal EFs as presented in [13] are given in (3) 
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where, th  is the conditional variance process given in (1) and (2). The estimates for the unknown parameter 
vectors ω  and θ  are obtained by solving the optimal EFs in (3) by numerically minimising 1 2g g∗ ∗+ . 

First order EGARCH and GJR-GARCH models have been fitted to the Standard and Poor’s 500 and the Nik-
kei 225 market indices for the period 2nd Jan 2008 to 31st May 2011. The estimated models under the EFs ap-
proach are presented in (4), (5), (6) and (7). 

S&P 500 index 
 

1 1 1 1ln 0.204886 0.976205ln 0.138098 0.161534t t t t th h z z E z− − − − = − + + − −              (4) 



 



2 2
1 1 1 12.37614E 06 0.00113883 0.16956 0.902273t t t t th s hε ε−
− − − −= − + + +                    (5) 

Nikkei 225 index 
 

1 1 1 1ln 0.285148 0.966433ln 0.147311 0.147345t t t t th h z z E z− − − − = − + + − −               (6) 



 



2 2
1 1 1 11.0501E 05 0.00618129 0.185744 0.857417t t t t th s hε ε−
− − − −= − + + +                     (7) 
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The time plots of the estimated conditional variance series in (4), (5), (6) and (7) are given in Figures 1-4 re-
spectively. 

 
Figure 1. Time plot of the estimated conditional variance in (4).                  
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Figure 2. Time plot of the estimated conditional variance in (5).                 

 

 
Figure 3. Time plot of the estimated conditional variance in (6).                 

 

 
Figure 4. Time plot of the estimated conditional variance in (7).            
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The time plots in Figures 1-4 indicate that the estimated conditional variance is extremely high for some pe-
riods and relatively low in others (time variant) which is a common feature in most financial data. 

4. Forecasting the Volatility of Financial Asset Returns of the USA and Japan Stock 
Markets 

The fitted models under the EF approach have been used for forecasting the daily volatility of stock returns for 
the S&P 500 index and Nikkei 225 index data sets. Out-of-Sample forecasting is performed for the period (1st 
June 2011 to 13th October 2012). 

Forecasts for the first order EGARCH and GJR-GARCH conditional variance processes over m = 500 days 
(future time horizon) have been generated. Given the log conditional variance process 1 2 3ln , ln , ln , , ln nh h h h  
for the EGARCH and conditional variance process 1 2 3, , , , nh h h h  for the GJR-GARCH model, predictions for 

1 2 3ln , ln , ln , , lnn n n n mh h h h+ + + +  and 1 2 3, , , ,n n n n mh h h h+ + + +  have been generated for the forecast period m = 
500. 

The conditional variance th  is time varying (volatile) and is the object of interest in the forecasting process. 
In the case that only daily closing prices are available, the daily squared returns is an appropriate proxy for the 
unobserved volatility that fully accounts for the time varying property. The daily squared returns have for long 
and widely been used as a proxy of the latent realized variance [22]. In this study, the daily squared returns over 
the forecast period have been used as a proxy for the unobserved variance which is incorporated in the loss 
functions used to generate the error statistics used for evaluating the predictive ability of the two first order 
asymmetric GARCH models. 

The time plots of the daily squared returns over the forecast period 500m = , for the two data sets are given 
in Figure 5 and Figure 6. 

The following two loss functions have been used to evaluate the out-of-sample forecast performance of the 
models. They include the Mean Square Error (MSE) and the Mean Absolute Error (MAE). 
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Figure 5. Time plot of the daily squared returns for the S&P 500 index.            
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Figure 6. Time plot of the daily squared returns for the Nikkei 225 index.           

 
where, m is the number of days in the out-of-sample period, th  is the proxy of the actual volatility and th  is 
the volatility forecast at day t. The loss functions have been used to compute forecasts errors of the models. 

Table 1 presents the forecasts error statistics used to evaluate the forecast performance of the models. 
The forecast th  at time t is used in computing the forecast 1th +  at time 1t + , for 1, 2, ,t m=   due to the 

recursive nature of these models. It is observed that as the forecasts are generated recursively, the recursion 
converges asymptotically to the theoretical unconditional variance of the processes.  

For the EGARCH (1,1) process the unconditional variance is given in (10). 
2
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For the GJR-GARCH (1,1) process the unconditional variance is given in (11). 
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Time plots of the conditional variance forecast asymptotes for the two models and data sets are given in Fig-
ures 7-10. 

Figure 7 and Figure 8 present the conditional variance forecast asymptotes of the two models for the S&P 
500 index data set. Figure 9 and Figure 10 present the conditional variance forecast asymptotes of the two 
models for the Nikkei 225 index data set. 

It is observed that for the S&P 500 index, the volatility forecasts converge asymptotically to the unconditional 
variance (0.000182, 0.0002003) after about (282, 263) data points for the EGARCH (1,1) and GJR-GARCH (1,1) 
processes respectively. For the Nikkei 225 index, the volatility forecasts converge asymptotically to the uncon-
ditional variance (0.0002045, 0.0002412) after about (216, 154) data points for the EGARCH (1,1) and GJR- 
GARCH (1,1) processes respectively. 

Discussion 
The out-of-sample fit of the two models is evaluated using the MSE and MAE statistics. There is no specific  



T. N. Mutunga et al. 
 

 
461 

model that is preferred based on both loss functions as mixed results are obtained across the two data sets (see 
Table 1). However considering the MSE, the first order EGARCH model provides the best out-of-sample vola-
tility forecast than the GJR-GARCH model. The more robust loss function, MAE indicates that the first order 
GJR-GARCH model performs better but for only one data set, S&P 500 index. Thus the ranking of models in 
terms of forecast performance based on a specific loss function varies across the two data sets over the consid-
ered forecast period. This inconsistency in ranking stresses the importance of selecting an adequate loss function 
for forecasting purposes. The two models forecast a general increase in conditional variance before the proc-
esses converge to the theoretical unconditional variances. Figure 8 and Figure 10 show that the first order GJR- 
GARCH process forecasts converge faster to the unconditional variance than the corresponding EGARCH 
process forecasts (see Figure 7 and Figure 9) implying that the latter process has a higher forecast memory. 

5. Conclusion 
In this paper the main objective was to implement the method of optimal estimating functions in volatility esti-
mation and prediction using Asymmetric GARCH modes. First order EGARCH and GJR-GARCH models have 
then been used in forecasting asset volatility of the USA and Japan stock markets using the S&P 500 and Nikkei 
225 indices respectively under the EF approach. The two models have recorded mixed out-of-sample forecast 
performance results across the data sets. However the MSE and MAE statistics are generally lower for the 
EGARCH model across the two data sets except for a single case where the GJR-GARCH model records a 
lower MAE for the S&P 500 index data set. Thus first order EGARCH model performed relatively better than 
the first order GJR-GARCH model in forecasting volatility over the considered forecast period. 
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Table 1. Forecast error statistics for EGARCH and GJR-GARCH models.                                            

MODEL EGARCH (1,1) GJR-GARCH (1,1) 

SERIES S&P 500 Nikkei 225 S&P 500 Nikkei 225 

MSE 1.2835E−07 1.6962E−07 1.3020E−07 1.7469E−07 

MAE 1.9245E−04 2.0407E−04 1.8136E−04 2.3054E−04 

 

 
Figure 7. Time plot of the EGARCH (1,1) conditional variance forecast asymptote.                   
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Figure 8. Time plot of the GJR-GARCH (1,1) conditional variance forecast asymptote.           

 

 
Figure 9. Time plot of the EGARCH (1,1) conditional variance forecast asymptote.                 

 

 
Figure 10. Time plot of the GJR-GARCH (1,1) conditional variance forecast asymptote.                                                
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