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Abstract 
The article is devoted to actual problems of prime numbers. A theorem that allows generating a 
sequence of prime numbers is proposed. An algorithm for generating prime numbers has been 
developed. A comparison of the proposed theorem, with Wilson’s theorem is also provided. 
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1. Introduction 
The reason for writing this article was a solution of the ancient problem. This problem in a simplified version is 
as follows: Slandy a noble woman well-known in the Eastern world lived in ancient times. She had seven 
daughters. Slandy always wore aтamazing beauty antique necklace of precious pearls, which according to tra-
dition passed from mother-in-law to daughter-in-law. In old age, she told her daughters-in-law: “By inheritance 
it is time to pass the necklace to someone of you and if I will choose someone of you, the others will be offended. 
If I choose two of you and divide this necklace exactly into two parts, one pearl will be surplus. This is not a 
right way plus other fives will feel aggrieved what I don’t want in my old ages. And also, when this necklace is 
divided into 3, 4 or 5, and 6, in each case one pearl is superfluous. And if I divide it by 7, the pearls split evenly, 
but this is also impossible, as this necklace according to the covenant of ancestors must be passed to only one 
daughter-in-law. Therefore I will pass the necklace to whom who will determine how many pearls are in this 
necklace. Others should not be offended.” 

“It is known that the daughter-in-law, who decided this problem called Alkhan-Tumar, which means Neck-
lace-Mascot. 

Legend also says that this necklace still exists.” 
Naturally today it is not difficult to solve the problem. Let’s first recall Wilson’s theorem which is formulated 
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as: a natural number n > 1 is a prime number if and only if ( )1 ! 1n − +  is divided by n evenly [1]. 
This formulation implies that ( )1 ! 1n − +  is divided by all natural numbers less than n (except 1) with a 

remainder of 1. Using given theorem, let’s find a solution: 721. However, it is not a full solution and it is one of 
a set of solutions. 

Using criterions for divisibility and properties of natural numbers factorial expansion, we can find a first solu-
tion as 301. Obviously, that the solutions of this problem set up an arithmetic progression, the first term of 
which is equal to 301 and the progression difference is 420. i.e. the sequence of solutions of this problem looks 
like: 301, 721, 1141, etc. 

This example is interesting because, if in this problem we replace last number 7 by number 9, or by any com-
posite number, then this problem has no solution, since a condition of a remainder of 1 will not be fulfilled. In 
short, this problem has a solution when and only when a final number is a prime number, such as 11, 13, 
17, ,101, , 211,    

As you can see, this problem is devoted to the problems of prime numbers. We believe that such problems 
with some similar formulations can be found in folklores of many nations. This is not surprising, the problems 
of prime numbers appeared before the Common Era, have been affecting interests of the scientific community 
for more than 2300 years. Since Eratosthenes, scientists have been gradually progressing, and in recent decades 
computers appeared to help them. But the main problems of prime numbers are still unsolved. 

The solution of the above mentioned problem shows a way for solving the following problem of prime num-
bers. 

2. Prime Numbers Generation 
Let we solve the following problem.  

Suppose we are given an ordered sequence of prime numbers. It is necessary to find a next in order prime 
number. To solve the problem the following theorem is suggested. 

Theorem. If the numbers 1 2, , , , ,i np p p p   are terms of the original sequence of prime numbers, where <i> 
is an order of a prime number, i.e. 1 2p = , 2 3p = , 3 5p = , 4 7p = , etc., then there is a whole number k for 
which 1 2 1 1np p p k−× × × × +  is divided evenly by np , and by ip  with a remainder of 1 for all 

1,2, , 1.i n= −  
It is easy to prove this theorem. For this purpose, it is only necessary to combine Wilson’s theorem with a 

fundamental theorem of arithmetic (“every natural number greater than 1 can be represented as a product of 
prime numbers, and this product is unique”). The combination of these theorems makes required proof elemen-
tary and obvious. For this purpose, in a first approximation, it suffices to take 𝑘𝑘as a product of all composite 
numbers less than np , i.e. a product of those composite numbers that appear in Wilson’s theorem. Therefore, 
we skip a proof of the theorem intentionally. 

Now, using this theorem, we will show an algorithm for solving posed problem. 

3. Algorithm for Generating Prime Numbers 
Suppose we have a sequence of known prime numbers 1 2, , , , ,i np p p p  , where i is an order number of 
prime numbers, i.e. 1 2p = , 2 3p = , 3 5p = , 4 7p = , etc. and np  desired prime number.  

Let indicate 1nP −  as a product of 1 2 1np p p −× × × . Therefore, according to the conditions of the suggested 
theorem, for some whole number 0k >  the following equality should be satisfied: 

( )1 2 11 11
a whole numbernn

n n

p p p kP k
p p

−− × × × × +× +
= =



,                  (1) 

Lemma. If equality (1) is true, then it is true for a infinite set of whole values of k. Plus a sequence of values 
of k forms an arithmetic progression, the first member of which is in interval from 1 to np , a common differ-
ence of this progression is equal to np , and one of the terms of the progression is a product of all composite 
numbers less np , i.e. a product of those composite numbers that appear in Wilson Theorem. 

4. Proof 
For optimality of the proposed theorem implementation in practice, we need to determine a minimum, i.e. the 
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initial value, of k or at least to identify an interval it belongs to. 

For this we consider the ratio of 1 1n

n

P k
p

− × +
.  

First we will show, that, if the ratio at any k from 1 to np  is not a whole number, then it will not be a whole 
number for any 1,2,3, ,k = ∞ . Let prove this. 

Suppose an expression 1 1 1n

n

P k
p

− × +
 at 1 1, 2, , nk p=   is not a whole number. Let try to determine, what  

this ratio will be for the next following values of k For this purpose we select a value of 1 nk k p= + . Then the 
ratio in question takes a form as: 

( )1 1 1 1 11 1n n n n n

n n n

P k p P p P k
p p p

− − −× + + × × +
= +  

It is obvious, that this expression will not be a whole number, since an addend, as mentioned above, is not a 
whole number. After that, repeating this procedure similarly for any 1 ,  where 0,1, 2, ,nk k i p i= + × = ∞ , we 
assure that this ratio will never be a whole number. 

This means that, if the ratio in question of Equation (1) is a whole number, then the initial value of k must be 
in interval from 1 to 1np − , i.e. if 

1 1
1 1a whole number,  then 

1
0 and n

n
n

P k
k k p

p
− × +

> <= . 

We will also show here that when the equality (1) is satisfied, the parameter k takes a set of values that equal 
to 1 ,  where 0,1,2, ,nk k i p i= + × = ∞ . In fact, using this expression, we transform the original ratio in ques-
tion into: 

1 1 1 11 1n n n n

n n n

P k P i p P k
p p p

− − −× + × × × +
= +  

It is obvious, that the first term is a whole number and the second term, as was shown above, is also a whole 
number, therefore the ratio in question in the lump is also a whole number. 

From the above said it follows that under the equality (1), the parameter k takes is a set of values which, as 
stated above, form an arithmetic progression. The first term of the progression should be in interval from 1 to 

1np − , i.е. 0 nk p< < . The common difference of this progression is equal np . One of the terms of the arith-
metic progression is a product of all composite numbers less than np , i.e. it is equal to the product of those 
composite numbers that appear in Wilson’s theorem. 

5. The Proof of the Lemma Is Completed 
From this moment and further, it is sufficient to know an initial value of parameter k, which is in interval of 
0 nk p< < . For convenience, we introduce parameter ( ),P n k , such that 
( ) ( )1 1 2 1, 1 1n nP n k P k p p p k− −= × + = × × × × + . 
Note that expression of Equation (1) includes two conditions: 
a) A number 1 1nP k− × +  should be separately divided by all 1 2 1, , , np p p −  with a remainder 1, i.e. for all
1, 2, , 1i n= − : 

( ) ( ), 1 mod iP n k p=                                  (1а) 

 
b) A number 1 1nP k− × +  should be divided by np  evenly, i.e. 

( ) ( ), 0 mod nP n k p=                                 (1b) 

Thus, let we have an initial ordered sequence of prime numbers 1 2 1, , , , ,i np p p p −   To find the next in or-
der prime number np  we will build the following algorithm. For this, first for np  we take the next odd num-
ber to 1np − . After that, taking k from 1 to 1np − , we execute arithmetic operation given in Equation (1). If in this 
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case and at some value of k the conditions of Equations (1a) and (1b) will be observed, i.e. a result of division 
according the Equation (1) will be a whole number and then considered number np  is the next prime number. 
After that, in the same way we start to search next prime number 1np + . 

And, if the conditions of Equations (1a) and (1b) are not met, then we deal with a composite number, i.e. in 
this case, considered number of np  is not a prime number. It should be noted here that if the number np  will 

be a composite number, then during the calculation of 1 1n

n

P k
p

− × +
, a sequence of digits of the fractional part of  

this division result is periodically repeated while sorting parameter k. It can be easily seen after a few steps of 
cycle by k parameter, and it becomes clear that considered number np  is not a prime number. Then we can 
immediately stop the cycle. This greatly increases the efficiency and speed of the proposed algorithm. 

Then we proceed to the next odd number. The procedure is repeated again for different values of k. 
If even in this case, the selected number is again a composite number, then proceed again to the next odd 

number. The operation is repeated until the conditions of Equations (1a) and (1b) will not be fulfilled. For clarity, 
we will show this based on a simple example. 

Suppose we have an original sequence of prime numbers 1 22, 3p p= = , 3 45 and 7p p= = . It is required to 
find the next fifth prime number 5 ?p =  In this case, 5n = . For this, first for np  we take 9 as an odd number 
next to 7. Then we calculate the values of ( ) ( ), 5,P n k P k=  for different values of k from 1 to 1 :np −

( )5,1 211,P =  ( ) ( ) ( ) ( ) ( )5,2 421,  5,3 631,  5, 4 841,  5,5 1051,  5,6 1261P P P P P= = = = = , etc. As can be seen, 
the values of ( ),P n k  constitutes an arithmetic progression with a difference of 2 3 5 7 210= × × × = . Note that 
among these values 841 and 1261 are composite numbers, and the rest of them are prime numbers. But we are 
looking for a prime number following 7. 

Conducting the series of calculations, we see that a result of division of 
( )5,
9

P k
 at any value of 9k <  will  

not be a whole number. This means that 9 is a composite number. After that for np  we take the next odd num-
ber 11. Repeating the operation we obtain that at k = 10 value of ( ) ( ), 5,10 2101P n k P= =  is divided by 11 
evenly. Actually, 2101:11 = 191. This means that a prime number next to 7 is 11, i.e. 5 11np p= = .  

For completeness of the visualization, we consider one more sequence of prime numbers, with its last term as 
23. In this case, first for np  we take 25 as an odd number, next to number 23. And we see that it is a composite 
number. Then we select a number 27. At this time, the condition of Equation (1) will not be fulfilled, that is, we 
see that 27 is a composite number. When we select number 29, then at k = 17 condition of Equation (1) is satis- 

fied, i.e. a value of 
( ) ( ) ( )

, 10,17
223,092,870 17 1 29 130,778, 579

29 29
P n k P

= = × + =  is a whole number. This  

means that a prime number after 23 will be 29, i.e. 10 29np p= = . 
Sometimes it happens, that even at k = 1, we obtain desired results. For example, a value of 
( ) ( ) ( ), 8,1 51010 1 1

26869
19 19 19

P n k P × +
= = =  is a whole number, i.e. 19 is a prime number after 17. In addition,  

the numbers 17 and 19 are twins. 
Some answers to the posed problem for a small set of primary prime numbers are given as Table 1. In this ta-

ble, n is a counting number of a prime number. 
In short, if there is a set of primary prime numbers, then while using expression of Equation (1) it is always 

possible to find the next prime number. 
To show diversity to the proposed method, we offer one more elegant algorithm, the essence of which is pri-

marily to find a value of k through existing prime numbers. 
For this, we use Chinese remainder theorem, which states: “If natural numbers 1 2, , , np p p  are coprimes in 

pairs, then for any whole numbers 1 2, , , nr r r  such that 0 i ir p≤ <  for all ( )1, 2,3, ,i n∈   there is a number 
N, which when divided by ip  gives a reminder ir  for all ( )1, 2,3, ,i n∈  .” [2]. 

It is known that constructive method for proving this theorem allows to solve the following system of linear 
equations modulo [3] [4]: 

( )
( )

1 1

2 2

mod

mod

x r p

x r p

=

=
                                     (2) 
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Table 1. Using with proposed theorem found primes number.                               

n pn k 1 1nP k− × +  

1 3 1 3 

2 5 4 25 

3 7 3 91 

4 11 10 2101 

5 13 10 23101 

6 17 2 60061 

7 19 1 510511 

( )
( )
1 1mod

mod

n n

n n

x r p

x r p

− −=

=
 

If sets ( 1 2, , , np p p ) и ( 1 2, , , nr r r ) fulfill conditions of Chinese theorem, then solution for system of Equa-
tions (2) exists and is unique within the accuracy of an operation by modulo 1 21

n
n i niP p p p p

=
= = × × ×∏ 

, 
and this solution looks like [2]-[4]: 

1

1

n

i i i
i

x r M M −

=

= ∑                                      (3) 

where i n iM p p=                                       (4) 

( )1 1 modi i iM M p− =                                    (5) 

i.e. 1
iM −  is inverse for iM  by module ip . 

Now, knowing the solution of Equation (3) we can easily find the values of factor k. It is obvious, that Chi-
nese theorem is true for any sequence of prime numbers since prime numbers are always coprimes in pairs. Then, 
considering for 1 2, , , np p p  in the system of Equation (2) a sequence of prime numbers, for our case we ob-
tain that 

1 2 1 1 and 0n nr r r r−= = = = = .                              (6) 

Now, by combining the proposed theorem with Chinese theorem, we have from Equations (1)-(6): 
11

1

1n
i

n
i i n

M
k p

p P

−−

=

 
= − 

 
∑                                   (7) 

Expression of Equation (7) shows that if a sequence of prime numbers is known, we are always able to calcu-
late a value of k in advance. Then, by substituting of calculated value of k in Equation (1), we verify the fulfill-
ment of the conditions of Equations (1a) and (1b). If these conditions are not fulfilled, then a number considered 
as np  is not a prime number. This number is the next composite number that stands for the prime number 1np − . 
And, if the conditions of Equations (1a) and (1b) are met, then np  is a desired prime number. After that, we 
proceed with finding next prime 1np +  and the cycle repeats. 

In this case algorithm for searching prime numbers in odd numbers series looks as follows. 
Step 1. Input values of existing prime numbers 1 2 1, , , np p p − , where 1 2 32,  3,  5p p p= = = , etc. 
Step 2. For np , we input an odd number, which in a line of odd numbers follows a prime number 1np − . Here

1 2n np p m−= + , where 1, 2,3,m =   In this case for 1st step 1m = . 
Step 3. Calculate 1

11
n
in iP p
=−
−=∏  and 1n n nP P p−= × . 

Step 4. Calculate i n iM p p=  for all ( )1,2,3, ,i n∈  . 
Step 5. Using extended Euclid’s algorithm, we find 1

iM −  for all ( )1, 2,3, ,i n∈   from the condition 
( )1 1 modi i iM M p− =  
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Table 2. Comparison results between Wilson’s theorem and proposed theorem.                                                         

Results obtained based on Wilson’s theorem Results obtained based on proposed theorem 

n ( )1 1 modn nP k p− × +  ( )( )1 ! 1n − +  

mod n 
ip  

1 1 2 1,  , ,  n nP p p p− −=   k ( )1 1 modn nP k p− × +  

1 2 3 1 2 3 4 

       

2 1 0 2 1 1 0 

3 2 0 3 2 1 0 

4 6 3     

5 24 0 5 6 4 0 

6 120 1     

7 720 0 7 30 3 0 

8 5,040 1     

9 40,320 1     

10 362,880 1     

11 3,628,800 0 11 210 10 0 

12 39,916,800 1     

13 479,001,600 0 13 2310 10 0 

14 6,227,020,800 1     

15 87,178,291,200 1     

16 1,307,674,368,000 1     

17 20,922,789,888,000 0 17 30,030 2 0 

18 355,687,428,096,000 1     

19 6,402,373,705,728,000 0 19 510,510 1 0 

20 121,645,100,408,832,000 1     

21 2,432,902,008,176,640,000 1     

22 51,090,942,171,709,400,000 1     

23 1,124,000,727,777,610,000,000 0 23 9,699,690 3 0 

24 25,852,016,738,885,000,000,000 1     

25 620,448,401,733,239,000,000,000 1     

26 15,511,210,043,331,000,000,000,000 1     

27 403,291,461,126,606,000,000,000,000 1     

28 10,888,869,450,418,400,000,000,000,000 1     

29 304,888,344,611,714,000,000,000,000,000 0 29 223,092,870 17 0 

30 8,841,761,993,739,700,000,000,000,000,000 1     

31 265,252,859,812,191,000,000,000,000,000,000 0 31 6,469,693,230 13 0 

32 8,222,838,654,177,920,000,000,000,000,000,000 1     

33 263,130,836,933,694,000,000,000,000,000,000,000 1     

34 8,683,317,618,811,890,000,000,000,000,000,000,000 1     

35 295,232,799,039,604,000,000,000,000,000,000,000,000 1     

36 10,333,147,966,386,100,000,000,000,000,000,000,000,000 1     

37 371,993,326,789,901,000,000,000,000,000,000,000,000,000 0 37 200,560,490,130 10 0 

38 13,763,753,091,226,300,000,000,000,000,000,000,000,000,000 1     

39 523,022,617,466,601,000,000,000,000,000,000,000,000,000,000 1     

40 20,397,882,081,197,400,000,000,000,000,000,000,000,000,000,000 1     

41 815,915,283,247,898,000,000,000,000,000,000,000,000,000,000,000 0 41 7,420,738,134,810 34 0 
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Step 6. Calculate the desired value of k by the formula: 

1

1

1 1 mod
n

i

i
n n

i n

M
k p P

p P

−

=

−

=
 
 
 

−∑  

Step 7. Check fulfillment of equality (1). 
Step 8. Conditional operator works here. 
-If conditions of Equations (1a) and (1b) are not met, then considered number np  is not a prime number, 

then assign m = m + 1 and proceed to step 2. The cycle repeats until conditions of Equations (1a) and (1b) will 
not be met. 

-If conditions of Equations (1a) and (1b) are fulfilled, then np  is a desired prime number, followed a prime 
number 1np − . 

Step 9. Generation of the next prime number 1np +  is carried out similarly. 
The cycle repeats. 
We assume that the process of generating prime numbers based on the proposed theorem is faster than a gen-

eration based on Wilson’s theorem. 
In case of Wilson’s theorem it is quite difficult to calculate the factorial of (n − 1)!. In fact, if generation is 

carried out in the area of the large numbers, then calculation of given factorial creates significant difficulties. 
This is explained by the fact that there are intervals in the sequence of natural numbers which include thousands, 
millions, billions and even some arbitrarily large number of natural numbers standing in a row, among which 
there is no prime number. For example, if you set an arbitrary large natural number m, let build a series of num-
bers ! 2,  ! 3,  ! 4, ,  !m m m m m+ + + +  then it is obvious that each of these numbers is a composite number. You 
can easily check, particularly m! + 2 is evenly divided by 2, m! + 3 is divided by 3, and𝑚𝑚!+𝑚𝑚is evenly divided 
by m, i.e. there is no a prime number in the large interval of ( ) ( )! 2 !m m m+ +   . If, for example, m = 1010, then 
in case of Wilson’s theorem, calculation of the factorial will inevitably lead to a large number of calculations 
involving a huge amount of large composite numbers. And in case of the proposed theorem calculations are 
mainly made with prime numbers. 

This is clearly illustrated from Table 2, which shows results of searching prime numbers using methods fol-
lowing from Wilson’s theorem (left part of the table) and proposed theorem (right part of the table). 

The left part of the table provides calculations made for values of 𝑛𝑛 from 2 to 41. In the 1st column of left part 
of the table (case of Wilson’s theorem) all natural numbers𝑛𝑛are given. In this column cells containing prime 
numbers which are green highlighted for illustrative purposes. In the 2nd column the calculated values of 
( )1 !n −  factorial are shown. And 3rd column provides remainders which take zero values in case of prime num-
bers. 

Similar results, obtained using proposed theorem, are shown in the right part of the table. First column of the 
right part shows prime numbers. Second column of this part presents calculated values of 1

1 1
n

n iiP p−
− =
=∏ . And 

the last column shows values of remainders which also take zero values for prime numbers. 
Table 2 shows that, in case of Wilson’s theorem, in order to carry out generation of prime numbers at least up 

to 13th prime number, i.e. up to 13 41p =  it is necessary to perform a lot of laborious calculations with large 
numbers. 

A right part of the table shows only those numbers with which the calculations have been made using the 
proposed method. Comparing the left and right parts of the table, we can see that efficiency, speed, and conven-
ience of the proposed method are beyond question, this is obvious. Plus, for a set of large integers, this obvious-
ness becomes even more than self-evident. 

Note again that in case of Wilson’s theorem the complexity lies in calculation of ( )1 !n −  factorial. It is easi-
er to calculate 1na − ; therefore elementary tests, determining whether a number is prime number, are based on 
Fermat’s theorem, rather than on Wilson’s theorem. However, note that in contrast to Fermat’s small theorem, 
Wilson’s theorem simultaneously is a necessary and sufficient condition for determining primality of any num-
ber. 
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