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Abstract 
Phytoremediation is a green emerging technology used to remove pollutants from environment 
components. Mechanisms used to remediate soils contaminated by heavy metal are: phytoextrac-
tion, phytostabilisation, phytovolatilization and rhizofiltration. The two first mechanisms are the 
most reliable. Many factors influence the choice of the suitable phytoremediation strategy for soil 
decontamination. It depends on soil properties, heavy metal levels and characteristics, plant spe-
cies and climatic conditions. The present review discusses factors affecting heavy metals uptake 
by plant species, the different phytoremediation strategies of heavy metal contaminated soils and 
the advantages and disadvantages of phytoremediation and each of its mechanisms. 
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1. Introduction 
Heavy metals are the major environmental contaminants and pose a severe threat to human and animal health by 
their long-term persistence in the environment [1]. The remediation of soils contaminated by heavy metals is a 
cost-intensive and technically complex procedure [2]-[5]. Conventional remediation technologies are based on 
biological, physical, and chemical methods, which may be used in conjunction with one another to reduce the 
contamination to a safe and acceptable level [6]. In spite of being efficient, these methods are expensive, time 
consuming and environmentally destructive [7] [8]. At the same time they are usually harmful to the natural soil 
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environment, and generate large amounts of waste [9]. Recently, phytoremediation, which is an emerging tech-
nology, should be considered for remediation of contaminated sites because of its cost effectiveness, aesthetic 
advantages and long term applicability [10]-[13]. 

The aim of this paper is to provide a brief view about factors affecting heavy metals uptake by plant species, 
to discuss the different phytoremediation strategies of heavy metal contaminated soils and the advantages and 
disadvantages of phytoremediation and each of its mechanisms. 

2. Heavy Metals: Definition and Origins 
Heavy metals are natural constituents of the earth’s crust [14] [15]. Their principal characteristics are an atomic 
density greater than 5 g∙cm−3 [16] [17] and an atomic number >20 [14]. The most common heavy metal conta-
minants are Cd, Cr, Cu, Hg, Pb, and Zn. From the geochemical point of view, trace elements are metals whose 
percentage in rock composition does do not exceed 0.1% [18]. The occurrence of heavy metals in soils can re-
sult of two main sources:  

Natural source: Heavy metals occur naturally in the soil environment from the pedogenetic processes of wea-
thering of parent materials at levels that are regarded as trace (<1000 mg∙kg−1) and rarely toxic [19] [20]. 

Anthropogenic sources: Human activities, such as mining, smelting, electroplating, energy and fuel produc-
tion, power transmission, intensive agriculture, sludge dumping, and melting operations, are the main contribu-
tor to heavy metal contamination [15] [21]-[23]. Heavy metals in the soil from anthropogenic sources tend to be 
more mobile, hence bioavailable than pedogenic, or lithogenic ones [19] [24] [25]. The industry of mining and 
processing metals is a major source of farmland heavy metal contamination [26]. 

3. Heavy Metal Phytotoxicity 
Metals are natural components in soil. Based on their role on physiological activities, they can be divided in two 
groups: 1) Essential heavy metals (Fe, Mn, Cu, Zn, and Ni) which are micronutrients necessary for vital physio-
logical and biochemical functions of plant growth [1] [27] [28]. They are constituents of many enzymes and 
other proteins [29] and all plants have the ability to accumulate them from soil solution [30]; 2) Non-essential 
metals (Cd, Pb, As, Hg, and Cr) have unknown biological or physiological function [1] [31] and consequently 
are non-essential for plant growth.    

Both groups are toxic to plants, animals and humans above certain concentrations specific to each element [17] 
[25] [32]. High contents of both essential and non-essential heavy metals in the soil may inhibit plant growth 
and can lead to toxicity symptoms in most plants [15] [29] [33] [34]. The general effects of various metals in 
plant are given in Table 1. However, some plant species have the ability to grow and develop in metalliferous 
soils such as near to mining sites [35]. Such plants can be used to clean up heavy metal contaminated sites. Wil-
low (Salix viminalis L.), maize (Zea mays L.), Indian mustard (Brassica juncea L.), and sunflower (Helianthus 
annuus L.) has been found to be highly tolerant to heavy metals [36]. Vetiver grass (Vetiveria zizanioides) 
showed tolerance to Pb and Zn and it can be used for revegetating Pb/Zn mine tailings [37]. Populus species are 
examples of plants widely used to remediate heavy metal contaminated soils [38]. 

4. Factors Affecting Heavy Metal Phytoavailability  
Bioavailability and phytoavailability are terms used to describe the degree to which contaminants are available 
for absorption or uptake by living organisms that are exposed to them [46]-[48]. Plants respond only to the frac-
tion that is “phytoavailable” to them [48] [49]. For heavy metal phytoremediation (and phytoextraction in par-
ticular), bioavailability of metals in contaminated soils, is a crucial factor regulating heavy metal uptake by plant 
roots [50]-[52]. However, metal phytoavailability is a complex phenomenon that is dependent on a cascade of 
related factors [53].  

4.1. Soil Properties  
4.1.1. Soil pH 
Soil pH directly influences the phytoavailability of metals as soil acidity determines the metal solubility and its 
ability to move in the soil solution [54]. Metal cations are the most mobile under acidic conditions while anions  
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Table 1. Functions and effects of heavy metals on plant growth [14] [35] [39]-[45].                                              

Heavy 
metals  Functions in plant Effects on plant 

Essential 
metals 

Copper 
(Cu) 

‐ Constituent of enzymes;  
‐ Role in photosynthesis and several 

physiological processes;  
‐ Involved in reproductive and in determining 

yield and quality in crops (disease resistance) 

‐ Disruption of photosynthesis, plant growth and 
reproductive processes;  

‐ Decreases thylakoid surface area 

Nickel 
(Ni) 

‐ Constituent of enzymes 
‐ Activation of urease 

‐ Reduction of:  
‐ seed germination;  
‐ protein production;  
‐ chlorophyll and enzyme production;  
‐ accumulation of dry mass 

Zinc 
(Zn) 

‐ Constituent of cell membranes; 
‐ Component of a variety of enzymes;  
‐ DNA transcription;  
‐ Involved in reproductive phase and in 

determining yield and quality of crops;  
‐ Resistance against biotic and abiotic stress;  
‐ Legume nodulation and nitrogen fixation 

‐ Reduces nickel toxicity and seed germination 
 

Non- 
essential 
metals 

Cadmium 
(Cd) 

‐  ‐ Decreases seed germination, lipid content and 
plant growth 

‐ Disturb enzyme activities,  
‐ Inhibit the DNA-mediated transformation in 

microorganisms,  
‐ Interfere in the symbiosis between microbes and 

plants,  
‐ Increase plant predisposition to fungal invasion  

Chromium 
(Cr) 

‐  ‐ Causes decrease in enzyme activity and plant 
growth; 

‐ Produces membrane damage, chlorosis and root 
damage. 

Lead 
(Pb) 

‐  ‐ Reduces chlorophyll, chlorosis, necrosis; 
‐ Inhibit root and shoot growth 
‐ Less biomass production  
‐ affecting seed germination  

 
tend to sorb to oxide minerals in this pH range [55]. Thus at low pH, metal bioavailability increases as more 
metals are released into the soil solution due to competition with H+ ions [56] [57]. At high pH, cations precipi-
tate or adsorb to mineral surfaces and metal anions are mobilized [58]-[60]. At neutral or alkaline pH, most of 
the metals in soil are not available to plants, especially Pb and Cr are inherently immobile [61].  

4.1.2. Soil Texture 
Texture reflects the particle size distribution of the soil and thus the content of fine particles like oxides and clay 
[62]. Particle size distribution can influence the level of metal contamination in a soil. Fine particles (<100 µm) 
are more reactive and have a higher surface area than coarser material. As a result, the fine fraction of a soil of-
ten contains the majority of contamination [58] [62] reported that the fine textured soils contain higher amounts 
of Pb (3889 mg∙kg−1) and coarse textured soil contains (530 mg∙kg−1) lower amount of Pb.  

4.1.3. Soil Organic Matter 
Soil organic matter is frequently reported to have a dominant role in controlling the behavior of trace metals in 
the soil [62] [63]. The organic matter is one of the factors that may reduce the ability of metals to be phytotoxic 
in the soil due to metal-organic complexation [64]. The presence of organic carbon increases the cation ex-
change capacity of the soil which retains nutrients assimilated by plants [65]. Increasing the amount of organic 
matter in the soil helps to minimize the absorption of heavy metals by plants. Land rich in organic matter ac-
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tively retains metallic elements [66]. Soils with relatively low organic matter concentration are more susceptible 
to contamination by trace elements [67]. Compost amendments to contaminated soils containing labile elements 
reduce the overall bioavailabilities of metals due to sorption processes [68]. 

4.1.4. Redox Potential 
The redox potential is one of the most soil properties that affect changes metal speciation [69]. Redox potential 
in soil is established by oxidation-reduction reactions resulting from microbial activity [25] [66]. These redox 
reactions convert contaminants into non-hazardous or less toxic compounds that are more stable, less mobile 
and/or inert [70]. However, in soil environments, these reactions tend to be relatively slow [67]. Lack of oxygen 
in the soil causes start-up and increase the mobility of the large part of heavy metals [66]. 

4.1.5. Root Zone 
Plant root can influence heavy metal phytoavailability [54] by modifying the soil properties in the rhizosphere 
[68]. The plant enzymes exuded from the roots should play a key role in the transformation and chemical speci-
ation of heavy metals in soils, which facilitate their uptake by plant [71]-[73]. Plant root activities that poten-
tially increase metal solubility and may change heavy metal speciation include acidification/alkalinisation, mod-
ification of the redox potential, exudation of metal chelants and organic ligands [74]-[76]. However, the process 
of root exudation and composition of exudates remains poorly understood for most of the environmentally rele-
vant heavy metals [61] [73] showed that the increased mobility of heavy metals was not necessarily associated 
with their increased uptake in plants.  

4.2. Heavy Metal Properties  
The mobility of trace metals, their bioavailability and related eco-toxicity to plants depend strongly on their spe-
cific chemical forms [77]. Forms of occurrence of heavy metals in soil significantly influence their mobility. 
The most mobile elements include the Cd, Zn and Mo, while the least mobile are Cr, Ni and Pb [66]. Soil pH in-
fluences heavy metal mobility. In soils with low pH, metal mobilty decreases in the order: Cd > Ni > Zn > Mn > 
Cu > Pb. According to their phyto-availability, [78] have defined four groups of heavy metal (cited by [47]): 
‐ weakly soluble in soil, absorbed by plants in trace amounts (Cr, Ag); 
‐ elements relatively easily absorbed by roots but weakly transported to shoots (Hg, Pb); 
‐ elements easily absorbed and transported to shoots (Zn, Cu, Ni); 
‐ elements posing a risk to the food chain (Co, Cd).  

However, the effect of pH on the mobility of metallic elements in the soil is highly variable, depending on the 
content and type of organic matter [66]. Heavy metals in the solid phase of organic-amended soils occur in var-
ious chemical forms, including exchange sites, specific adsorption sites, occluded or adsorbed on to soil oxides, 
biological residues and substituted into primary and secondary minerals [79]. The chemical speciation of heavy 
metals determines their bioavailability. It is related to the different natures of the metals, their bonding strength, 
and either in free ionic form or complexed by organic matter, or incorporated in the mineral fraction of the sam-
ple [63].  

4.3. Plants Species 
Plant species differ widely in their ability to accumulate heavy metals [80]. Many authors concluded that con-
centrations of metals in plants growing in the same soil vary between species and even between genotypes of a 
species [42] [81]. Some of the mechanisms, which may be responsible for plant species differences in metal 
concentrations, have been identified. These mechanisms include differences in: 1) root architecture; 2) water use 
efficiency; 3) rhizosphere chemistry; 4) expression and affinity of root surface transporter proteins for metals; 5) 
xylem loading of metals and translocation within the plant [82]. Also, the age and the growth stage of the plant 
can affect concentration of metals in plants [54] [80].  

5. Phytoremediation 
5.1. Definition and Concept  
Phytoremediation can be defined as the process, which uses green plants for the relief, transfer, stabilization or 
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degradation of pollutants from soil, sediments, surface waters, and groundwater [54] [83] [84]. Some plant roots 
can absorb and immobilize metal pollutants, while other plant species have the ability of metabolizing or accu-
mulating organic and nutrient contaminants. Multifarious relationships and interactions between plants, micro-
bes, soils and contaminants make these numerous phytoremediation processes possible. 

The term phytoremediation, from the Greek phyto, means “plant”, and the Latin suffix remedium, “able to 
cure” or “restore” [44]. This concept was first proposed by Chaney (1983) and then developed through the study 
of plant species ability to remove pollutants from environment components. It can be used for a wide range of 
organic [10] and inorganic contaminants [44]. Phytoremediation processes are most effective where contami-
nants are present at low to medium levels, as high contaminant levels can inhibit plant and microbial growth and 
activity [85]. Mechanisms involved in the uptake, translocation, and storage of micronutrients are the same in-
volved to translocate and storage heavy metals [1].  

5.2. Mechanisms of Phytoremediation  
Phytoremediation is a general term including several processes, in function of the plant-soil-atmosphere interac-
tions. For heavy metal contaminated soil, four processes of phytoremediation are recognized. Phytoextraction, 
phytostabilisation, phytovolatilization and rhizofiltration. The two first mechanisms are the most reliable. The 
different forms of phytoremediation require different general plant characteristics for optimum effectiveness 
[86]. Table 2 summarizes definition and principle characteristics of each process. 

5.3. Advantages and Limitations of Phytoremediation Mechanisms 
Phytoremediation, like other remediation technologies, has a range of both advantages and disadvantages. The 
most positive aspect of using phytoremediation is as follow: 1) more cost-effective; 2) more environmentally 
friendly; 3) applicable to a wide range of toxic metals and 4) more aesthetically pleasing method. On the other 
hand, phytoremediation presents some limitations. It is a lengthy process, thus it may take several years or long-
er to clean up a site and it is only applicable to surface soils. Advantages and disadvantages of using phytore-
mediation for remediation a heavy metals contaminated area and each mechanism are shown in Table 3 and 
Table 4. 

6. Plant Selection Considerations 
Plant species for phytoremediation are selected based on their root depth, the nature of the contaminants and the 
soil, and regional climate. The root depth directly impacts the depth of soil that can be remediated [83]. It varies 
greatly among different types of plants, and can also vary significantly for one species depending on local con-
ditions such soil structure, depth of a hard pan, soil fertility, cropping pressure, contaminant concentration, or 
other conditions [86]. The cleaning depths are approximately <3 feet for grasses, <10 feet for shrubs and <20 
feet for deep rooting trees. The nature of on-site contaminants is a principal factor in the selection of a plant for 
phytoremediation [103].  

It has been reported that for phytoremediation, grasses are the most commonly evaluated plants [104]. They 
have been more preferable in use for phytoremediation because compared to trees and shrubs, herbaceous plants, 
especially grasses, have characteristics of rapid growth, large amount of biomass, strong resistance, effective 
stabilization to soils and ability to remediate different types of soils [54]. They are pioneers and usually are 
adapted to adverse conditions such as low soil nutrient content, stress environment and shallow soils [105]-[109]. 
The large surface area of their fibrous roots and their intensive penetration of soil reduces leaching, runoff, and 
erosion via stabilization of soil and offers advantages for phytoremediation [110]. Wild plants such as grasses 
can produce closures above ground quickly and reduce dispersion the dust of tailings [111].  

Shrubs and trees produce extensive canopy cover and produce deep roots to prevent erosion in the long term. 
In addition, shrubs or trees provide high nutrient to the grass while lowering water stress and improve soil phys-
ical properties [111] [112]. Many trees can grow on land of marginal quality, have massive root systems, and 
their above-ground biomass can be harvested with subsequent resprouting without disturbance of the site [113]. 
However, the cost for planting trees is high and the growth rate is low. 

To achieve a stable persistent cover it is important to use a mixed culture, and combine grasses, shrubs and 
trees in revegetation programs of mining soils because they represent two functional types of plants with differ-
ent roles in the improvement of mine soils. For a longer duration, as considered for most phytoremediation  
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Table 2. Definition and main characteristics of phytoremediation processes [1] [23] [44] [54] [70] [83] [85] [87]-[96].                  

Process Definition Process goal Contaminants Media Selection criteria of plant species 

Phytoextraction 

Uptake of a 
contaminant 

by plant roots 
from the 

environment 
and its 

translocation 
into 

harvestable 
plant 

biomass 

Contaminant 
extraction 

and capture 

Organic and 
inorganic 
pollutants 

‐ Soils; 
‐ Sediments; 
‐ Water; 
‐ Sludges. 

‐ Tolerance to high concentrations 
metals; 

‐ High metal-accumulation 
capability; 

‐ Rapid growth rate; 
‐ Accumulation of trace elements in 

the above ground parts; 
‐ Easy to harvest; 
‐ Extended root system for 

exploring large soil volumes; 
‐ High translocation factor; 
‐ Easy agricultural management; 
‐ Good adaptation to prevailing 

environmental and climatic 
conditions; 

‐ Resistance to pathogens and pests; 
‐ Rrepulse herbivores to avoid food 

chain contamination. 

Phytostabilization 

Reduction of 
mobility and 
bioavailabilit

y of 
pollutants in 
environment 

either by 
physical or 
chemical 
effects 

Contaminant 
containment 

Heavy metals; 
Chlorinated 

solvents 

‐ Soil; 
‐ Sediments; 
‐ Sludges. 

‐ The ability to develop extended 
and abundant root systems; 

‐ The ability to keep the 
translocation of metals from roots 
to shoots as low as possible; 

‐ The capacity to retain the 
contaminants in the roots or 
rhizosphere (excluder mechanism) 
to limit the spreading through the 
food chain. 

Phytovolatilization 

The process 
of absorption 
of pollutants 
by plants and 
volatilization 

into the 
atmosphere 
by the foliar 

system 

Contaminant 
extraction 

from media 
and release to 

air 

Chlorinated 
solvents; 
Inorganic 

compounds 
 

‐ Grouwndwat
er 

‐ Soil 
‐ Sediments 
‐ Sludges 

‐  

Rhizofiltration 

The use of 
plant roots to 

absorb or 
adsorb 

contaminants 
that are in 
solution 

surrounding 
the root zone 

Contaminant 
extraction 

and capture 

Heavy metals; 
Ogranic 

compounds 

‐ Surface 
Waters; 

‐ Wastewaters. 

‐ Metal-resistant plants; 
‐ High adsorption surface; 
‐ Tolerance of  Hypoxia; 
‐ Terrestrial plants are preferred 

because they have a fibrous and 
much longer root system, 
increasing the amount of root 
area. 

 
processes, it cannot be expected to clean up the soil only by one plant species used exclusively in monoculture 
[114]. Grasses, with their highly developed root system, can stabilize the soils and reduce erosion, while le-
gumes can add nitrogen to the soil, preparing the establishment of other plant species typical of later stages of 
succession [115]-[117]. 

Perennial grasses develop a large plant biomass in a relatively short time and are recognized as heavy metal 
tolerant biosystems, accumulating high levels of these elements [54]. However, the shorter growing period of 
the seasonal flowering plants is a better option in phytoremediation over perennial plants, as it can be harvested 
yearly or seasonally, and the area can be replanted with subsequent seasonal flowering plants [109]. 

For phytoremediation, it is better to use plant species adapted to the climatic and soil conditions of the 
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Table 3. Advantages and limitations of phytoremediation [11] [12] [23] [54] [56] [84] [97] [98].                                   

Advantages Limitations 

Cost Time 

‐ Low capital and operating cost; 
‐ Metal recycling provides further economic advantages. 

‐ Slower compared to other techniques and seasonally 
dependent; 

‐ Most of the hyperaccumulators are slow growers. 

‐ Low capital and operating cost; 
‐ Metal recycling provides further economic advantages. 

‐ Slower compared to other techniques and seasonally 
dependent; 

‐ Most of the hyperaccumulators are slow growers. 

Performance 

‐ Permanent treatment solution; 
‐ Capable of remediating bioavailable fraction of 

contaminants; 
‐ Capable of mineralizing organics; 
‐ The potential to treat sites polluted with more than one type 

of pollutant; 
‐ It is restricted to the rooting depth of remediative plants; 
‐ Highly-specialized personnel not required; 
‐ Can be used for site investigation or after closure. 

‐ Not capable of 100% reduction; 
‐ High contaminant concentration may be toxic to plants; 
‐ Soil phytoremediation is applicable only to surface soils; 
‐ Restricted to sites with low contaminant concentrations; 
‐ Requires technical strategy, expert project designers with field 

experience that choose the proper species and cultivars for 
particular metals and regions. 

Application 

‐ In situ application avoids excavation and transport of polluted 
media; 

‐ Relatively easy to implement. 
‐  

‐ The presence of multiple types of heavy metals  and organic 
contaminants may pose a challenge; 

‐ Climatic conditions are a limiting factor. 

Impact in the environment and population 

‐ Reduce the risk of spreading the contamination; 
‐ Eliminate secondary air or water borne Wastes; 
‐ Public acceptance due to aesthetic reasons. 

‐ Metals can be washed by rain and transported back into the soil 
du the decomposition of plant biomass; 

‐ The use of invasive, non-native species can affect biodiversity; 
‐ Risk of food chain contamination in case of mismanagement 

and lack of proper care. 

 
area to be de-polluted [54] [86] [118]. Use of indigenous plant species is generally favoured because they show 
tolerance to imposed stress conditions, require less maintenance and present fewer environmental and human 
risks than non-native or genetically altered species [119]. However, particular non- native plant may work best 
remediation of specific contaminant and can be safely used under circumstances where the possibility of inva-
sive behaviour has been eliminated [120]. 

7. Conclusion 
Phytoremediation is a promising green technology that can be used to remediate heavy metal contaminated soils. 
In developing countries like Morocco, this technology can provide low-cost solution to remediate contaminated 
area, especially abandoned industrial sites (mines and landfills). The complexity of factors that control the effi-
ciency of this technique, such as soils properties, plant species and climatic conditions, fact that more researches 
need to be conducted. More species that have remediative abilities need to be identified, especially the plants 
that can contribute to social and economic development of local population, such as industrial species. Also, in 
the future, research should focus on developing agricultural techniques to enhance phytoremediation efficiency 
and reduce time and cost of heavy metal removal from soils. The valorization of some industrial residue in order 
to increase the heavy metal phytoavailability can be investigated. 
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Table 4. The advantages and limitations of various mechanisms of phytoremediation [54] [85] [89] [99]-[102].                       

Mechanisms Advantages  Limitation 

Phytoextraction 

‐ The cost of phytoextraction is fairly 
Inexpensive; 

‐ The contaminant is permanently removed 
from the soil ; 

‐ The amount of waste material that must be 
disposed of is substantially decreased ( up to 
95%); 

‐ The contaminant can be recycled from the 
contaminated plant biomass.  

‐ Metal hyperaccumulators are generally 
slow-growing with a small biomass and shallow 
root systems; 

‐ Plant biomass must be harvested and removed, 
followed by metal reclamation or proper disposal 
of the biomass; 

‐ Metals may have a phytotoxic effect.  

Phytostabilization 

‐ The disposal of hazardous material or biomass 
is not required ; 

‐ Very effective when rapid immobilization is 
needed to preserve ground and surface 
waters ; 

‐ The presence of plants also reduces soil 
erosion and decreases the amount of water 
available in the system; 

‐ Soil removal is unnecessary; 
‐ It has a lower cost and is less disruptive than 

other more-vigorous soil remedial 
technologies; 

‐ Revegetation enhances ecosystem restoration; 
‐ Method with good results in prevention of 

acid mine discharges and metal stabilization.  

‐ The contaminants remain in place; 
‐ The vegetation and soil may require long-term 

maintenance to prevent rerelease of the 
contaminants and future leaching; 

‐ Vegetation may require extensive fertilization or 
soil modification using amendments; 

‐ Plant uptake of metals and translocation to the 
aboveground portion must be avoided; 

‐ The root zone, root exudates, contaminants, and 
soil amendments must be monitored to prevent an 
increase in metal solubility and leaching; 

‐ Phytostabilization might be considered to only be 
an interim measure; 

‐ Contaminant stabilization might be due primarily 
to the effects of soil amendments, with plants 
only contributing to stabilization by decreasing 
the amount of water moving through the soil and 
by physically stabilizing the soil against erosion. 

Phytovolatilization 

‐ The contaminant, mercuric ion, may be 
transformed into a less toxic substance; 

‐ Contaminants could be transformed to 
less-toxic substances; 

‐ Contaminants or metabolites released to the 
atmosphere might be subject to more effective 
or rapid natural degradation processes such as 
photodegradation. 

‐ The contaminant or a hazardous metabolite might 
be released into the atmosphere; 

‐ The contaminant or a hazardous metabolite might 
accumulate in vegetation and be passed on in 
later products such as fruit or lumber; 

‐ Low levels of metabolites have been found in 
plant tissue. 

Rhizofiltration 

‐ The ability to use both terrestrial and aquatic 
plants for either in situ or ex situ applications; 

‐ Species other than hyperaccumulators may be 
used; 

‐ An ex situ system can be placed anywhere 
because the treatment does not have to be at 
the original location of contamination. 

‐ The constant need to adjust pH to obtain optimum 
metals uptake; 

‐ Plants may first need to be grown in a greenhouse 
or nursery;  

‐ Periodic harvesting and plant disposal are 
required; 

‐ Tank design must be well engineered;  
‐ A good understanding of the chemical 

speciation/interactions is needed; 
‐ The chemical speciation and interaction of all 

species in the influent have to be understood and 
accounted for; 

‐ Metal immobilization and uptake results from 
laboratory and greenhouse studies might not be 
achievable in the field. 
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