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Abstract 
 
This paper presents an optimization technique coupling two optimization techniques for solving Economic 
Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both 
genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated 
solutions which gets iteratively updated in the presence of new solutions based on the concept of 
ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search 
engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-
dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has 
been implemented to identify best compromise solution, which will satisfy the different goals to some extent. 
Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator 
test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential 
to solve the multiobjective EELD problem. 
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1. Introduction 

The purpose of EELD problem is to figure out the opti-
mal amount of the generated power for the fossil-based 
generating units in the system by minimizing the fuel 
cost and emission level simultaneously, subject to vari-
ous equality and inequality constraints including the se-
curity measures of the power transmission/distribution. 

Different techniques have been reported in the litera-
ture pertaining to economic emission load dispatch pro- 
blem. In [1,2] the problem has been reduced to a single 
objective problem by treating the emission as a con-
straint with a permissible limit. This formulation, how-
ever, has a severe difficulty in getting the trade-off rela-
tions between cost and emission. Alternatively, minimiz-
ing the emission has been handled as another objective in 
addition to usual cost objective. A linear programming 
based optimization procedures in which the objectives 
are considered one at a time was presented in [3]. Un-
fortunately, the EELD problem is a highly nonlinear and 

a multimodal optimization problem. Therefore, conven-
tional optimization methods that make use of derivatives 
and gradients, in general, not able to locate or identify 
the global optimum. On the other hand, many mathe-
matical assumptions such as analytic and differential ob-
jective functions have to be given to simplify the prob-
lem. Furthermore, this approach does not give any in-
formation regarding the trade-offs involved. 

In other research direction, the multiobjective EELD 
problem was converted to a single objective problem by 
linear combination of different objectives as a weighted 
sum [4-7]. The important aspect of this weighted sum 
method is that a set of Pareto-optimal solutions can be 
obtained by varying the weights. Unfortunately, this re-
quires multiple runs as many times as the number of de-
sired Pareto-optimal solutions. Furthermore, this method 
cannot be used to find Pareto-optimal solutions in prob-
lems having a nonconvex Pareto-optimal front. In addi-
tion, there is no rational basis of determining adequate 
weights and the objective function so formed may lose 
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significance due to combining noncommensurable objec-
tives. To avoid this difficulty, the  -constraint method 
for multiobjective optimization was presented in [8,9]. 
This method is based on optimization of the most pre-
ferred objective and considering the other objectives as 
constraints bounded by some allowable levels. These 
levels are then altered to generate the entire Pareto-optimal 
set. The most obvious weaknesses of this approach are 
that it is time-consuming and tends to find weakly non-
dominated solutions. 

Goal programming method was also proposed for mul-
tiobjective EELD problem [10]. In this method, a target 
or a goal to be achieved for each objective is assigned 
and the objective function will then try to minimize the 
distance from the targets to the objectives. Although the 
method is computationally efficient, it will yield an infe-
rior solution rather than a noninferior one if the goal 
point is chosen in the feasible domain. Hence, the main 
drawback of this method is that it requires a priori know-
ledge about the shape of the problem search space. 

Heuristic algorithms such as genetic algorithm have 
been recently proposed for solving OPF problem [11-13]. 
The results reported were promising and encouraging for 
further research. Moreover the studies on heuristic algo-
rithms over the past few years, have shown that these 
methods can be efficiently used to eliminate most of dif-
ficulties of classical methods [14-18]. Since they are 
population-based techniques, multiple Pareto-optimal 
solutions can, in principle, be found in one single run. 

In this paper a hybrid multiobjective approach is pro-
posed, which based on concept of co-evolution and re-
pair algorithm for handing constraints. ε-Dominance con-
cept was implemented to maintains a finite-sized archive 
of non-dominated solutions which gets iteratively up-
dated according to the chosen ε-vector. TOPSIS [19] 
approach has been implemented to select best compro-
mise solution, which will satisfy the different goals to 
some extent. Also, LS method was introduced as neigh-
borhood search engine where it intends to explore the 
less-crowded area in the current archive to possibly ob-
tain more nondominated solutions. 

2. Multiobjective Optimization 

Multiobjective optimization [11] differs from the single 
objective case in several ways: 
 The usual meaning of the optimum makes no sense in 

the multiple objective case because the solution opti-
mizing all objectives simultaneously is, in general, 
impractical; instead, a search is launched for a feasi-
ble solution yielding the best compromise among ob-
jectives on a set of, so called, efficient solutions; 

 The identification of a best compromise solution re-
quires taking into account the preferences expressed 

by the decision-maker; 
 The multiple objectives encountered in real-life pro- 

blems are often mathematical functions of contrasting 
forms. 

 A key element of a goal programming model is the 
achievement function; that is, the function that meas-
ures the degree of minimization of the unwanted de-
viation variables of the goals considered in the model. 
A general multiobjective optimization problem is ex-
pressed by:  
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where      1 2 , , , mf x f x f x are the m objectives func-
tions,  1 2, , , nx x x

 nS R
 are the n optimization parameters, 

and  is the solution or parameter space. 
Definition 1. (Pareto optimal solution ): *x  is said to 

be a Pareto optimal solution of MOP if there exists no other 
feasible x  (i.e., x S ) such that,    *

j jf x f x  for 
all 1, ,j m2,   and  j  *

jf x f x  for at least one 
objective function jf . 

Definition 2 [20]. (ε-dominance) Let : mf x  R  and 
,a b X . Then  is said to ε-dominate  for some ε 

> 0, denoted as , if and only if for 
a b
a b  i m1, ,   

     1 i if a f  b  
According to Definition 2, the ε value stands for a 

relative “tolerance” allowed for the objective values 
which declared in Figure 1. This is especially important 
in higher dimensional objective spaces, where the con-
cept of ε-dominance can reduce the required number of 
solutions considerably. Also, the use of  -dominance 
also makes the algorithms practical by allowing a deci-
sion maker to control the resolution of the Pareto set ap-
proximation by choosing an appropriate   value. 

3. Economic Emission Load Dispatch 
(EELD) 

The economic emission load dispatch involves the si-
multaneous optimization of fuel cost and emission object-  

 

 

Figure 1. Graphs visualizing the concepts of dominance (left) 
and ε-dominance (right). 
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tives which are conflicting ones. The deterministic prob-
lem is formulated as described below. 

3.1. Objective Functions 

Fuel Cost Objective. The classical economic dispatch 
problem of finding the optimal combination of power 
generation, which minimizes the total fuel cost while 
satisfying the total required demand can be mathemati-
cally stated as follows [9]: 

   2

1 1

( ) $ hr
n n

t i Gi i i Gi i Gi
i i

f C C P a b P c P
 

        

where 
: total fuel cost ($/hr),  : is fuel cost of generator 

, , :  fuel cost coefficients of generator ,
i

i i i

C C

a b c i

i
 

: power generated ( . )by generator ,

: number of generator.
GiP p u

n

i
 

Emission Objective. The emission function can be 
presented as the sum of all types of emission considered, 
such as NOx , 2SO , thermal emission, etc., with suitable 
pricing or weighting on each pollutant emitted. In the 
present study, only one type of emission NOx  is taken 
into account without loss of generality. The amount of 
NOx emission is given as a function of generator output, 
that is, the sum of a quadratic and exponential function: 

   
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where, , , , ,i i i i i     : coefficients of the i th genera-
tor’s NOx  emission characteristic. 

3.2. Constraints 

The optimization problem is bounded by the following 
constraints: 
 Power balance constraint. The total power gener-

ated must supply the total load demand and the 
transmission losses. 

1

0
n

Gi D Loss
i

P P P


    

where DP : total load demand (p.u.), and : trans-
mission losses (p.u.). 

lossP

The transmission losses are given by [21]: 
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n: number of buses 

ijR
V

: series resistance connecting buses i and j 

i : voltage magnitude at bus i 

i : voltage angle at bus i 

i

Q
P : real power injection at bus i 

: reactive power injection at bus i 
 Maximum and Minimum Limits of Power Gen-

eration. The power generated GiP  by each generator 
is constrained between its minimum and maximum 
limits, i.e., 

min max min max

min max

,       ,

,              1, ,
Gi Gi Gi Gi Gi Gi

i i i

P P P Q Q Q

V V V i n

   

   
 

where minGi : minimum power generated, and : 
maximum power generated. 

P maxGiP

 Security Constraints. A mathematical formulation 
of the security constrained EELD problem would re-
quire a very large number of constraints to be consid-
ered. However, for typical systems the large propor-
tion of lines has a rather small possibility of becom-
ing overloaded. The EELD problem should consider 
only the small proportion of lines in violation, or near 
violation of their respective security limits which are 
identified as the critical lines. We consider only the 
critical lines that are binding in the optimal solution. 
The detection of the critical lines is assumed done by 
the experiences of the DM. An improvement in the 
security can be obtained by minimizing the following 
objective function.  

    max

1

k

Gi j G j
j

S f P T P T


    

where,  j GT P  is the real power flow is the 
maximum limit of the real power flow of the jth line and 
k is the number of monitored lines. The line flow of the 
jth line is expressed in terms of the control variables Gs , 
by utilizing the generalized generation distribution fac-
tors (GGDF) [22] and is given below. 

max
jT

P

   
1

n

J G ji
i

T P D P


  Gi  

where, ji  is the generalized GGDF for line j, due to 
generator i. 

D

For secure operation, the transmission line loading 
is restricted by its upper limit as lS

max , 1, ,S S n       

where  is the number of transmission line. n


 

3.3. Multiobjective Formulation of EELD 
Problem 

The multiobjective EELD optimization problem [11] is 
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therefore formulated as: 
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4. The Proposed Algorithm 

Recently, the studies on evolutionary algorithms have 
shown that these algorithms can be efficiently used to 
eliminate most of the difficulties of classical methods 
which can be summarized as: 
 An algorithm has to be applied many times to find 

multiple Pareto-optimal solutions. 
 Most algorithms demand some knowledge about the 

problem being solved. 
 Some algorithms are sensitive to the shape of the 

Pareto-optimal front. 
 The spread of Pareto-optimal solutions depends on 

efficiency of the single objective optimizer. 
It is worth mentioning that the goal of a multiobjective 

optimization problem is not only guide the search to-
wards Pareto-optimal front but also maintain population 
diversity. 

4.1. Initialization Stage 

The algorithm uses two separate population [11], the first 
population  consists of the individuals which ini-
tialized randomly satisfying the search space (The lower 
and upper bounds), while the second population  
consists of reference points which satisfying all con-
straints. However, in order to ensure convergence to the 
true Pareto-optimal solutions, we concentrated on how 
elitism could be introduced in the algorithm. So, we pro-
pose an archiving/selection [20] strategy that guarantees 
at the same time progress towards the Pareto-optimal set 
and a covering of the whole range of the non-dominated 
solutions. The algorithm maintains an externally fi-
nite-sized archive 

 tP

 tR

 tA  of non-dominated solutions which 
gets iteratively updated in the presence of new solutions 
based on the concept of  -dominance. 

4.2. Repair Algorithm 

The idea of this technique [11] is to separate any feasible 
individuals in a population from those that are infeasible 
by repairing infeasible individuals. This approach co- 
evolves the population of infeasible individuals until they 
become feasible. Repair process works as follows. As-
sume, there is a search point S

r S

 (where  is the 
feasible space). In such a case the algorithm selects one 
of the reference points (Better reference point has better 
chances to be selected), say  and creates random 
points 

S

Z  from the segment defined between ,  r , but 
the segment may be extended equally on both sides de-
termined by a user specified parameter  0, 1 . Thus, a 
new feasible individual is expressed as: 

   1 21 ,    1z r z r                

where  1 2       and  0,  1   is a random 
generated number 

4.3. LS Stage 

In this stage, we present modified local search technique 
(MLS) [23] to improve the solution quality and to ex-
plore the less-crowded area in the external archive to 
possibly obtain more nondominated solutions nearby. 
We propose a MLS, which is a modification of Hooke 
and Jeeves method [24] to be suitable for MOP. The 
general procedure of the MLS techniques can be de-
scribed by the following steps. 

Step 1. Start with an arbitrarily chosen point 
 n

m
tX E  , and the prescribed step lengths ix   in 

each of the coordinate directions i  Set m 
= 0, assume that m is the size of .  

, 1, 2, ,u i  
t

.n
E

Step 2. Set m = m + 1, and k = 1 where k is number of 
trial (s.t., max1, ,k k  ) to obtain preferred solution than 

mX .  
Step 3. The variable ix   is perturbed about the current 

temporary base point mX  to obtain the new temporary 
base point mX    as : 
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where,    mf f X  ,    m i if f X x u     , and  
   m i if f X x u   . Assume  f  is the evaluation of 

the objective functions at a point. 
Step 4. If the point mX   unchanged. 
While the number of trial k not satisfied, reduce the 

step length ix . The following dynamic equation is 
presented to reduce ix , 
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   max1 ,      0,1
k

k
i ix x r r
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and go to step 3. 
Step 5. Else, if mX   is preferred than mX  (i.e., 
   m mf X f X  ) ,then mX    is the new base point. 
Step 6. With the help of the base points mX    mand X  , 

blish a pattern direction S as esta

m mS X X   

and find a point mX 
 

as λSm mX X   , where   is 
the step length, (taken as 1). 

Step 7. If   m m f X f X 
 
set m mX X  , m mX X  , 

and go to 6. 
Step 8. If   m m f X f X 

 
set m mX X  , and go to 

4. 
These steps is implemented on all nondominated solu-

tions in tA  to get the true Pareto optimal solution and to 
explore the less-crowded area in the external archive. 
Figure 2 shows the pseudo code of the MLS algorithm. 

4.4. Identifying a Best Compromise Solution 

Optimization of the above-formulated objective func-
tions [11] yields not a single optimal solution, but a set 
of Pareto optimal solutions, in which one objective can-
not be improved without sacrificing other objectives. For 
practical applications, however, we need to select one 
solution, which will satisfy the different goals to some 
extent. Such a solution is called best compromise solu-
tion. TOPSIS method given by Yoon and Hwang [19] 
has the ability to identify the best alternative from a fi-
nite set of alternatives quickly. It stands for “Technique 
for Order Preference by Similarity to the Ideal Solution” 
which based upon the concept that the chosen alternative 
should have the shortest distance from the positive ideal 
solution and the farthest from the negative ideal solution. 
 

MLS technique 

Start with  t

mX E
Generate  mX 

While (    mf X f X  m stopped criterion satisfied) DO 

If  m mX X 
Reduce  Generate  ix  mX 

End 

Establish a pattern direction  Generate  S  mX 

If    m mf X f X  , set ,  m mX X  m mX X 
Set  Generate  S  mX 

Else if    m mf X f X   

m mX X   

End 

End 

Figure 2. The pseudo code of the MLS algorithm. 

TOPSIS can incorporate relative weights of criterion 
importance. The idea of TOPSIS can be expressed in a 
series of steps. 

Step1: Obtain performance data for n alternatives over 
M criteria ijx   1, , , 1, ,i n j M   . 

Step2: Calculate normalized rating (vector normaliza-
tion is used) . ij

Step3: Develop a set of importance weights 
r

jW , for 
each of the criteria. The basis for these weights can be 
anything, but, usually, is adhoc reflective of relative im-
portance. 

ij j ijV w r   

Step4: Identify the ideal alternative (extreme per-
formance on each criterion) . S 

 
    
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1 2

, , , ,
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 


 

where  !J   is a set of benefit attributes and  2J   is a set 
of cost attributes. 

Step5: Identify the nadir alternative (reverse extreme 
performance on each criterion) . S 

 
    

1

1 2

, , , ,

min  , max  , 1, ,

j m

ij ij

S v v v

v j J v j J i n

   

   

 


 

Step6: Develop a distance measure over each criterion 
to both ideal ( D ) and nadir ( ). D

   _2 2
,         i ij j i ij j

j j

D v v D v v        

Step7: For each alternative, determine a ratio R equal 
to the distance to the nadir divided by the sum of the 
distance to the nadir and the distance to the ideal, 

D
R

D D



 


 

Step8: Rank alternative according to ratio R (in Step 7) 
in descending order, recommend the alternative with the 
maximum ratio. The pseudo code of the proposed algo-
rithm are shown in Figure 3. 

4.5. Basic Algorithm 

It uses two separate population, the first population 
 0tP   (where t is the iteration counter) consists of the 

individuals which initialized randomly satisfying the 
search space, while the second population  consists 
of reference points which satisfying all constraints. Also, 
it stores initially the Pareto-optimal solutions externally 
in a finite sized archive of non-dominated solutions 

 tR

 0A . 
We use cluster algorithm to create the next population  
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1.  A, x

2. D x A:box x box x

3. if D  

4. \

5.  :

6. { } \

7. : ( ( ) ( ))

8. { }

9. 

10. 

11. 

12.  

INPUT

then

A A x D

else if x box x box x x x then

A A x x

else if x box x box x then

A A x

else

A A

endif

OUTPUT A



 




    

 

 






 

 



 


 



 

Figure 3. Algorithm of select operator. 
 

 1tP  , if    tP A t  (i.e., the size of the population 
 greater than the size of archive ) then new 

population  consists of all individual from 

 tP ( )tA
 1tP   tA  

and the population  are considered for the clustering 
procedure to complete  , if 

 tP
 1tP    t A tP  then P  

solutions are picked up at random from  tA  and di-
rectly copied to the new population .  1tP 

Since our goal is to find new nondominated solutions, 
one simple way to combine multiple objective functions 
into a scalar fitness function is the following weighted 
sum approach: 

       1 1
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m m j j
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where x is a string (i.e., individual),  f x  is a com-
bined fitness function,  if x  is the ith objective function. 
When a pair of strings is selected for a crossover operation, 
we assign a random number to each weight as follows. 
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population according to he following selection probabil-
ity  

w

x  o ing x in the population  tP  f a str

 
    
     

 

min

min

,  

t

t

t

x P

f x f P
x

f x f P








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This step is repeated for selecting 2P  Paris of 
strings from the current populations. For each selected 
pair apply crossover operation to generate two new strings, 
for each strings generated by crossover operation, apply 
a mutation operator with a pre-specified mutation prob-

ability. The system also includes the survival of some of 
the good individuals without crossover or selection. This 
method seems to be better than the others if applied con-
stantly. 

Algorithm in Figure 4, shows the proposed algorithm. 
The purpose of the function generate is to generate a 
new population in each iteration t, possibly using the 
contents of the old population  and the old archive 
set 

 1tP 

 1tA   in associated with variation (recombination 
and mutation). The function update gets the new popula-
tion  and the old archive set  tP  1tA   and determines 
the updated one, namely  tA  as indicated in Figure 3. 
The function Ls is to explore the less-crowded area in the 
current archive to possibly obtain more nondominated 
solutions which declared in pseudo code in Figure 2. 

The algorithm maintains a finite-sized archive of non- 
dominated solutions which gets iteratively updated in the 
presence of a new solutions based on the concept of 
 -dominance, such that new solutions are only accepted 
in the archive if they are not  -dominated by any other 
element in the current archive (Figure 3), The use of 
 -dominance also makes the algorithms practical by 
allowing a decision maker to control the resolution of the 
Pareto set approximation by choosing an appropriate   
value. 

5. Implementation of the Proposed 
Approach 

The described methodology is applied to the standard 
IEEE 30-bus 6-generator test system to investigate the 
effectiveness of the proposed approach. The values of 
fuel cost and emission coefficients are given in Table 1. 
For comparison purposes with the reported results, the 
system is considered as losses and the security constraint 
is released. The techniques used in this study were de-
veloped and implemented on 1.7-MHz PC using MAT-
LAB environment. Table 2 lists the parameter setting 
used in the algorithm for all runs. 
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Figure 4. Algorithm of the proposed algorithm. 
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Table 1. Generator cost and emission coefficients. 

  G1 G2 G3 G4 G5 G6 

Cost a 10 10 20 10 20 10 

 b 200 150 180 100 180 150

 c 100 120 40 60 40 100

Emission   4.09 2.54 4.25 5.42 4.25 6.13

   –5.55 –6.04 –5.09 –3.55 –5.09 –5.55

   6.49 4.63 4.58 3.38 4.58 5.15

   2E–4 5E–4 1E–6 2E–3 1E–6 1E–5

   2.85 3.333 8.000 2.000 8.000 6.667

 
Table 2. GA parameters. 

Population size (N) 60 

No. of Generation 200  

Crossover probability 0.98 

Mutation probability 0.02 

Selection operator Roulette Wheel  

Crossover operator BLX-α 

Mutation operator Polynomial mutation 

Relative tolerance   10E–6 

6. Results and Discussions 

Figure 5 shows well-distributed Pareto optimal nondo-
minated solutions obtained by the proposed algorithm 
after 200 generations after and before applying Local 
search technique. 

The results declare that, implementing local search 
improve the solution quality for the same approach Also , 
for different approaches, Tables 3 and 4 show the best 
fuel cost and best NOx  emission obtained by proposed 
algorithm as compared to Nondominated Sorting Genetic 
Algorithm (NSGA) [14], Niched Pareto Genetic Algo-
rithm (NPGA) [15] and Strength Pareto Evolutionary 
Algorithm (SPEA) [16]. It can be deduced that the pro-
posed algorithm finds comparable minimum fuel cost 
and comparable minimum NOx  emission to the three 
evolutionary algorithms. 

In this section, a compromise solution has been identi-
fied using TOPSIS technique, also the effect of changing 
the weights on the fuel cost and emission objectives was 
studied. In each case one weight is changed linearly, and 
the other weight was determined in such a way that 

1 2 . In contrast, we observed the weights and the 
corresponding values of values of 1 and 2

1w w 
  ( )f   ( )f  , to 

conclude best compromise operating point. Table 5 shows 

the values of the weights. The weights in six 
runs are shown in Table 5. Also, the best compromise 
solutions for different weights are shown in Figure 6. 

 1 2,w w 

In this subsection, a comparative study has been car-
ried out to assess the proposed approach concerning large 
size problem of the Pareto-set, DM preference and com-
putational time. On the first hand, evolutionary techniques 
 

 

Figure 5. Pareto-optimal front of the proposed approach 
(Before and after applying local search). 
 

Table 3. Best fuel cost. 

 NSGA NPGA SPEA Proposed 

1GP  0.1168 0.1245 0.1086 0.1737 

2GP  0.3165 0.2792 0.3056 0.3568 

3GP  0.5441 0.6284 0.5818 0.5411 

4GP  0.9447 1.0264 0.9846 0.9890 

5GP  0.5498 0.4693 0.5288 0.4529 

6GP  0.3964 0.39993 0.3584 0.3705 

Best cost 608.245 608.147 607.807 606.012 

Corresponding 
Emission 

0.21664 0.22364 0.22015 0.20080 

 
Table 4. Best  emission. NO x

 NSGA NPGA SPEA Proposed

1GP  0.4113 0.3923 0.4043 0.3675 

2GP  0.4591 0.4700 0.4525 0.4904 

3GP  0.5117 0.5565 0.5525 0.5177 

4GP  0.3724 0.3695 0.4079 0.4512 

5GP  0.5810 0.5599 0.5468 0.5215 

6GP  0.5304 0.5163 0.5005 0.5304 

Best Emission. 0.19432 0.19424 0.19422 0.1880 

Corresponding 
Cost 647.251 645.984 642.603 644.5346
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Table 5. Different weights (w1 is changed linearly). 

W2 W1 Run 

1 0.0 1 

0.9 0.1 2 

0.8 0.2 3 

0.7 0.3 4 

0.6 0.4 5 

0.5 0.5 6 

0.4 0.6 7 

0.3 0.7 8 

0.2 0.8 9 

0.1 0.9 10 

0.0 1.0 11 

 

 
Figure 6. Best compromise solution for different weights in 
11 runs of Table 5. 
 
suffer from the large size problem of the Pareto-set. 
Therefore the proposed approach has been used to reduce 
the Pareto-set to a manageable size. However, the goal is 
not only to prune a given set, but also to generate a rep-
resentative subset, which maintains the characteristics of 
the general set and take the DM preference into consid-
eration. Some proposed approaches have been developed 
using cluster analysis to reduce the size of the Pareto-set, 
but unfortunately it does not concern the DM preference.  

On the other hand, evolutionary techniques suffer 
from the quality of the Pareto set. Therefore the proposed 
approach has been used to increase the solution quality 
by combing the two merits of two heuristic algorithms, 
genetic algorithm and local search techniques. Where, 
the proposed algorithm implements local search (LS) 
technique as neighborhood search engine such that it 
intends to explore the less-crowded area in the current 
archive to possibly obtain more nondominated solutions 
to improve the solution quality. TOPSIS technique has 
been implemented to select best compromise solution, 

which will satisfy the different goals to some extent by 
incorporating relative weights of criterion importance 
accordingly to DM preference. Another advantage is that 
the simulation results prove superiority of the proposed 
approach to those reported in the literature, where it 
completely covers and dominates all Pareto-set found by 
the other approaches. Finally, the reality of using the 
proposed approach to handle on-line problems of realis-
tic dimensions has been approved due to small computa-
tional time. 

7. Conclusions 

The approach presented in this paper was applied to 
economic emission load dispatch optimization problem 
formulated as multiobjective optimization problem with 
competing fuel cost, and emission. The algorithm main-
tains a finite-sized archive of non-dominated solutions 
which gets iteratively updated in the presence of new 
solutions based on the concept of ε-dominance. More-
over, local search is employed to explore the less- 
crowded area in the current archive to possibly obtain 
more nondominated solutions. Also to identify the best 
compromise solution Topsis technique was applied by 
incorporating relative weights of criterion importance. The 
following are the significant contributions of this paper: 

1) The proposed technique has been effectively ap-
plied to solve the EELD considering two objectives si-
multaneously, with no limitation in handing more than 
two objectives. 

2) Allowing a decision maker to control the resolution 
of the Pareto set approximation by choosing an appropri-
ate   value. 

3) The proposed approach has the ability to identify 
the best alternative from a finite set of alternatives 
quickly by incorporating relative weights of criterion 
importance. 

4) The proposed approach is efficient for solving non-
convex multiobjective optimization problems where mul-
tiple Pareto-optimal solutions can be found in one simu-
lation run. 

5) Local search method is employed to explore the 
less-crowded area in the current archive to possibly ob-
tain more nondominated solutions. 

6) This work may be very valuable for on-line opera-
tion of power systems when environmental constraints 
are also need to be considered. In addition to on-line op-
eration, this work can be a part of an off-line planning 
tool when there are hard limits on how much emission is 
acceptable by a utility over a period of a month or a year. 

For further work, we intend to solve large scale EELD 
problem with multiple dimension in a different vision 
using energy market which changes the role of dis-
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