
Journal of Modern Physics, 2011, 2, 724-729 
doi:10.4236/jmp.2011.27085 Published Online July 2011 (http://www.SciRP.org/journal/jmp) 

Copyright © 2011 SciRes.                                                                              JMP 

Quantum Statistical Properties of the Interactions of 
Atom-Field Entanglement between Conducting Plates 

Eied Khalil 
Mathematics Department, Faculty of Science, Taibah University, Madinah, Saudi Arabia 

Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt 
E-mail: eiedkhalil@yahoo.com 

Received March 18, 2011; revised May 12, 2011; accepted May 27, 2011 

Abstract 
 
The electromagnetic field inside perfectly conducting parallel plates interacting with two-level atom is inves-
tigated. The cavity modes are firstly quantized, allowing the effective Hamiltonian to be evaluated for an 
electric dipole located at an arbitrary point. Some statistical aspect of this effective Hamiltonian such as the 
temporal evolution of the atomic inversion and the von Neuman entropy are presented. Theses aspects are 
sensitive to the changes of the distance between the two plates, which control the number of the propagating 
of the cavity modes. 
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1. Introduction 

The entanglement plays a central role in quantum infor-
mation, quantum computation and communication, and 
quantum cryptography [1,2]. This is quite obvious from 
the efforts which have been devoted to characterize en-
tanglement properties qualitatively and quantitatively 
and to apply them in quantum information. Also, it has 
been shown that the purification of the atomic state is 
actually independent of the nature of the initial pure state 
of the radiation field. Study of (atom/field) Boltzmann- 
Gibbs entropy as a system dynamical parameter and as a 
measure of field-atom correlation for the two-level 
Jaynes Cummings (JC) model [3] has been given in [4]. 

Maximally entangled states of two qubit systems have 
already been produced experimentally in photonic sys-
tems [5] and in the internal degrees of freedom of atoms 
interacting with a microwave cavity [6]. In the case of 
trapped ions [7], maximally entangled states have been 
created through the manipulation of their collective mo-
tion, but cavity QED devices are needed for transferring 
the stored information. Despite the diverse and recent 
theoretical proposals, see [8-10] and references therein, 
generation of maximally entangled states of two atoms 
inside an optical cavity has not yet been accomplished in 
the lab. The relevance of this achievement strongly relies 
on the possibility of using atoms in optical cavities as 
quantum networks [11], where quantum processing could 
take place among the entangled atoms and quantum in-

formation could be distributed among distant cavities 
[12-16]. 

In this paper we examine the entanglement between 
atom and electromagnetic field inside perfectly conduct-
ing parallel plates which acts as a totally confinement of 
all introduced fields into the vacuum region. Because of 
its relative simplicity as a confining structure, this system 
has a distinguished history as a testing ground for the 
confinement effects in quantum electrodynamics. How-
ever, as far as we know, the entanglement between atom 
and electromagnetic field inside perfectly conducting 
parallel plates in such a fundamental system have not 
previously been investigated. It is the primary purpose of 
this paper to examine the essential ingredients of the 
theory leading to the description of entanglement be-
tween atom and electromagnetic field inside perfectly 
conducting parallel plates. Such a study should provide 
the initial steps towards a more comprehensive under-
standing of the nature of entanglement process within 
confinement systems in general. 

The material of this paper is organized as follows. In 
Section 2 we introduce the effective Hamiltonian for an 
atom coupled to the quantized field between the plates. 
By using the evolution operator, the expression of the 
dynamical operators and the wave function at any time t > 
0 is obtained in Section 3. In Section 4 is devoted to a 
discussion of the atomic inversion and we find that it exhi-
bits collapses and revivals for increases of the distance 
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between the two plates decreases of the collapses regions. 
In Section 5 we write the mathematical form for the field 
entropy and we use numerical computations to examine 
the effect of the distance between the two plates on the 
evolution of the field entropy and hence entanglement 
between the atom and the field. Finally, we conclude the 
paper in Section 6 with some brief remarks. 

2. Effective Hamiltonian 

The atom of mass is characterized by its electric dipole 
moment of oscillation frequency interacting with the 
electromagnetic modes between two conducting plates. 
The effective Hamiltonian can be written as:  

( ) ( )
2

0 z

ˆ
ˆˆˆˆ ˆω

2
H U

M
µσ= + + − ⋅ + f

P rE Hr     (1) 

where P and r are the momentum and position vectors of 
the atomic centre of mass, which is assumed to be sub-
ject to a general potential ( )U r . In the two-level ap-
proximation the internal motion of the atom involves 
only two states: e > of energy 𝐸𝐸𝑒𝑒 and g > of energy 

gE , such that 0ωe gE E− =  . For internal atomic states 
such that ( )ˆˆˆ egµ µ σ σ+ −= ⋅ + where the operators zσ , 
σ+  and σ−  are the Pauli operators which satisfying the 
following commutation relations:  

[ ] [ ] [ ]ˆˆˆˆˆˆˆˆˆ, , , 2 , , 2z z zσ σ σ σ σ σ σ σ σ+ − + + − += = − =    (2) 

Finally ( )E r  is the electric field operator and is the 
electromagnetic field Hamiltonian. The quantized fields 
between perfectly conducting plates are well known 
[17,18] and can be written in terms of transverse electric 
(s-polarized) and transverse magnetic (p-polarized) 
modes satisfying the electromagnetic boundary condi-
tions at the plates. We write for ( )E r : 

( ) ( ){ }
( )

( , )

s p n

t

d a n n t H cη η
η

|| || ||
= ,

=

, , , , + . .∑ ∑∫

E r

k k k r
 (3) 

where H c. .  stands for “Hermitian conjugate” and 
( )a nη || ,k is the boson operator for the field mode of po-

larization ( )s pη = , , characterized by the integer quan-
tum number and the parallel weave vector ||k . The rele- 
vant commutation relation are: 

( ) ( ) ( )†
nna n a nη η ηηδ δ δ′ ′|| || || ||

  ′, , , = − k k k k      (4) 

Finally, ( )n tη || , , , k r  are the mode function satisfy 
electromagnetic boundary conditions at the conducting 
plates. Assuming that the parallel plates are positioned at 

0=z and L=z , we have the mode functions: 

( ) ( ) ˆ sin exps
n zn t C n z i
L|| || ||
π , , , = , × Θ 

 
 k r k k  (5) 

and 

( ) ( )
( )

ππˆ sin
exp

πˆ cos
p

n n ziic C n L L
n t i

n zn z
L

ω
||

||
||

    
    − ,     , , , = Θ

 ,  −  
  

||




kk

k r
k k

 
              (6) 

where carets denote unit vectors and we have written 

( )n tω|| || ||
 Θ = ⋅ − , k r k  and ( ),

||
= zr r . ( )C k n|| ,  

is 

the a normalization factor given by:  

( ) ( )
1
2

0 n

n
C n

ALf
ω

ε
||

||

 ,
 , =
 
 

 k
k             (7) 

with 0 2f = and 1nf =  for 0n > . A  is the (large) 
surface area of the plates. Throughout ( )nω || ,k , is the 
mode frequency such that:  

( )
2 2

2 2 2
2

πnn c
L

ω || ||

 
, = + 

 
k k           (8) 

The 𝑇𝑇𝑇𝑇  and 𝑇𝑇𝑇𝑇 frequency branches for a typical 
parallel-plates system are shown in Figure 1. Depending 
on the value of the dipole frequency 𝜔𝜔0, contributions to 
the emission rate arise from all branches satisfying the 
condition 

( ) ( )|| 0,Q nω ω ω= =k            (9)  

Since ( )|| , nω k  depends on the guide dimensions L 
entering via ||k , Equation (1) conceals the dependence 
on the chosen values of L. The plot of ω  versus ||k  
exhibits in Figure 1 a series of branches, one for each n, 
and it is easy to see that the minima of these branches 
(occurring at ||K ) are separated by the frequency differ-
ence ω∆  given by 

cπω
L

∆ =                  (10) 

The branch separation therefore increases with de-
creasing L. The large value of ω∆  will be emphasized 
as a special feature here for cavities with typically 
sub-wavelength dimensions. On the other hand, the 
spontaneous decay of a dipole of frequency greater than 
( )0,  1ω  will involve the 0TM  lowest branch as well 

as the 1TE  and 1TM  branches. If, in addition, this di-
pole is oriented along the axis, only the 0TM  and 1TM  
branches provides a decay channel, since the axial dipole 
cannot couple to the TE  modes. These observations, 
which are significant for sub-micron system, are substan-
tiated further with the calculation of the entanglement, as 
we now show. 
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3. The Dynamical Operators 
 
In this section we use the effective Hamiltonian for a 
two-level atom coupled to the quantized eletro-magnetic 
field between conducting plates in Equation (1) to study 
the dynamics of this system. For simplicity we write the 
effective Hamiltonian as follows ( 1= ): 

†0ˆ ˆˆ ˆˆˆˆ( )
2 zn a aH
ω

ω σ λ σ σ+ −= + + +       (11) 

where we have taken the Raman-Nath approximation for 
the atomic Hamiltonian which leads to neglect the kinet-
ic energy term. On the other hand the interaction Hamil-
tonian part was given in the standard interaction Hamil-
tonian for a two-level atom interacting with the electro-
magnetic field in the dipole approximation and the rotat-
ing-wave approximation. By introducing the following 
operators:  

ˆ ˆΛN ω=                  (12) 

( )†ˆˆˆ ˆˆˆ
2 z aC aδ σ λ σ σ+ −= + +           (13) 

with 

1ˆ ˆˆ
2 zN n σ= +                (14) 

where 0δ ω ω= −  is the detuning parameter. It is easy 
to show that ˆN̂,Λ  and Ĉ  commute with each other 
and therefore they are constants of motion. The Hamilto-
nian (11) can be cast in the following form:  

ˆ ˆΛ̂H C= +                 (15) 
Now let us consider the atomic coherent state |θ, φ >  

which acquires both excited state |e > and ground state 
| g >  for the two-level atom in the following form: 

, cos e sin e g
2 2

iφθ θθ φ −>= > + >      (16) 

where φ  is the relative phase of the two atomic levels. 
To obtain the excited state we have to take 0θ →  
while to make the wave function describe the particle in 
the ground state we have to let πθ → . Thus, if we con-
sider the field to be initially in coherent state |𝛼𝛼 > then 
the initial state of the field takes the form: 

0 ( )n q n nα ∞

=
> = >∑            (17) 

where ( )
2 n| |exp

2 !
nq

n
α α 

= − 
 

  

is the amplitude of states | n > , and 2| |α  is the initial 
mean value of the operator n̂  with | | eiεα α=  where 
ε  is the phase of coherent state. Assuming that at time 

0t =  the system is in a pure state, thus the wave func-

tion is given by ( )|ψ0 | , |θ φ α>== > > . Therefore, the 
wave function for the system at any time t 0>  takes 
the form. ( ) ( )ψψ(0)t tU>= > , where U(t)  is the 
evolution operator. It is given by  

( ) [ ] [ ]exp exp exp expΛexp[ ]U iHt i t Ctt = − = − − . 

After straightforward calculations we find that: 

( ) ( ),e ( ),t D t T t gψ = +        (18)  

where 
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1
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 − 
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and  
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                      (20) 
with  

( )1 1 2 2 1Z nω= Ω +Ω + +            (21) 

1 22ˆ 2 nZ ω= Ω +Ω +              (22) 
2

2 2ˆ 1 2
4

j
j jd j

δ
λ ν= + , = ,           (23) 

( )2 2
1 2ˆˆ 1ˆˆ n nλ λν ν= + , =           (24) 

The reduced density matrix for the field is given by 
( ) ( ) ( )f

atomt Tr t tρ ψ ψ= , such that : 

( ) ( ) ( ) ( ) ( )f t D t D t T t T tρ = +      (25) 

where ( )D t  and ( )T t  are given by Equations (19, 
20) respectively.  

Once the wave function is computed, we can calculate 
any expectation value related to the atom or the field 
which is done in the next sections.  
 
4. The Atomic Inversion 
 
The level population inversion of the atom is one of the 
important atomic dynamic variables of the system. This in 
fact would give information about the behavior of the 
atom during the interaction period. The atomic inversion 
for the system which is given by 
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( ) ( ) ( ) ( ) ( )( )1
2

W t D t D t T t T t= < > − < >     (26) 

Therefore, we have plotted the function W(t) against 
the scaled time λt to display its behavior for the case in 
which Δ = 0 and for different values of the coupling pa-
rameter ratio z/L. Furthermore, we consider the mean 
photon number 2| | 25α = . In Figure 2(a) we take z/L = 
0.15, as one can see that the function W(t) shows that the 
collapses and revivals of the standard JCM behaviour as 
would be expected. For z/L = 0.3, different behaviour is 
observed where the amplitude the oscillatory behaviour 
after the onset of interaction is decreased, while the col-
lapse region as shows decaying. In the second period of 
the revival the function W(t) shows similar envelop to 
JCM, however, we observe a decrease in its amplitude. 
The mean of this envelop as a whole is related to the Rabi 
frequency which dependent to the coupling parameter 
(periodic function), see Figure 2(b). Increasing the value 
of the ratio z/L, namely z/L = 0.45 and 0.5 the same beha-
viour as well as elongation of the revival periods. The 
same behaviour can be reported, however, the phenome-
non gets more pronounced as z/L increases, see Figures 
2(c) and (d). As one can see this somewhat complicated 
behaviour may be thought of as a superposition of the 
standard JCM behaviour over a slowly varying envelop, 
as will be explained later. Thus we may conclude that, in 
the presence of the coupling interaction dependent on 
periodical function sin π𝑧𝑧/𝐿𝐿 the atomic inversion shows 
oscillations in its behaviour, while the phenomenon of 
revivals and collapses occurs within these periods of the 
oscillations. 

The general behavior of the function is changed mar-
kedly, however it shows the region of collapses decrease 
as the coupling ratio z/L increases. It is noted that the 
nonlinear interaction of the coupling interaction between 

 

 
Figure 1. Dispersion curves showing the TM and TE 
branches of the guided modes in a planar mirror guide with 

 = 1Lμm . 

 
Figure 2. Schematic drawing of the planar mirror guide 
walls, separated by L. The z-coordinate is normal to the 
mirror surfaces, and the x and y coordinates are in the 
plane of one of the mirrors, as shown. 
 
the atom and the field mode leads to the collapses and 
revivals to occur at short intervals which means that the 
energy is stored in the atomic system and it reach to the 
ground state as shown in Figure 1(b). 
 
5. Quantum Field Entropy 
 
We turn our attention to use the field entropy as a meas-
ure of the degree of entanglement between the fields and 
the atoms in order to discuss the entanglement of the 
present system. As one can see the quantum dynamics 
described by the Hamiltonian (13) leads to an entangle-
ment between the fields and the atoms. Therefore, a suit-
able diagnostic tool to use in this case is the von Neuman 
entropy [4,19-22] 

{ }lnS Tr ρ ρ= −                (27)  

where ρ(t) is the density operator for a given quantum 
system and we set Boltzmann’s constant κ = 1. It is well 
known that for an initial pure state of the system then the 
entropy of the total system vanishes. Unitary evolution 
would not change this situation and S(t) is always zero 
under evolution. According to the Araki-Lieb theorem for 
a composite system then 

( ) ( ) ( ) ( ){ }( )ln a fa f f a a fS Tr ρ ρ= −        (28) 

Thus when we start from an initial pure state under un-
itary evolution then 0f aS S= = . However, if ( )tρ  
describes a mixed state, then 0S ≠ . Therefore, for the 
initial pure state where 0S =  we can either use the field 
entropy ( )fS t  or the atomic entropy ( )aS t  to meas-
ure the amount of entanglement between the two subsys-
tems. From the previous studies it has been shown that, 
for the initially factored pure states of the atoms and cav-
ity fields, the entropy of the atom and cavity field subsys-
tems are identical so that ( ) ( )0 0 0f aS S= = . In this case 
the field entropy ( )fS t  can be expressed in terms of the 
eigenvalues ( )iΛ, 1, 2it =  for the reduced field density 
operator |ψ( )ψ( ) |filedTr t t><  as, 

z

x
y

z=L

z=0

z = L 

z = 0 
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( ) ( )2
1ΛlnΛf i iiS t
=

= −∑            (29) 
Now we turn our attention to examine numerically the 

dynamics of the field entropy where the same initial pa-
rameters of the atomic inversion will be used. In this case 
the entropy is dynamically reduced to the minimum val- 

ues at the scaled time π2πsin z nt
L

 =  
 

 (where n   

is the initial value of the photon number operator) and the 
minimum values of the function ( )fS t  decayed gradu-
ally (Figure 3) 
 

 
(a)                               (b) 

 
(c)                               (d) 

Figure 3. The atomic inversion against the scaled time λt for 
the atom initially in the excited state and the field in the co-
herent state α = 5 and for different values of the ratio z/L. a- 
z/L=0.15, b - z/L=0.3, c - z/L=0.45, d - z/L = 0.5. 
 

It is note that the entanglement increased to maximum 
values regularly before and after the quarter of the reviv-
als time as observed in Figure 4(a). This behavior is 
completely in agreement with the entanglement of the 
Jaynes-Cumming model, which exhibits oscillatory beha-
vior in a good correspondence with the revival patterns in 
the atomic inversion, and reduces to a pure state at the 
middle of the collapse time [16]. When we consider the 
case in which 0.3z L =  the function shows a similar 
behavior to that of the previous case but the fluctuations 
becomes more regular, see Figure 4(b). In this case the 
maximum entanglement occurred slightly faster compare 
with the previous case. Also we can report that the func-
tion decreases its minimum and consequently it ap-
proaches the pure state faster than that the case in which 

0z L = . More increasing in the value of the coupling 
parameter ( )z L , leads to a more regular fluctuations in 
the function, see Figure 4(c). For example the function 
starts with rapid fluctuations until to reach its extreme 
(maximum and minimum values) and then backs to show  

 
(a)                               (b) 

 
(c)                               (d) 

Figure 4. The time evolution of the field entropy for the 
same initial condition and parameter of Figure 4. 
 
oscillatory period. Here we may point out that the strong 
oscillation in the atomic inversion decreases the degree of 
entanglement at particular regions between the time of 
half-revivals and increases the oscillatory behavior in the 
( )S t  for the cases in which the parameter ( )z L is 

small. The effects of the coupling interaction are more 
pro- 
nounced in some values for ( )z L  in the meantime the 
entanglement is greater than that the previous two cases 
see Figures 4(c) and (d). In general the disentanglement 
between the atom and the field increases when the atoms 
are in maximal states (collapses regions). 
 
6. Conclusions 
 
In this paper we have studied in detail the influence of the 
distance between the two plates (z/L) on the entanglement 
between atom and electromagnetic field inside perfectly 
conducting parallel plates. The cavity modes are first 
quantized, allowing the effective Hamiltonian to be eva-
luated for an electric dipole located at an arbitrary point. 
We have shown that in the limit of small separation of 
plates, especially when L = 500 nm, only the fundamental 
mode ( 1TM ) with zero cut-off frequency is allowed to 
propagate within the structure. Therefore the system be-
came an exact mono-mode cavity operation and thus the 
atom only interact with a single cavity mode. This shows 
that the degree of entanglement is very sensitive to the 
parameter ( )z L . For small values of the ( )z L  para-
meter, a decrease of the degree of the entanglement is 
shown, while for large values, an increase of the degree of 
entanglement is obtained. This is manifested in the degree 
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of entanglement as it settles to a constant value for further 
increasing of the ( )z L  parameter. This means that one 
can control the degree of entanglement by using the 
( )z L  parameter. 
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