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Abstract 
This study presents numerical algorithms for solving a class of equations that partly consists of 
derivatives of the unknown state at previous certain times, as well as an integro-differential term 
containing a weakly singular kernel. These equations are types of integro-differential equation of 
the second kind and were originally obtained from an aeroelasticity problem. One of the main 
contributions of this study is to propose numerical algorithms that do not involve transforming 
the original equation into the corresponding Volterra equation, but still enable the numerical so-
lution of the original equation to be determined. The feasibility of the proposed numerical algo-
rithm is demonstrated by applying examples in measuring the maximum errors with exact solu-
tions at every computed nodes and calculating the corresponding numerical rates of convergence 
thereafter. 
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1. Introduction 
A dynamical system describing a two-dimensional physical thin airfoil moving inside an incompressible flow 
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was introduced by Burns, Cliff, and Herdman [1] in 1983. The system contains a form of linear singular inte-
gro-differential equations with integration over a deterministic interval (i.e., equations not of the Volterra types). 
Other studies [2] [3] have presented the well-posedness of the problem regarding specific product spaces and the 
exact solutions of the original class of integro-differential equations of the first kind, and have reported numeri-
cal methods and corresponding numerical results [4] [5]. Associated optimal control problems are topics dis-
cussed in [6]. Another study [7] applied semigroup theory to this particular type of equation and constructed an 
associated abstract Cauchy problem. The current study presents a numerical algorithm for solving the type of 
equations containing not only the original aeroelastic integro-differential term as a part of the equation but also 
time-derivative states evaluated at different previous times. This new linear equation is in the category of “inte-
gro-differential equations of the second kind”. The main purpose of this study is to develop feasible numerical 
algorithms for solving this type of integro-differential equation. According to previous studies (for example, [8]), 
all existing numerical methods can be used for solving only integro-differential equations of the second kind that 
can be transformed into Volterra integral equations of the second kind that linearly containing the state, and no 
numerical method (except the papers by current authors) has been proposed for solving the integro-differential 
equations of the second kind directly and the integro-differential equations of the second kind containing time 
delay states. The remainder of this paper is organized as follows: Section 2 presents the derivation of the asso-
ciated Volterra integral equations of the second kind. Section 3 presents numerical algorithms used for directly 
solving singular integro-differential equations of the second kind. Section 4 presents the numerical results of test 
examples obtained by applying the numerical method described in Section 3. Finally, Section 5 presents a sum-
mary of this study. 

2. Problem Description 
Consider the class of an integro-differential equation of the second kind expressed as follows: 

( ) ( )1
1

d ,
d

l

i i l t
i

a x t a Dx f t
t

σ +
=

− + =∑                                   (1) 

and the initial condition 

( ) ( ) , 0,x s s sφ= ≤                                        (2) 

where 1 2 1, , , la a a +  are constants and iσ , 1, , ,i l=   are nonnegative constants. The term ( )ix t σ−  is the 
derivative of the delay state with respect to t, and the difference operator D is defined as 

( ) ( )
0

dt t
b

Dx g s x s s
−

= ∫ . 

The second part of the integrand represents 

( ) ( )tx s x t s= + , 

and the first part is a weakly singular function 

( ) [ ]1 , 0g s L b∈ − , 

that is integrable, positive, nondecreasing, and weakly singular at 0s = . Assume the forcing term ( )f t  is lo-
cally integrable for 0.t >  Although a more general kernel g  is also suitable, this study focuses on the Abel- 
type kernel and considers ( ) pg s s −=  and [ ],0s b∈ −  for 0 1.p< <  A specific value of 0.5p =  corres-
ponds to the original aeroelastic problem. Assume that the initial condition ( )sφ , for 0,b s− ≤ ≤  is in 1, gL  
space, a weighted 1L  space with weight ( )g ⋅ . 

If the differential part of the integro-differential term can be removed, that is, the term 0Dx  exists, then ap-
plying the integration to Equation (1) forms a new equation of the following form: 

( ) ( ) ( )1 1 0
1 1 0

d , for 0 .
tl l

i i l t i i l
i i

a x t a Dx a a Dx f t bσ φ σ τ τ+ +
= =

− + = − + + < ≤∑ ∑ ∫   

This equation can be developed into a Volterra integral equation of the second kind, provided that the 
function 
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( )
0

dp
t

b

Dx s x t s s−

−

= +∫  

is absolutely continuous with respect to 0t > , and the product of the kernel and initial functions, ( ) ( )g φ⋅ ⋅ , 
belongs to [ ]1 , 0L b− . Therefore, the corresponding weakly singular Volterra integral equation of the second 
kind is 

( ) ( )

( ) ( ) ( ) ( )

1
1 0

0 0

1 1
1 0

d

d d d , for 0 .

tl p
i i l

i

tl p p
i i l l

i b t b

a x t a s t x s s

a f s s a s s s a s t s s t b

σ

φ σ φ φ

−
+

=

− −
+ +

= − −

− + −

= − + + − − < ≤

∑ ∫

∑ ∫ ∫ ∫
 

3. Numerical Algorithms 
The proposed algorithms involve using the separating variables method to directly solve the numerical solution 
of Equations (1) and (2). Without loss of generality, assume that 1b =  and 1 2 1 1la a a += = = = , the equation 
is expressed as 

( ) ( ) ( ) ( )
0

1 1

d d , 0, 0,1 ,
d

l p
i

i
x t s x t s s f t t p

t
σ −

= −

− + + = > ∈∑ ∫                       (3) 

with initial data 

( ) ( ) , 0,x s s sφ= ≤                                         (4) 

where ( )f t , 0t >  is a locally integrable function. 
Let { }1 2max , , , lσ σ σ σ=  , then Equation (3) can be divided into two categories: 0 1σ≤ ≤ , and 1σ > . 

3.1. 0 1≤ ≤σ  
For this category, following study [6], define a new functional ξ  such that 

( ) ( ), , 1 0, 0.t s x t s s tξ = + − ≤ ≤ >                                 (5) 

Reformulate Equation (3) as a first-order hyperbolic partial differential equation 

( ) ( ), , , 1 0,t s t s s
t s
ξ ξ∂ ∂

= − ≤ ≤
∂ ∂

                                (6) 

with the condition 

( ) ( ) ( )
0

1 1

, , d .
l p

i
i

t s t s s f t
t s
ξ σ ξ−

= −

∂ ∂
− + =

∂ ∂∑ ∫                              (7) 

Next, assume that the solutions to Equations (6) and (7) have the form 

( ) ( ) ( )
0

,
n

j j
j

t s t B sξ α
=

= ∑ ,                                    (8) 

where the bases, ( )jB s , 0, , ,j n=   are 

( )

( )

( )

1 1
1

1 1

1 , , ,

1 , , ,

0, otherwise.

j j j
j

j j j j
j

s s
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τ τ τ
δ

τ τ τ
δ

+ +
+

− −
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

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Specifically, ( )jB s  and 0,1, , ,j n=   are piecewise linear functions. The mesh points, 0 1, , , ,nτ τ τ  are 
defined by 1 1 01 0n nτ τ τ τ−− = < < < < =  and 1 0j j jδ τ τ−= − > , for 1, , .j n=   One restriction for the  
mesh points is { } { }1 0 1, , , , ,l nσ σ τ τ τ⊂  , namely, the time lag terms coincide with some of the absolute  

values of mesh points. 
After substituting the form of ξ  previously defined in Equation (8) into Equations (6) and (7), the governing 

equations for ( )j tα  and 0, , ,j n=   become the following equations: 

( ) ( ) ( )( )1
d 1 , 1, , ,
d j j j

j

t t t j n
t
α α α

δ −= − = 

                          
 (9) 

and 

( ) ( ) ( ) ( ) ( )
0

1 0 01

d d d .
d d

l n np
j j i j j

i j j
t B s t B s s f t

t s
α σ α−

= = =−

− + =∑∑ ∑∫                    (10) 

By the property of the bases, rewrite Equation (10) as 

( ) ( ) ( ) ( )
0

1 01

d d d ,
d di

l np
j j

i j
t s t B s s f t

t sσα α−

= =−

+ =∑ ∑∫                       (11) 

where ( )
i

tσα  are the corresponding terms of ( )j tα  with respect to iσ , 1, , .i l=   
Define 

1

d , 1, , ,
j

j

p
jg s s j n

τ

τ

−
−= =∫   

and Equations (9) and (11) thus become 

( ) ( ) ( )( )1
d 1 , 1, , ,
d j j j

j

t t t j n
t
α α α

δ −= − =                            (12) 

and 

( ) ( )( ) ( ) ( )( ) ( )1 1
1 1

1 .
i i

i

l n
j

j j
i j j

g
t t t t f tσ σ

σ

α α α α
δ δ− −

= =

− + − =∑ ∑                     (13) 

This produces the following linear system of first-order ordinary differential equations: 

( ) ( ) ( )d
d

X t AX t G t
t

= + ,                                   (14) 

where 

( ) ( ) ( ) ( ) T
0 1 ,nX t t t tα α α=     

( ) ( )

1 1

2 2

1 1

1 1 0 0 0

1 10 0 0 ,

1 10 0 0
n n n n

A

δ δ

δ δ

δ δ
+ × +

∗ ∗ ∗ ∗ 
 
 −
 
 
 −=
 
 
 
 

− 
 

 





     



 

∗ s represent certain values depending on the typical equation, and ( ) ( ) T
0 0G t f t=    , in which T  

is the transpose of the corresponding vector. 
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The procedure for obtaining the initial condition ( )0 , 0,1, , ,i i nα =   for the first-order ordinary differential 
system (14) is described as follows: For the initial condition, combine Equations (4), (5), and (8), and fix 0t = ; 
the state thus becomes 

( ) ( ) ( ) ( )
0

0 , for 1 0.
n

i i
i

x s B s s sα φ
=

= = − ≤ ≤∑   

The structure of ( ) ( )0 1, , ,B s B s   and ( )nB s  indicates that ( )0iα  is equal to ( )iφ τ  for 0,1, , .i n=   
Next, to determine ( ) ( ) ( )0 1, , , ,nt t tα α α  apply an ordinary differential equation solver (Matlab “ode45”)  

to the system (14). Two methods can be used to solve ( )x t , 0 1t≤ ≤ , depending on the setting of variables: 
fix 1t =  or 0s =  in Equation (8). According to the property ( ) 1jB s =  at , 0,1, , ,js j nτ= =   the two 
choices become two cases for the solution ( )x t , 0 1t≤ ≤ : 

Case 1: 

( ) ( ) ( ) ( )
0

1 1 1 ,
n

i j j i i
j

x Bτ α τ α
=

+ = =∑  

and Case 2: 

( ) ( ) ( ) ( )0
0

1 1 0 1 .
n

i j i j i
j

x Bτ α τ α τ
=

+ = + = +∑  

In Case 1, solve for ( ) , 0,1, , ,i t i nα =   based on Equation (14) and set 1.t =  Thus, ( )1iα  yields the  
corresponding solutions ( )1 , 0,1, , .ix i nτ+ =   In Case 2, solve for ( )0 tα  by using Equation (14).  

Subsequently, set 1 it τ= +  to obtain ( )0 1 iα τ+  for 0,1, , .i n=   Therefore, ( )0 1 iα τ+  is the solution 
( )1 ix τ+  for 0,1, , .i n=   
A similar procedure can be extended to solve ( )x t , for 1 t< < ∞ . 

3.2. 1>σ  
For this category, Equation (3) can be rewritten as 

( ) ( ) ( ) ( ) ( )
0 1 1

1 1

d dd d d ,
d d

l p p p
i

i
x t s x t s s s x t s s f t s x t s s

t tσ σ

σ
− −

− − −

= − − −

   
− + + + + = + +   

   
∑ ∫ ∫ ∫  

then it becomes 

( ) ( ) ( ) ( )
0 1

1

d dd d ,
d d

l p p
i

i
x t s x t s s f t s t s s

t tσ σ

σ φ
−

− −

= − −

 
− + + = + + 

 
∑ ∫ ∫  

a similar form of Equation (3) except for the integral interval of the second term on the left hand side, but this 
new equation can be treated by reconsidering the discretization interval to be [ ],0σ− ; namely, by resetting the 
mesh points as 1 1 0 0n nσ τ τ τ τ−− = < < < < = , and then follow the procedures introduced in Section 3.1. 

4. Numerical Examples 
Consider examples involving 0.5p = , initial conditions ( )sφ , 1 0,s− ≤ ≤  and forcing terms 

( )f t , for 0 1.t≤ ≤  
Example 1: ( ) 2 ,s sφ =  1 0s− ≤ ≤ ; 1 0σ = , 2 0.1σ = , 3 0.3σ = , 4 0.6σ = , 5 0.8σ = , 6 0.9σ = ; 

i
i
n

τ = − , 100n =  or 1000;  

( ) 2 212 5.4 ,
1 2

f t t t
p p

= ⋅ − + −
− −

 0 1,t≤ ≤  0.5.p =  

Exact solution: ( ) 2 ,x t t=  0 1.t≤ ≤  
Example 2: ( ) ,s sφ =  1 0s− ≤ ≤ ; 1 0σ = , 2 0.1σ = , 3 0.3σ = , 4 0.7σ = , 5 2σ = ;  



S. Chiang, T. L. Herdman 
 

 
1299 

2i
i
n

τ = − ⋅ , 100n =  or 1000; 

( ) 15
1

f t
p

= +
−

, 0 1,t≤ ≤  0.5.p =  

Exact solution: ( ) ,x t t=  0 1.t≤ ≤  
Example 3: ( ) ,s sφ =  1 0s− ≤ ≤ ; 1 0σ = , 2 0.1σ = , 3 0.3σ = , 4 0.6σ = , 5 2.5σ = ;  

2.5i
i
n

τ = − ⋅ , 100n =  or 1000; 

( ) 15 ,
1

f t
p

= +
−

 0 1,t≤ ≤  0.5.p =  

Exact solution: ( ) ,x t t=  0 1.t≤ ≤  
Example 4: ( ) 5 3 ,s sφ =  1 0s− ≤ ≤ ; 1 0σ = , 2 0.1σ = , 3 0.3σ = , 4 0.6σ = , 5 2.5σ = ;  

2.5i
i
n

τ = − ⋅ , 100n =  or 1000; 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

2 3 2 3 2 3 2 32 3 7 6

0
2 3

1

0.5 5 35 0.1 0.3 0.6 2.5
3 13 6

5 d , 0 1, 0.5, where is a gamma function.
3

p

t

f t t t t t t t

t t pτ τ τ−

−

 Γ ⋅Γ
= + − + − + − + − +  Γ 

+ − ≤ ≤ = Γ∫
   

Exact solution: ( ) 5 3 ,x t t=  0 1.t≤ ≤  
Example 5: ( ) 2 ,s sφ =  1 0s− ≤ ≤ ; 1 0σ = , 2 0.1σ = , 3 0.3σ = , 4 0.6σ = , 5 2.5σ = ;  

2.5i
i
n

τ = − ⋅ , 100n =  or 1000; 

( ) 2 2 ,
1 2

f t t
p p

= −
− −

 0 1,t≤ ≤  0.5.p =  

Exact solution: ( ) 2 ,x t t=  0 1.t≤ ≤  
Example 6: ( ) 3 ,s sφ =  1 0s− ≤ ≤ ; 1 0σ = , 2 0.1σ = , 3 0.3σ = , 4 0.6σ = , 5 2.5σ = ;  

2.5i
i
n

τ = − ⋅ , 100n =  or 1000; 

( ) 23 6 315 21 20.04 ,
1 2 3

f t t t
p p p

     
= + ⋅ + − − ⋅ + +     − − −     

 0 1,t≤ ≤  0.5.p =  

Exact solution: ( ) 3 ,x t t=  0 1.t≤ ≤  
The feasibility of the proposed methods are determined by the maximum errors at every computed nodes after 

applying different number of mesh points, the formula is 

( )Max error max ,i ix tα= −  

for 1, 2, , ;i n=   n  is the number of mesh points. iα  is the computed solution and ( )ix t  is the exact solu-
tion. The rate of convergence γ  is defined as  

( ) 1
j jx t C

n

γ

α  − = ⋅ 
 

, 

for 1 , 2 , , ;j k k n= ∗ ∗   k  is a positive integer. 
Table 1 and Table 2 contain the maximum errors at every computed nodes and mean rates of convergence 

evaluated at 0.1,0.2, ,1t =   for the examples. Although the mean rates of convergence for the linear cases 
(solutions are linear: ( )x t t=  and initial conditions: ( )s sφ = ) such as Example 2 and Example 3 in Table 2  
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Table 1. The maximum errors at every computed nodes for the examples.                                                

Max. errors Case 1 
(n = 100) 

Case 2 
(n = 100) 

Case 1 
(n = 1000) 

Case 2 
(n = 1000) 

Ex.1 0.0085 0.0035 9.3764e−4 4.6135e−4 

Ex.2 2.5943e−4 0.0016 2.8245e−4 0.0017 

Ex.3 9.9039e−5 1.4995e−4 0.0011 0.0018 

Ex.4 0.0411 0.0177 0.0070 0.0069 

Ex.5 0.0572 0.0131 0.0060 0.0054 

Ex.6 0.1146 0.0164 0.0116 0.0079 

 
Table 2. Mean rates of convergence evaluated at 0.1,0.2, ,1t =   for the examples.                                        

Mean rates of convergence Case 1 (n = 100, 1000) Case 2 (n = 100, 1000) 

Ex.1 1.1202 1.1514 

Ex.2 −0.0886 0.3382 

Ex.3 1.0315 −0.9663 

Ex.4 0.9315 0.8200 

Ex.5 1.0109 1.4067 

Ex.6 0.9712 1.0185 

 
have some vibration phenomena, the maximum errors in Table 1 provide sufficient evidence for the correctness 
of the numerical solutions. 

Remark 
This study presents a numerical method for directly solving the integro-differential equations of the second kind. 
The method involves discretizing the space s, and retains the variable t. The unknown states ( )x t  are repre- 
sented by ( ) , 0,1, , .i t i nα =   To solve system (14), which is a semi-discretized scheme, the authors suggest 
using an ordinary differential equation solver. The (mean) rates of convergence can be determined, although it 
depends on the separating variable form of the state as well as on the accuracy of the ordinary differential equa-
tion solver applied (shown in the coming papers). Another approach to determining the rate of convergence in 
this observed study is to discretize both variables s and t, and this process results in a full-discretized scheme, as 
described in [3]. 

5. Summary 
This study presents a numerical method for solving a class of singular integro-differential equations of the 
second kind that contain derivatives of the states at previous certain times of the finite history interval, as well as 
an integro-differential term containing a weakly singular kernel. The proposed equations can be transformed into 
Volterra integral equations of the second kind if the integro-differential term is integrable. This study presents 
direct numerical methods to the proposed equation. The tables of corresponding maximum errors and the mean 
rates of convergence show the feasibility of using the proposed numerical method for the equations. 
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