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Abstract 
The independence number ( )Gα  of a graph G is the maximum cardinality among all independent 

sets of G. For any tree T of order n ≥ 2, it is easy to see that ( ) 
  

n T nα 1
2

≤ ≤ − . In addition, if there 

are duplicated leaves in a tree, then these duplicated leaves are all lying in every maximum inde-
pendent set. In this paper, we will show that if T is a tree of order n ≥ 4 without duplicated leaves, 

then ( )  
  

nTα 2 1
3
−

≤ . Moreover, we constructively characterize the extremal trees T of order n ≥ 4, 

which are without duplicated leaves, achieving these upper bounds. 
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1. Introduction 
All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, we refer to 
( )V G  and ( )E G  as the vertex set and the edge set, respectively. The cardinality of ( )V G  is called the or-

der of G, denoted by G . The (open) neighborhood ( )GN x  of a vertex x is the set of vertices adjacent to x in 
G, and the close neighborhood [ ]GN x  is ( ) { }GN x x . A vertex x is said to be a leaf if ( ) 1GN x = . A vertex 
v of G is a support vertex if it is adjacent to a leaf in G. Two distinct vertices u and v are called duplicated if 

( ) ( )G GN u N v= . Note that u and v are duplicated vertices in a tree, and then they are both leaves. The n-path 
nP  is the path of order 1n ≥ . For a subset ( )A V G⊆ , the induced subgraph induced by A is the graph GA  

with vertex set A and the edge set ( ) ( ){ }: andGE A uv E G u A v A= ∈ ∈ ∈ , the deletion of A from G is the 
graph G A−  by removing all vertices in A and all edges incident to these vertices and the complement of A is 
the set ( ) \cA V G A= . For notation and terminology in graphs we follow [1] in general. 
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A set ( )I V G⊆  is an independent set of G if no two vertices of I are adjacent in G. The independence num-
ber ( )Gα  of G is the maximum cardinality among all independent sets of G. If I is an independent set of G 
with cardinality ( )Gα , we call I an α -set of G. If I is an α -set of G containing all leaves of G, we call I an 

Lα -set of G. 
The independence problem is to find an α -set in G. The problem is known to be NP-hard in many special 

classes of graphs. Over the past few years, several studies have been made on independence (see [2]-[6]). For  

any tree T of order 2n ≥ , it is easy to see that ( ) 1
2
n T nα  ≤ ≤ −  

. In addition, if there are duplicated leaves in 

a tree, then these duplicated leaves are all lying in every maximum independent set. In this paper, we will show 

that if T is a tree of order 4n ≥  without duplicated leaves, then ( ) 2 1
3

nTα − ≤   
. Moreover, we constructively  

characterize the extremal trees T of order 4n ≥ , which are without duplicated leaves, achieving these upper 
bounds. 

2. The Upper Bound  
In this section, we will show a sharp upper bound on the independence number of a tree T without duplicated 
leaves. 

Lemma 1 If H is an induced subgraph of G, then ( ) ( )H Gα α≤ .  
Proof. If S is an α -set of H, then S is an independent set of G. It follows that ( ) ( )H S Gα α= ≤ .    

Lemma 2 ([4]) If T is a tree of order 1n ≥ , then ( )
2
nTα  ≥   

.  

Lemma 3 ([5]) If T is a tree of order 3n ≥ , then there exists an Lα -set of T.  

Lemma 4 For an integer 4n ≥ , ( ) 2 1
2 3n
n nPα −   = ≤      

.  

Proof. It is straightforward to check that 2 1
2 3
n n −   ≤      

 for 4n ≥ . Let 1 2:n nP v v v− − − . Since Pn is a 

tree of order 4n ≥ , by Lemma 2, we have that ( )
2n
nPα  ≥   

. Suppose that there exists an independent set I of 

Pn with 1
2
nI  ≥ +  

, then there exists i, 1 1i n≤ ≤ − , such that iv I∈  and 1iv I+ ∈ . This is a contradiction, 

therefore we obtain that ( )
2n
nPα  =   

.                                                          

Theorem 1 If T is a tree of order 4n ≥  without duplicated leaves, then ( ) 2 1
3

nTα
− ≤   

.  

Proof. We prove it by induction on 4n ≥ . By Lemma 4 and T is a tree without duplicated leaves, it’s true for 
all 6n ≤ . For all 7n ≥  we assume that the assertion is true for all n n′ < . Suppose that T is a tree of order 

7n ≥  without duplicated leaves and x is a leaf lying on a longest path of T. Let ( )Ty N x∈ . Since T has no 
duplicated leaves, this implies that ( ) 2Td y = , say ( ) { },TN y x z= . Let [ ]TT T N x′ = − , then T' is a tree of 
order 2n − . For the case in which T' has no duplicated leaves, by induction hypothesis, we have that  

( ) ( )2 2 1 2 5
3 3

n nTα
− −  − ′ ≤ =     

. Since an α -set of T', together with { }x , form an α -set of T. Therefore we 

obtain that ( ) ( ) 2 5 2 2 2 11 1
3 3 3

n n nT Tα α − − −     ′= + ≤ + = ≤          
. For the other case in which T' has duplicated 

leaves z and z′ , then { }T T z′′ ′= −  is a tree of order 3 4n − ≥  without duplicated leaves. By induction hy-

pothesis, we have that ( ) ( )2 3 1 2 7
3 3

n nTα
− −  − ′′ ≤ =     

. Since an Lα -set of T ′′ , together with { },x z , form 
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an α -set of T. Therefore, we obtain that ( ) ( ) 2 7 2 12 2
3 3

n nT Tα α − −   ′′= + ≤ + =      
. Hence we conclude that  

( ) 2 1
3

nTα − ≤   
.                                                                            

Note that the result in Theorem 1 is sharp and some such T are illustrated below. 

3. Extremal Trees  

Let ( )nT  be the class of all trees T of order 4n ≥  without duplicated leaves such that ( ) 2 1
3

nTα − =   
.  

We will constructively characterize these extremal trees. Let ( )L T  and ( )U T , respectively, denote the col-
lections of all leaves and all support vertices of T. First, we define four operations on a tree T of order 4n ≥  as 
follows, where I is an Lα -set of T. 

Operation O1. Join a vertex u I∈  of T  to a vertex 1v  of 1P  such that { }( ) { }1 1OI I u v= −  , where 
2T n= ≡  (mod 3). 

Operation O2. Join a vertex ( )\cu I U T∈  of T  to a vertex 1v  of 1P  such that { }2 1OI I v=  , where 
0,1T n= ≡  (mod 3). 

Operation O3. Join a vertex u of T  to a leaf 2v  of 2P  (say 2 1 2:P v v− ) such that { }3 1OI I v=  , where 
1,2T n= ≡  (mod 3). 

Operation O4. Join a vertex cu I∈  of T to a leaf v3 of P3 (say 3 1 2 3:P v v v− − ) such that { }4 1 3,OI I v v=  . 
Lemma 5 Suppose that ( )T n∈T  for 4n ≥ . If I is an Lα -set of T, then  

( )
( )
( )
( )

0, if 2 mod3 ,
\ 1, if 1 mod3 ,

2, if 0 mod3 .

c

n
I U T n

n

≡
≤ ≡
 ≡

 

Proof. It’s true for all 6n ≤ . So we assume that 7n ≥ . Since I is an Lα -set of T, this implies that 
( ) cU T I⊆ . By Theorem 1, we have that  

( )

( )

( )

2 3 2 1
2 1, if 3 2,

3

2 3 1 1
2 , if 3 1,

3

2 3 1
2 1, if 3 .

3

k
k n k

k
I k n k

k
k n k

 + −
= + = + 

 
 + −= = = + 
 
 − = − =  

 

Hence we obtain that 1cI n I k= − = + . Let ( ) { }1 2, , , bB I L T z z z= − =  . Note that ( ) c
T iN z I⊆  and  

( ) 2T iN z ≥  for every i. In addition, ( ) ( ) 1T i T jN z N z ≤ , these imply that ( )1
1bc

T ii
I N z b

=
≥ ≥ +


. Thus 
we obtain that 1cB b I k= ≤ − = . It follows that  

( ) ( ) ( )

( )
( ) ( )
( ) ( )
( ) ( )

\

2

3 2 2 2 1 0, if 3 2,
3 1 2 2 1, if 3 1,
3 2 2 1 2, if 3 .

c c c

c

I U T I U T I L T

I I b n I k

k k k n k
k k k n k
k k k n k

= − = −

= − − ≤ − +

 + − + + = = +
= + − + = = +
 − − + = =

 

This completes the proof.                                                                    
Lemma 6 Let ( )T n∈T  be a tree of order ( )2 mod3n ≡  with an Lα -set I. Suppose that T' is obtained 

from T by Operation O1, then ( )1T n′∈ +T  is a tree of order 1n +  and 1OI  is an Lα -set of T'.  
Proof. Suppose that ( )T n∈T  is a tree of order 2n ≡  (mod 3) with an Lα -set I, by Lemma 5, then 
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( )=cI U T . Let T' be the tree obtained from T by Operation O1. Since u I∈ , this implies that u is not a support 
vertex of T and T' is a tree of order 1n +  without duplicated leaves. On the other hand, 1OI  is an independent  

set of T ′  with ( ) 1OL T I′ ⊆  such that 
( ) ( ) ( )

1

2 1 1 2 1 12 1
3 3 3O

n nnT I Iα
   + − + −− ′≥ ≥ = = =        

, where 

2n ≡  (mod 3). Hence ( ) ( )2 1 1
3

n
Tα

 + −
′ =  

 
. In conclusion, ( )1T n′∈ +T  is a tree of order 1n +  with an 

Lα -set IO1.                                                                                 
Lemma 7 Let ( )T n∈T  be a tree of order ( )0,1 mod3n ≡  with an Lα -set I such that ( ) 1cI U T− ≥ . If 

T ′  is obtained from T by Operation O2, then ( )1T n′∈ +T  is a tree of order 1n +  and 2OI  is an Lα -set 
of T ′ .  

Proof. Note that such a tree T exists, as, for instance, the tree in Figure 1 is as desired. If ( )T n∈T  is a 
tree of order 0,1n ≡  (mod 3) with an Lα -set I such that ( ) 1cI U T− ≥ . Let T' be the tree obtained from T by 
Operation O2. Since u is not a support vertex of T, this implies that T' is a tree of order 1n +  without dupli-
cated leaves. And 2OI  is an independent set of T' with ( ) 2OL T I′ ⊆  such that  

( ) ( ) ( )
2

2 1 1 2 1 12 11 1
3 3 3O

n nnT I Iα
+ − + −   − ′≥ ≥ = + = + =        

, where 0,1n ≡  (mod 3). Hence  

( ) ( )2 1 1
3

n
Tα

+ − 
′ =  

 
. In conclusion, ( )1T n′∈ +T  is a tree of order 1n +  with an Lα -set IO2.          

Lemma 8 Let ( )T n∈T  be a tree of order ( )1,2 mod3n ≡  with an Lα -set I. If T' is obtained from T by 
Operation O3, then ( )2T n′∈ +T  is a tree of order 2n +  and IO3 is an Lα -set of T'.  

Proof. Note that T' is a tree of order n + 2 without duplicated leaves. And IO3 is an independent set of T' with  

( ) 3OL T I′ ⊆  such that 
( ) ( ) ( )

3

2 2 1 2 2 12 11 1
3 3 3O

n nnT I Iα
   + − + −− ′≥ ≥ = + = + =        

, where 1,2n ≡  

(mod 3). Hence ( ) ( )2 2 1
3

n
Tα

 + −
′ =  

 
. In conclusion, ( )2T n′∈ +T  is a tree of order 2n +  with an Lα - 

set IO3.                                                                                     
Lemma 9 Let ( )T n∈T  be a tree of order 4n ≥  with an Lα -set I. If T' is obtained from T by Operation 

O4, then ( )3T n′∈ +T  is a tree of order 3n +  and IO4 is an Lα -set of T'.  
Proof. Note that T' is a tree of order 3n +  without duplicated leaves. And IO4 is an independent set of T' with  

( ) 4OL T I′ ⊆  such that 
( ) ( ) ( )

4

2 3 1 2 3 12 12 2
3 3 3O

n nnT I Iα
   + − + −− ′≥ ≥ = + = + =        

. Hence  

( ) ( )2 3 1
3

n
Tα

 + −
′ =  

 
. In conclusion, ( )3T n′∈ +T  is a tree of order 3n +  with an Lα -set IO4.         

Let C  be the class of all trees obtained from 4P  or 5P  by a finite sequence of Operations O1-O4. Sup-
pose that ( )4n

n
≥

=


T T , we will show that =T C . 
Theorem 2 T is in C  if and only if T is in T .  

 

 

Figure 1. The trees T with ( ) 2 1
3

nTα − =   
. 
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Proof. If T is in C , by Lemmas 6, 7, 8 and 9, then T is in T . Now, we want to show the converse by con-
tradiction. Suppose to the contrary that there exists a tree T ∈T  and T ∉C  such that T  is as small as 
possible. We can see that 7T ≥ . Let :P x y z− − −  be a longest path of T. Then ( ) { },TN y x z=  and 

[ ]TT T N x′ = −  is a tree of order 2n n′ = − . We consider two cases. 
Case 1. T' has no duplicated leaves. 
For an Lα -set I of T, { }I I x′ = −  is an independent set of T', this implies that ( ) ( ) 1T I Tα α′ ′≥ = − . By  

Theorem 1, we have that ( ) ( ) ( )2 2 12 1 2 4 2 5 2 41 1
3 3 3 3 3

nn n n nT Tα α
− − − − − −       ′− = = − ≤ ≤ = ≤                

. Then 

( ) ( )2 2 1 2 1 1
3 3

n nTα
 − − − ′ = = −     

 and 0,1n ≡  (mod 3). This follows that ( )T n′ ′∈T , where  

2 1,2n n′ = − ≡  (mod 3), by hypothesis, T ′∈C . Note that T can be obtained from T ′  by Operation O3, this 
implies that T ∈C , which is a contradiction. 

Case 2. T' has duplicated leaves z and z'. 
Let { }T T z′′ ′= − . Then T ′′  is a tree of order 3n − . Since z' is a leaf of T, this implies that z and z' are in 

every Lα -set of T. For an Lα -set I of T, { },I I x z′′ = −  is an independent set of T ′′ , thus  
( ) ( ) 2T I Tα α′′ ′′≥ = − . By Theorem 1, we have that  

( ) ( ) ( )2 3 12 1 2 7 2 72 2
3 3 3 3

nn n nT Tα α
− − − − −     ′′− = = − ≤ ≤ =            

. Then ( ) ( )2 3 1
3

n
Tα

− − 
′′ =  

 
. This fol-  

lows that ( )T n′′ ′′∈T , where 3n n′′ = − , by hypothesis, T ′′∈C . Note that T can be obtained from T ′′  by 
Operation O4, this implies that T ∈C , which is a contradiction. 

By Cases 1 and 2, we conclude that T is in T , then T is in C .                                    
Now, we obtain the main theorem in this paper.  

Theorem 3 Suppose that T is a tree of order 4n ≥  without duplicated leaves, then ( ) 2 1
3

nTα − ≤   
. Fur-

thermore, the equality holds if and only if T ∈C . 
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