Independence Numbers in Trees

Min-Jen Jou ${ }^{1}$, Jenq-Jong Lin ${ }^{2}$
${ }^{1}$ Department of Information Technology, Ling Tung University, Taichung Taiwan
${ }^{2}$ Department of Finance, Ling Tung University, Taichung Taiwan
Email: mjjou@teamail.tu.edu.tw, jjlin@teamail.tu.edu.tw

Received 3 March 2015; accepted 14 July 2015; published 17 July 2015
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The independence number $\alpha(G)$ of a graph G is the maximum cardinality among all independent sets of \boldsymbol{G}. For any tree \boldsymbol{T} of order $n \geq 2$, it is easy to see that $\left\lceil\frac{n}{2}\right\rceil \leq \alpha(T) \leq n-1$. In addition, if there are duplicated leaves in a tree, then these duplicated leaves are all lying in every maximum independent set. In this paper, we will show that if \boldsymbol{T} is a tree of order $\boldsymbol{n} \geq 4$ without duplicated leaves, then $\alpha(T) \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$. Moreover, we constructively characterize the extremal trees T of order $n \geq 4$, which are without duplicated leaves, achieving these upper bounds.

Keywords

Independent Set, Independence Number, Tree

1. Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, we refer to $V(G)$ and $E(G)$ as the vertex set and the edge set, respectively. The cardinality of $V(G)$ is called the order of G, denoted by $|G|$. The (open) neighborhood $N_{G}(x)$ of a vertex x is the set of vertices adjacent to x in G, and the close neighborhood $N_{G}[x]$ is $N_{G}(x) \cup\{x\}$. A vertex x is said to be a leaf if $\mid N_{G}(x)=1$. A vertex v of G is a support vertex if it is adjacent to a leaf in G. Two distinct vertices u and v are called duplicated if $N_{G}(u)=N_{G}(v)$. Note that u and v are duplicated vertices in a tree, and then they are both leaves. The n-path P_{n} is the path of order $n \geq 1$. For a subset $A \subseteq V(G)$, the induced subgraph induced by A is the graph $\langle A\rangle_{G}$ with vertex set A and the edge set $E\left(\langle A\rangle_{G}\right)=\{u v \in E(G): u \in A$ and $v \in A\}$, the deletion of A from G is the graph $G-A$ by removing all vertices in A and all edges incident to these vertices and the complement of A is the set $A^{c}=V(G) \backslash A$. For notation and terminology in graphs we follow [1] in general.

A set $I \subseteq V(G)$ is an independent set of G if no two vertices of I are adjacent in G. The independence number $\alpha(G)$ of G is the maximum cardinality among all independent sets of G. If I is an independent set of G with cardinality $\alpha(G)$, we call I an α-set of G. If I is an α-set of G containing all leaves of G, we call I an α_{L}-set of G.

The independence problem is to find an α-set in G. The problem is known to be NP-hard in many special classes of graphs. Over the past few years, several studies have been made on independence (see [2]-[6]). For any tree T of order $n \geq 2$, it is easy to see that $\left\lceil\frac{n}{2}\right\rceil \leq \alpha(T) \leq n-1$. In addition, if there are duplicated leaves in a tree, then these duplicated leaves are all lying in every maximum independent set. In this paper, we will show that if T is a tree of order $n \geq 4$ without duplicated leaves, then $\alpha(T) \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$. Moreover, we constructively characterize the extremal trees T of order $n \geq 4$, which are without duplicated leaves, achieving these upper bounds.

2. The Upper Bound

In this section, we will show a sharp upper bound on the independence number of a tree T without duplicated leaves.

Lemma 1 If H is an induced subgraph of G, then $\alpha(H) \leq \alpha(G)$.
Proof. If S is an α-set of H, then S is an independent set of G. It follows that $\alpha(H)=|S| \leq \alpha(G)$.
Lemma 2 ([4]) If T is a tree of order $n \geq 1$, then $\alpha(T) \geq\left\lceil\frac{n}{2}\right\rceil$.
Lemma 3 ([5]) If T is a tree of order $n \geq 3$, then there exists an α_{L}-set of T.
Lemma 4 For an integer $n \geq 4, \alpha\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$.
Proof. It is straightforward to check that $\left\lceil\frac{n}{2}\right\rceil \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$ for $n \geq 4$. Let $P_{n}: v_{1}-v_{2}-\cdots-v_{n}$. Since P_{n} is a tree of order $n \geq 4$, by Lemma 2, we have that $\alpha\left(P_{n}\right) \geq\left\lceil\frac{n}{2}\right\rceil$. Suppose that there exists an independent set I of P_{n} with $|I| \geq\left\lceil\frac{n}{2}\right\rceil+1$, then there exists $i, 1 \leq i \leq n-1$, such that $v_{i} \in I$ and $v_{i+1} \in I$. This is a contradiction, therefore we obtain that $\alpha\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Theorem 1 If T is a tree of order $n \geq 4$ without duplicated leaves, then $\alpha(T) \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$.
Proof. We prove it by induction on $n \geq 4$. By Lemma 4 and T is a tree without duplicated leaves, it's true for all $n \leq 6$. For all $n \geq 7$ we assume that the assertion is true for all $n^{\prime}<n$. Suppose that T is a tree of order $n \geq 7$ without duplicated leaves and x is a leaf lying on a longest path of T. Let $y \in N_{T}(x)$. Since T has no duplicated leaves, this implies that $d_{T}(y)=2$, say $N_{T}(y)=\{x, z\}$. Let $T^{\prime}=T-N_{T}[x]$, then T^{\prime} is a tree of order $n-2$. For the case in which T^{\prime} has no duplicated leaves, by induction hypothesis, we have that $\alpha\left(T^{\prime}\right) \leq\left\lfloor\frac{2(n-2)-1}{3}\right\rfloor=\left\lfloor\frac{2 n-5}{3}\right\rfloor$. Since an α-set of T^{\prime}, together with $\{x\}$, form an α-set of T. Therefore we obtain that $\alpha(T)=\alpha\left(T^{\prime}\right)+1 \leq\left\lfloor\frac{2 n-5}{3}\right\rfloor+1=\left\lfloor\frac{2 n-2}{3}\right\rfloor \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$. For the other case in which T^{\prime} has duplicated leaves z and z^{\prime}, then $T^{\prime \prime}=T^{\prime}-\{z\}$ is a tree of order $n-3 \geq 4$ without duplicated leaves. By induction hypothesis, we have that $\alpha\left(T^{\prime \prime}\right) \leq\left\lfloor\frac{2(n-3)-1}{3}\right\rfloor=\left\lfloor\frac{2 n-7}{3}\right\rfloor$. Since an α_{L}-set of $T^{\prime \prime}$, together with $\{x, z\}$, form
an α-set of T. Therefore, we obtain that $\alpha(T)=\alpha\left(T^{\prime \prime}\right)+2 \leq\left\lfloor\frac{2 n-7}{3}\right\rfloor+2=\left\lfloor\frac{2 n-1}{3}\right\rfloor$. Hence we conclude that $\alpha(T) \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$.
Note that the result in Theorem 1 is sharp and some such T are illustrated below.

3. Extremal Trees

Let $\mathscr{T}(n)$ be the class of all trees T of order $n \geq 4$ without duplicated leaves such that $\alpha(T)=\left\lfloor\frac{2 n-1}{3}\right\rfloor$.
We will constructively characterize these extremal trees. Let $L(T)$ and $U(T)$, respectively, denote the collections of all leaves and all support vertices of T. First, we define four operations on a tree T of order $n \geq 4$ as follows, where I is an α_{L}-set of T.

Operation O1. Join a vertex $u \in I$ of T to a vertex v_{1} of P_{1} such that $I_{O 1}=(I-\{u\}) \cup\left\{v_{1}\right\}$, where $|T|=n \equiv 2(\bmod 3)$.
Operation O2. Join a vertex $u \in I^{c} \backslash U(T)$ of T to a vertex v_{1} of P_{1} such that $I_{O 2}=I \bigcup\left\{v_{1}\right\}$, where $|T|=n \equiv 0,1 \quad(\bmod 3)$.

Operation O3. Join a vertex u of T to a leaf v_{2} of P_{2} (say $P_{2}: v_{1}-v_{2}$) such that $I_{O 3}=I \cup\left\{v_{1}\right\}$, where $|T|=n \equiv 1,2 \quad(\bmod 3)$.

Operation O4. Join a vertex $u \in I^{c}$ of T to a leaf v_{3} of P_{3} (say $P_{3}: v_{1}-v_{2}-v_{3}$) such that $I_{O 4}=I \cup\left\{v_{1}, v_{3}\right\}$.
Lemma 5 Suppose that $T \in \mathscr{T}(n)$ for $n \geq 4$. If I is an α_{L}-set of T, then

$$
\left|I^{c} \backslash U(T)\right| \leq \begin{cases}0, & \text { if } n \equiv 2(\bmod 3) \\ 1, & \text { if } n \equiv 1(\bmod 3) \\ 2, & \text { if } n \equiv 0(\bmod 3)\end{cases}
$$

Proof. It's true for all $n \leq 6$. So we assume that $n \geq 7$. Since I is an α_{L}-set of T, this implies that $U(T) \subseteq I^{c}$. By Theorem 1, we have that

$$
|I|= \begin{cases}\left\lfloor\frac{2(3 k+2)-1}{3}\right\rfloor=2 k+1, & \text { if } n=3 k+2, \\ \left\lfloor\frac{2(3 k+1)-1}{3}\right\rfloor=2 k, & \text { if } n=3 k+1, \\ \left\lfloor\frac{2(3 k)-1}{3}\right\rfloor=2 k-1, & \text { if } n=3 k .\end{cases}
$$

Hence we obtain that $\left|I^{c}\right|=n-|I|=k+1$. Let $B=I-L(T)=\left\{z_{1}, z_{2}, \cdots, z_{b}\right\}$. Note that $N_{T}\left(z_{i}\right) \subseteq I^{c}$ and $\left|N_{T}\left(z_{i}\right)\right| \geq 2$ for every i. In addition, $\left|N_{T}\left(z_{i}\right) \cap N_{T}\left(z_{j}\right)\right| \leq 1$, these imply that $\left|I^{c}\right| \geq\left|\bigcup_{i=1}^{b} N_{T}\left(z_{i}\right)\right| \geq b+1$. Thus we obtain that $|B|=b \leq\left|I^{c}\right|-1=k$. It follows that

$$
\begin{aligned}
\left|I^{c} \backslash U(T)\right| & =\left|I^{c}\right|-|U(T)|=\left|I^{c}\right|-|L(T)| \\
& =\left|I^{c}\right|-(|I|-b) \leq n-2|I|+k \\
& = \begin{cases}(3 k+2)-2(2 k+1)+k=0, & \text { if } n=3 k+2, \\
(3 k+1)-2(2 k)+k=1, & \text { if } n=3 k+1, \\
(3 k)-2(2 k-1)+k=2, & \text { if } n=3 k .\end{cases}
\end{aligned}
$$

This completes the proof.
Lemma 6 Let $T \in \mathscr{T}(n)$ be a tree of order $n \equiv 2(\bmod 3)$ with an α_{L}-set I. Suppose that T^{\prime} is obtained from T by Operation O1, then $T^{\prime} \in \mathscr{T}(n+1)$ is a tree of order $n+1$ and $I_{O 1}$ is an α_{L}-set of T^{\prime}.

Proof. Suppose that $T \in \mathscr{T}(n)$ is a tree of order $n \equiv 2(\bmod 3)$ with an α_{L}-set I, by Lemma 5 , then
$I^{c}=U(T)$. Let T^{\prime} be the tree obtained from T by Operation O1. Since $u \in I$, this implies that u is not a support vertex of T and T^{\prime} is a tree of order $n+1$ without duplicated leaves. On the other hand, $I_{O 1}$ is an independent set of T^{\prime} with $L\left(T^{\prime}\right) \subseteq I_{O 1}$ such that $\left\lfloor\frac{2(n+1)-1}{3}\right\rfloor \geq \alpha\left(T^{\prime}\right) \geq\left|I_{O 1}\right|=|I|=\left\lfloor\frac{2 n-1}{3}\right\rfloor=\left\lfloor\frac{2(n+1)-1}{3}\right\rfloor$, where $n \equiv 2(\bmod 3)$. Hence $\alpha\left(T^{\prime}\right)=\left\lfloor\frac{2(n+1)-1}{3}\right\rfloor$. In conclusion, $T^{\prime} \in \mathscr{T}(n+1)$ is a tree of order $n+1$ with an α_{L}-set $I_{O 1}$.
Lemma 7 Let $T \in \mathscr{T}(n)$ be a tree of order $n \equiv 0,1(\bmod 3)$ with an α_{L}-set I such that $\left|I^{c}-U(T)\right| \geq 1$. If T^{\prime} is obtained from T by Operation O2, then $T^{\prime} \in \mathscr{T}(n+1)$ is a tree of order $n+1$ and $I_{O 2}$ is an α_{L}-set of T^{\prime}.

Proof. Note that such a tree T exists, as, for instance, the tree in Figure 1 is as desired. If $T \in \mathscr{T}(n)$ is a tree of order $n \equiv 0,1(\bmod 3)$ with an α_{L}-set I such that $\left|I^{c}-U(T)\right| \geq 1$. Let T^{\prime} be the tree obtained from T by Operation O 2 . Since u is not a support vertex of T, this implies that T^{\prime} is a tree of order $n+1$ without duplicated leaves. And $I_{O 2}$ is an independent set of T^{\prime} with $L\left(T^{\prime}\right) \subseteq I_{O 2}$ such that $\left\lfloor\frac{2(n+1)-1}{3}\right\rfloor \geq \alpha\left(T^{\prime}\right) \geq\left|I_{O 2}\right|=|I|+1=\left\lfloor\frac{2 n-1}{3}\right\rfloor+1=\left\lfloor\frac{2(n+1)-1}{3}\right\rfloor$, where $n \equiv 0,1$ (mod 3). Hence $\alpha\left(T^{\prime}\right)=\left\lfloor\frac{2(n+1)-1}{3}\right\rfloor$. In conclusion, $T^{\prime} \in \mathscr{T}(n+1)$ is a tree of order $n+1$ with an α_{L}-set $I_{O 2}$.

Lemma 8 Let $T \in \mathscr{T}(n)$ be a tree of order $n \equiv 1,2(\bmod 3)$ with an α_{L}-set I. If T^{\prime} is obtained from T by Operation O3, then $T^{\prime} \in \mathscr{T}(n+2)$ is a tree of order $n+2$ and $I_{O 3}$ is an α_{L}-set of T^{\prime}.

Proof. Note that T^{\prime} is a tree of order $n+2$ without duplicated leaves. And $I_{O 3}$ is an independent set of $T^{\prime \prime}$ with $L\left(T^{\prime}\right) \subseteq I_{O 3}$ such that $\left\lfloor\frac{2(n+2)-1}{3}\right\rfloor \geq \alpha\left(T^{\prime}\right) \geq\left|I_{O 3}\right|=|I|+1=\left\lfloor\frac{2 n-1}{3}\right\rfloor+1=\left\lfloor\frac{2(n+2)-1}{3}\right\rfloor$, where $n \equiv 1,2$ (mod 3). Hence $\alpha\left(T^{\prime}\right)=\left\lfloor\frac{2(n+2)-1}{3}\right\rfloor$. In conclusion, $T^{\prime} \in \mathscr{\mathscr { V }}(n+2)$ is a tree of order $n+2$ with an α_{L} set $I_{\text {O3 }}$.

Lemma 9 Let $T \in \mathscr{T}(n)$ be a tree of order $n \geq 4$ with an α_{L}-set I. If T^{\prime} is obtained from T by Operation O 4 , then $T^{\prime} \in \mathscr{T}(n+3)$ is a tree of order $n+3$ and $I_{O 4}$ is an α_{L}-set of T^{\prime}.

Proof. Note that T^{\prime} is a tree of order $n+3$ without duplicated leaves. And $I_{O 4}$ is an independent set of T^{\prime} with $L\left(T^{\prime}\right) \subseteq I_{O 4}$ such that $\left\lfloor\frac{2(n+3)-1}{3}\right\rfloor \geq \alpha\left(T^{\prime}\right) \geq\left|I_{O 4}\right|=|I|+2=\left\lfloor\frac{2 n-1}{3}\right\rfloor+2=\left\lfloor\frac{2(n+3)-1}{3}\right\rfloor$. Hence $\alpha\left(T^{\prime}\right)=\left\lfloor\frac{2(n+3)-1}{3}\right\rfloor$. In conclusion, $T^{\prime} \in \mathscr{T}(n+3)$ is a tree of order $n+3$ with an α_{L}-set $I_{O 4}$.
Let \mathscr{C} be the class of all trees obtained from P_{4} or P_{5} by a finite sequence of Operations O1-O4. Suppose that $\mathscr{T}=\bigcup_{n \geq 4} \mathscr{T}(n)$, we will show that $\mathscr{T}=\mathscr{C}$.

Theorem $2 T$ is in \mathscr{C} if and only if T is in \mathscr{T}.

Proof. If T is in \mathscr{C}, by Lemmas 6, 7, 8 and 9, then T is in \mathscr{T}. Now, we want to show the converse by contradiction. Suppose to the contrary that there exists a tree $T \in \mathscr{T}$ and $T \notin \mathscr{C}$ such that $|T|$ is as small as possible. We can see that $|T| \geq 7$. Let $P: x-y-z-\cdots$ be a longest path of T. Then $N_{T}(y)=\{x, z\}$ and $T^{\prime}=T-N_{T}[x]$ is a tree of order $n^{\prime}=n-2$. We consider two cases.

Case 1. T^{\prime} has no duplicated leaves.
For an α_{L}-set I of $T, I^{\prime}=I-\{x\}$ is an independent set of T^{\prime}, this implies that $\alpha\left(T^{\prime}\right) \geq\left|I^{\prime}\right|=\alpha(T)-1$. By Theorem 1, we have that $\left\lfloor\frac{2 n-1}{3}\right\rfloor-1=\left\lfloor\frac{2 n-4}{3}\right\rfloor=\alpha(T)-1 \leq \alpha\left(T^{\prime}\right) \leq\left\lfloor\frac{2(n-2)-1}{3}\right\rfloor=\left\lfloor\frac{2 n-5}{3}\right\rfloor \leq\left\lfloor\frac{2 n-4}{3}\right\rfloor$. Then $\alpha\left(T^{\prime}\right)=\left\lfloor\frac{2(n-2)-1}{3}\right\rfloor=\left\lfloor\frac{2 n-1}{3}\right\rfloor-1$ and $n \equiv 0,1(\bmod 3)$. This follows that $T^{\prime} \in \mathscr{T}\left(n^{\prime}\right)$, where $n^{\prime}=n-2 \equiv 1,2(\bmod 3)$, by hypothesis, $T^{\prime} \in \mathscr{C}$. Note that T can be obtained from T^{\prime} by Operation O3, this implies that $T \in \mathscr{C}$, which is a contradiction.

Case 2. T^{\prime} has duplicated leaves z and z^{\prime}.
Let $T^{\prime \prime}=T^{\prime}-\{z\}$. Then $T^{\prime \prime}$ is a tree of order $n-3$. Since z^{\prime} is a leaf of T, this implies that z and z^{\prime} are in every α_{L}-set of T. For an α_{L}-set I of $T, I^{\prime \prime}=I-\{x, z\}$ is an independent set of $T^{\prime \prime}$, thus $\alpha\left(T^{\prime \prime}\right) \geq\left|I^{\prime \prime}\right|=\alpha(T)-2$. By Theorem 1, we have that
$\left\lfloor\frac{2 n-1}{3}\right\rfloor-2=\left\lfloor\frac{2 n-7}{3}\right\rfloor=\alpha(T)-2 \leq \alpha\left(T^{\prime \prime}\right) \leq\left\lfloor\frac{2(n-3)-1}{3}\right\rfloor=\left\lfloor\frac{2 n-7}{3}\right\rfloor$. Then $\alpha\left(T^{\prime \prime}\right)=\left\lfloor\frac{2(n-3)-1}{3}\right\rfloor$. This follows that $T^{\prime \prime} \in \mathscr{T}\left(n^{\prime \prime}\right)$, where $n^{\prime \prime}=n-3$, by hypothesis, $T^{\prime \prime} \in \mathscr{C}$. Note that T can be obtained from $T^{\prime \prime}$ by Operation O 4 , this implies that $T \in \mathscr{C}$, which is a contradiction.

By Cases 1 and 2, we conclude that T is in \mathscr{T}, then T is in \mathscr{C}.
Now, we obtain the main theorem in this paper.
Theorem 3 Suppose that T is a tree of order $n \geq 4$ without duplicated leaves, then $\alpha(T) \leq\left\lfloor\frac{2 n-1}{3}\right\rfloor$. Furthermore, the equality holds if and only if $T \in \mathscr{C}$.

References

[1] Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Application. North-Holland, New York.
[2] Harant, J. (1998) A Lower Bound on the Independence Number of a Graph. Discrete Mathematics, 188, 239-243. http://dx.doi.org/10.1016/S0012-365X(98)00048-X
[3] Hattingh, J.H., Jonack, E., Joubert, E.J. and Plummer, A.R. (2007) Total Restrained Domination in Trees. Discrete Mathematics, 307, 1643-1650. http://dx.doi.org/10.1016/j.disc.2006.09.014
[4] Jou, M.-J. (2010) Dominating Sets and Independent Sets in a Tree. Ars Combinatoria, 96, 499-504.
[5] Jou, M.-J. (2010) Upper Domination Number and Domination Number in a Tree. Ars Combinatoria, 94, 245-250.
[6] Luo, R. and Zhao, Y. (2006) A Note on Vizing's Independence Number Conjecture of Edge Chromatic Critical Graphs, Discrete Mathematics, 306, 1788-1790. http://dx.doi.org/10.1016/j.disc.2006.03.040

