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Abstract 
In conjunction with a second order uncertain nonlinear system, this paper makes some compari-
sons between PID control and general-integral-proportional-derivative (GI-PD) control; that is, by 
Routh’s stability criterion, we demonstrate that the system matrix under GI-PD control can be sta-
bilized more easily; by linear system theory and Lyapunov method, we demonstrate that GI-PD 
control can deal with the uncertain nonlinearity more effectively; by analyzing and comparing the 
integral control action, we demonstrate that GI-PD control has the better control performance. 
Design example and simulation results verify the justification of our conclusions again. All these 
mean that GI-PD control has the stronger robustness and higher control performance than PID 
control. Consequently, GI-PD control has broader application prospects than PID control. 
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1. Introduction 
Proportional-integral-derivative (PID) control is certainly the most widely used control strategy today. It is esti-
mated that over 90% of control loops employ PID control [1]. Over the last half-century, a great deal of aca-
demic and industrial effort has focused on improving PID control, but the trouble, which often suffers a serious 
loss of performance due to integrator windup, was not resolved in principle before general integral control [2] 
appeared in 2009.  

After that various general integral controls along with the design techniques were presented. For example, 
general concave integral control [3], general convex integral control [4], constructive general bounded integral 
control [5] and the generalization of the integrator and integral control action [6] were all developed by resorting 
to an ordinary control along with a known Lyapunov function; general integral control designs based on linear 
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system theory, sliding mode technique, feedback linearization technique, singular perturbation technique, equal 
ratio gain technique and power ratio gain technique were presented by [7]-[12], respectively. Although general 
integral control has developed rapidly in theory, its practical applications have not been reported. Therefore, in 
consideration of its good control performance, it is appropriate at this time to compare the simplest general 
integral control (GI-PD) with PID control in order to promote its applications in practice. 

Motivated by the cognition above, in conjunction with a second order uncertain nonlinear system, this paper 
makes some comparisons between PID control and GI-PD control. The main contributions are: under GI-PD 
control, it is demonstrated that: 1) the system matrix can be stabilized more easily; 2) it is more effective to deal 
with the uncertain nonlinear actions; 3) the trouble caused by integrator windup is resolved in principle, and then 
it has the better control performance; 4) the harmonization of the integral control action and PD control action 
can be achieved. Moreover, design example and simulation results verify the justification of our conclusions 
again. All these mean that GI-PD control has the stronger robustness and higher control performance than PID 
control. Consequently, GI-PD control has broader application prospects than PID control. 

Throughout this paper, we use the notation ( )m Aλ  and ( )M Aλ  to indicate the smallest and largest eigen-

values, respectively, of a symmetric positive-define bounded matrix ( )A x , for any nx R∈ . The norm of vec-

tor x  is defined as Tx x x= , and that of matrix A  is defined as the corresponding induced norm  

( )T
MA A Aλ= .  

The remainder of the paper is organized as follows: Section 2 describes the system under consideration, as-
sumption, and stability analysis of the closed-loop system. Section 3 compares Hurwitz stability of the system 
matrix. Section 4 demonstrates the robustness against the uncertain nonlinearity. Section 5 analyzes the control 
action. Example and simulation are provided in Section 6. Conclusions are presented in Section 7. 

2. Problem Formulation 
Consider the following controllable nonlinear system, 

( ) ( )
1 2

2 , ,
x x
x f x w g x w u
=

 = +





                                  (1) 

where 2Rx∈  is the state; Ru∈  is the control input; lRw∈  is a vector of unknown constant parameters 
and disturbances; the function ( ),f x w  is the uncertain nonlinear actions, the uncertain nonlinear function 

( ),g x w  is continuous in ( ),x w  on the control domain 2 l
x wD D R R× ⊂ × . 

Assumption 1: There is a unique pair ( )00,u  that satisfies the equation, 

( ) ( ) 00 0, 0,f w g w u= +                                     (2) 

so that 0x =  is the desired equilibrium point and 0u  is the steady-state control that is needed to maintain 
equilibrium at 0=x .  

Assumption 2: Suppose that the functions ( ),f x w  and ( ),g x w  satisfy the following inequalities, 

( ) ( ), 0, x
ff x w f w l x− ≤                                  (3) 

( )0 ,mg g x w< <                                       (4) 

( ) ( ), 0, x
gg x w g w l x− ≤                                   (5) 

( ) ( )10, 0, f
gf w g w γ− ≤                                      (6) 

for all xDx∈  and wDw∈ , where x
fl , x

gl , mg  and f
gγ  are all positive constants. 

For comparing PID and GI-PD control, the control law is taken as,  
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1 1 2 2 3

1 1 2 2

u x x
x x

α α α σ
σ β β
= − − −

 = + 
                                     (7) 

where 1α , 2α  and 3α  are the controller gains; 1β  and 2β  are the integrator gains.  
It is worth to note that although the control law (7) is GI-PD control, it is reduced to PID control as 11 =β  

and 02 =β . Thus, under GI-PD and PID control, the closed-loop system can be written as the same form, that 
is, 

( ) ( )( )
1 2

2 1 1 2 2 3

1 1 2 2

, ,
x x
x f x w g x w x x

x x
α α α σ

σ β β

=
 = − + +
 = +







                        (8) 

By assumption 1 and choosing 3α  to be large enough, and then setting 0=x  and 0=x  of the system (8), 
obtain, 

( ) ( ) 3 00 0, 0,f w g w α σ= −                                  (9) 

Therefore, we ensure that there is a unique solution 0σ , and then ( )00,σ  is a unique equilibrium point of 
the closed-loop system (8) in the domain of interest.  

Now, defining [ ]T1 2 0x xη σ σ= − , and substituting (9) into (8), obtain, 

( ),A F x wη η= +                                      (10) 

where 
















−−−=

0

010

21

321

ββ
αααA  

and ( ),F x w  is a 13×  matrix, all its elements is equal to zero except for 

( ) ( ) ( ) ( ) ( ) ( )1
21 , 0, , 0, 0, 0,f f x w f w g x w g w f w g w−= − − −   . 

Moreover, it is worthy to note that the function ( ),g x w  is integrated into 1α , 2α  and 3α .  
By linear system theory, if the matrix A  is Hurwitz, and then for any given positive define symmetric matrix 

Q , there is a unique positive define symmetric matrix P  that satisfies Lyapunov equation TPA A P Q+ = − . 
Therefore, there exists a quadratic Lyapunov function, 

( ) TV Pη η η=                                          (11) 

Thus, using ( ) TV Pη η η=  as Lyapunov function candidate, and then its time derivative along the trajecto-
ries of the closed-loop systems (10) is, 

( ) ( ) ( ) ( )T T T
2 21, 2

V
V PA A P F x w Q P f

η
η η η η η η

η
∂

= + + = − +
∂

                   (12) 

where [ ]2 21 22 23P p p p= . 
Now, using the inequalities (3), (5), (6) and definition of η , we have, 

21 ff ηκ η≤                                          (13) 

where ηκ f  is a positive constant.  
Substituting (13) into (12), obtain, 

( ) ( )( ) 2
22m fV Q Pηη λ κ η≤ − −                                (14) 

It is obvious that if  

( ) 22m fQ Pηλ κ>                                         (15) 
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holds, we have ( ) 0V η ≤ . 
Using the fact that Lyapunov function ( )V η  is a positive define function and its time derivative is a nega-

tive define function if the inequality (15) holds, we conclude that the closed-loop system (10) is stable. In fact, 
( ) 0V η =  means 0=x  and 0σσ = . By invoking LaSalle’s invariance principle, it is easy to know that the 

closed-loop system (10) is exponentially stable.  
Discussion 1: From the demonstration above, it is obvious that: for ensuring that the closed-loop system is 

exponentially stable, two key conditions are indispensable, that is, one is that the system matrix A  is Hurwitz 
and another is that the inequality (15) holds. Thus, for comparing GI-PD control with PID control, the differ-
ences of two key conditions above must be demonstrated. Moreover, the analysis of PID and GI-PD control ac-
tion and performance is unnecessary, too. All these are addressed in the following Sections, respectively.  

3. Hurwitz Stability  
The polynomials of the system matrix A  under PID control and GI-PD control are, 

031
2

2
3 =+++ ααα sss                                     (16) 

( )3 2
2 3 2 1 3 1 0s s sα α β α α β+ + + + =                                  (17) 

By Routh’s stability criterion and the polynomials (16) and (17), Hurwitz stability conditions of the system 
matrix A  under PID control and GI-PD control can be obtained as follows: 

Under PID control, if 1α , 2α  and 3α  are all positive constants, and the inequality, 

312 ααα >                                           (18) 

holds, and then the system matrix A  is Hurwitz. 
Under GI-PD control, if 2α , 123 αβα +  and 13βα  are all positive constants, and the inequality, 

1312223 βαααβαα >+                                    (19) 

holds, then the system matrix A  is Hurwitz. 
Compared with Hurwitz stability conditions of PID control, the one of GI-PD control has the following fea-

tures:  
1) The striking feature is that the role of gain 2β  manifests itself in two aspects: one is that the gain 2β  

produces a special term 23βα  such that the gain 1α  is enhanced, and then for achieving Hurwitz stability, it is 
not necessary to increase the value of 1α , even 1α  can be taken as a negative constant; another is that the gain 

2β  educes another special term 232 βαα  such that it makes the inequality (19) holds more easily, and then for 
achieving Hurwitz stability, it is unnecessary to increase 1α  and/or 2α , or decrease 3α .  

2) As 11 =β , if the system matrix A  with PID control is Hurwitz, and then the one with GI-PD control and 
02 >β  must be Hurwitz. 

3) The gain 1β  is indispensable. For ensuring Hurwitz stability, 11 >β  seems to be unfavorable, but 11 <β  
is absolutely favorable. 

4) There are two additional gains 2β  and 1β  in GI-PD control law. Therefore, more information can be ex-
ploited to stabilize the system matrix A  than PID control. 

All these means that the system matrix A  under GI-PD control can be stabilized more easily than PID con-
trol. 

4. Robustness against Uncertain Nonlinear Actions 
For comparing PID control and GI-PD control robustness against uncertain nonlinear actions, we need to solve 
the Lyapunov equation TPA A P Q+ = −  with any given positive define symmetric matrix Q  to obtain the 
solution of the matrix 2P .  

Under PID control, [ ]IIII pppP 2322212 =  is, 

( )
11 3 2 22 3 3 33 2 2 23 3 2

21
2 1 3 3

2
2

I q q q q
p

α α α α α α α α
α α α α

+ + −
=

−
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( )
11 3 23 3 22 3 1 33 2

22
2 1 3 3

2
2

I q q q q
p

α α α α α
α α α α

− + +
=

−
 

3

33
23 2α

qpI =  

Under GI-PD control, [ ]GIGIGIGI pppP 2322212 =  is, 

( )
( )

11 3 2 22 3 3 1 33 2 2 1 23 3 2 1 33 1 2 3 1 2 13 3 2 2
21

2 1 3 1 3 3 3 2 2

2 ( ) 2
2 2

GI q q q q q q
p

α α α α β α α β α α β α α α β β α α β
α α α β α α α α β

+ + − − − +
=

− +
 

( )
( )

11 3 23 3 1 22 3 1 33 2 1 13 3 2 22 3 3 2 33 3 2 2
22

2 1 3 1 3 3 3 2 2

2 2
2 2

GI q q q q q q q
p

α α β α α α β α β α α β α β β
α α α β α α α α β

− + + + + +
=

− +
 

3

33
23 2α

qpGI =  

For the sake of simplicity, we just consider the case of 11 =β  and IQ = . Thus, by comparing Ip22  with 
GIp22 , we have, 

GII pp 2222 >  as ∗<< 220 ββ  

and then by 021 >
Ip  and 021 =GIp  as ∗= 22 ββ , we obtain, 

02121 >> GII pp  as ∗<< 220 ββ  

where 

312

332223
2 ααα

ααααααβ
−
++

=∗  

It is easy to see that there exists ∗
2β  such that 2 2

GI IP P<  holds for all ∗<< 220 ββ , and then by the in- 

equality (15), we can conclude that GI-PD control is more effective to deal with the uncertain nonlinear actions 
than PID control. This means that under the case of the same gains 3α , 2α , 1α  and 11 =β  along with mod-
erately choosing 2β  and Q , GI-PD control can be designed to have the stronger robustness against the uncer-
tain nonlinear actions than PID control. 

Discussion 2: Although the demonstration above aims at a special case, it is not hard to conclude that by syn-
thesizing all the gains 3α , 2α , 1α , 1β  and 2β , GI-PD control can be designed to have the stronger robust-
ness with respect to the uncertain nonlinear actions than PID control since more information can be used to de-
crease the value of 2

GIP . 

5. Analysis of Control Action 
No matter PID control or GI-PD control, Proportional and Derivative control actions are all identical, that is:  

Proportional control action is proportional to the error. If the error is small, its corrective effect is small, and 
vice versa.  

Derivative control action is proportional to the rate at which the error is changing. Its corrective effect at-
tempts to anticipate a large error and prevent this future error. 

Compared with PID control, the main difference of GI-PD control is the integrator, that is, the error derivative 
is introduced into the integrator. This lead to an important change of the integral control action, that is, 

Under PID control, the integrator is 1x=σ . Obviously, the integral control action continues to increase un-
less the error passes through zero, and then for making the integral control action tends to a constant, the error is 
usually needed to pass through zero repeatedly. Just the stubborn increase of integral control action results in the 
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integrator windup. 
Under GI-PD control, the integrator is 2211 xx ββσ += . Thus, as 02211 =+= xx ββσ , the integral control 

action does not increased and remains a constant; if the integral control action is large, 2x  increases, and the 
integral control action instantly decreases, and vice versa. This shows that the effect of 22 xβ  is an attempt to 
anticipate and prevent an excess integral control action, and then integrator windup can be removed completely. 
Moreover, as 2112 βαβα = , the integral control action is equivalent to the accumulation of PD control action. 
This means that the harmonization of the integral control action and PD control action can be achieved. All these 
means that GI-PD control has the better control performance than PID control. 

6. Example and Simulation 
Consider the pendulum system [13] described by, 

( )sina b cTθ θ θ= − − +   

where 0,, >cba , θ  is the angle subtended by the rod and the vertical axis, and T  is the torque applied to 
the pendulum. View T  as the control input and suppose we want to regulate θ  to r . Now, taking 

rx −= θ1 , θ =2x , the pendulum system can be written as, 

( )
1 2

2 1 2sin
x x
x a x r bx cu
=

 = − + − +





 

and then it can be verified that ( )0 sinu a r c=  is the steady-state control that is needed to maintain equili-
brium at the origin. 

GI-PD control law is,  





+=
−−−=

221

32211

xx
xxu

βσ
σααα



 

It is worth to note that as 02 =β , the control law above is PID control law. Thus, the closed-loop system can 
be written as,  

( ),A F x wη η= +  

where  

[ ]T1 2 0x xη σ σ= − , 

( )1
1 2 3

2

0 1 0

1 0

A c c c b cα α α

β

−

 
 

= − − + − 
 
 

, 

and  

( ) ( ) ( ) T
1, 0 sin sin 0F x w a r a x r= − +   .  

The normal parameters are 10== ca  and 2=b , and in the perturbed case, b  and c  are reduced to 1 
and 5, respectively, corresponding to double the mass. Thus, we have, 

( ) ( )1sin sin 10a r a x r η− + ≤                                 (20) 

Now, taking 81 =α , 52 =α , 83 =α , 1
122
−= ααβ , 10=a , 5=c  and 1=b , and using Routh’s stability 

criterion, we have, 

( ) ( )3 2 2 2 1 3 1650c c b c b c cα α β α α α+ + + − =                               (21) 

( )2 1 31 1000c c cα α α+ − =                                    (22) 
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and then the system matrix A  under GI-PD control and PID control is Hurwitz. Thus, solving Lyapunov equa-
tion TPA A P I+ = − , we obtain 2 0.031GIP ≈  and 2 0.048IP ≈ , and then by the inequality (15) and the 
bound condition (20), we have, 

21 20 0.38GIP− =                                       (23)  

21 20 0.04IP− =                                        (24) 

Thus, Under PID and GI-PD control, the asymptotical stability of the whole closed-loop system can all be 
ensured. Consequently, the simulations are implemented under the normal and perturbed cases, respectively. 
Moreover, in the perturbed case, we consider an additive impulse-like disturbance ( )d t  of magnitude 60 act-
ing on the system input between 30s and 31s. 

Figure 1 and Figure 2 showed the simulation results under normal and perturbed cases. From the simulation 
results and design procedure, the following observations can be made: 1) by Hurwitz stability conditions (21) 
and (22), stability margin of the system matrix A  under GI-PD control is larger than the one of PID control; 2) 
by stability conditions (23) and (24), GI-PD control has the stronger robustness with respect to the uncertain 
nonlinear action than PID control; 3) by Figure 1 and Figure 2, under GI-PD control, no matter normal case or 
perturbed case, the optimum responses can all be achieved in the whole control domain. However, under PID 
control, the overshoot is proportional to the initial error and the settling time is long. Due to the above experi-
mental results, it could be concluded that GI-PD control has more broad application prospects than PID control.  

 

 
Figure 1. System output under the normal case.                 

 

 
Figure 2. System output under the perturbed cases.             
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7. Conclusion 
In conjunction with a second order uncertain nonlinear system, this paper makes some comparisons between 
PID control and GI-PD control. The main contributions are: under GI-PD control, it is demonstrated that: 1) the 
system matrix can be stabilized more easily; 2) it is more effective to deal with the uncertain nonlinear actions; 3) 
the trouble caused by integrator windup is resolved in principle, and then it has the better control performance; 4) 
the harmonization of the integral control action and PD control action can be achieved. Moreover, design exam-
ple and simulation results verify the justification of our conclusions again. All these means that GI-PD control 
has the stronger robustness and higher control performance than PID control. Consequently, GI-PD control has 
broader application prospects than PID control. 
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