Asymptotic Behavior of a Bi-Dimensional Hybrid System

Pedro Gamboa ${ }^{1}$, Jaime E. Muñoz ${ }^{1,2}$, Octavio Vera ${ }^{3}$, Margareth Alves ${ }^{4}$
${ }^{1}$ Departamento de Matemática, Instituto de Matemáticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{2}$ Laboratorio Nacional de Computação Científica, Petrópolis, Brazil
${ }^{3}$ Departamento de Matemática, Facultad de Ciencias, Universidad del Bo-Bo, Concepción, Chile
${ }^{4}$ Departamento de Matemática, UFV, Viçosa, Brazil
Email: pgamboa@im.ufri.br, rivera@im.ufri.br, rivera@Incc.br, overa@ubiobio.cl, malves@ufv.br

Received 3 June 2015; accepted 10 July 2015; published 14 July 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

We study the asymptotic behavior of the solutions of a Hybrid System wrapping an elliptic operator.

Keywords

Hybrid System, Compressible, Stabilization, Asymptotic Behavior, Decay Rate, Generator Infinitesimal, Polynomial Decay

1. Introduction

In this paper, we address some issues related to the asymptotic behavior a hybrid system with two types of vibrations of different nature. The model under consideration is inspired in and introduced in [1]. However, there are some important differences between these two models. In [1] the flexible part of the boundary Γ_{0} is occupied by a flexible damped beam instead of a flexible. Most of the relevant properties see [2]. In [3] the authors are interested on the existence of periodic solutions of this system. Due to the localization of the damping term in a relatively small part of the boundary and to the effect of the hybrid structure of the system, the existence of periodic solutions holds for a restricted class of non homogeneous terms. Some resonance-type phenomena are also exhibited. Cindea, Sorin and Pazoto [4] consider the motion of a stretched string coupled with a rigid body at one end and we study the existence of periodic solution when a periodic force facts on the body. The main difficulty of the study is related to the weak dissipation that characterizes this hybrid system, which does not ensure a uniform decay rate of the energy. For more examples of hybrid systems see [5] [6]. We refer to [7] for a
discussion on the model and references therein. In [8] the authors to discern exact controllability properties of two coupled wave equations, one of which holds on the interior of a bounded open domain Ω, and the other on a segment Γ_{0} of the boundary $\partial \Omega$. Moreover, the coupling is accomplished through terms on the boundary. Because of the particular physical application involved the attenuation of acoustic waves within a chamber by means of active controllers on the chamber walls control is to be implemented on the boundary only.

We consider the bi-dimensional cavity $\Omega=\Omega_{1} \backslash \bar{\Omega}_{0}$ and that Ω_{0} an open class C^{2} with limited boundary contained in Ω_{1}, filled with an elastic, in viscid, compressible fluid, in which the acoustic vibrations are coupled with the mechanical vibration of a string located in the subset $\Gamma_{0}=\{(x, 0) ; x \in(0,1)\}$ a part of the boundary of omega of $\Omega_{1}, \Gamma_{1}=\partial \Omega_{1} \backslash \Gamma_{0}$ and $\Gamma=\partial \Omega_{1} \cup \partial \Omega_{0}$ with $\partial \Omega_{1} \cap \partial \Omega_{0}=\phi$, is boundary of Ω. The subset Γ_{1} is assumed to be rigid and we impose zero normal velocity of the fluids on it. The subset Γ_{0} is supposed to be flexible and occupied by a flexible string that vibrates under the pressure of the fluid on the plane where Ω lies. The displacement of Γ_{0}, described by the scalar function $w=w(x, t)$, obeys the one-dimensional dissipative wave equation. As Ω is compressible fluid where the velocity field v is given by the potential $\varphi=\varphi(x, y, t),(v=\nabla \varphi)$. All deformations are supposed to be small enough so that linear theory applies.

The linear motion of this system is described by means of the coupled wave equations

$$
\begin{cases}\rho \varphi_{t t}-c \Delta \varphi+\gamma_{1} \varphi_{t}=0 & \text { in } \Omega \times(0, \infty) \tag{1}\\ \frac{\partial \varphi}{\partial v}=0 & \text { on } \Gamma_{1} \times(0, \infty) \\ \frac{\partial \varphi}{\partial v}=-w_{t} & \text { on } \Gamma_{0} \times(0, \infty) \\ \varphi=0 & \text { on } \Gamma_{2} \times(0, \infty) \\ w_{t t}-w_{x x}+\gamma_{0} w_{t}+c \varphi_{t}=0 & \text { on } \Gamma_{0} \times(0, \infty) \\ w_{x}(0, t)=w_{x}(1, t)=0 & \text { for } t>0 \\ \varphi(0)=\varphi^{0}, \quad \varphi_{t}(0)=\varphi^{1} & \text { in } \Omega \\ w(0)=w^{0}, \quad w_{t}(0)=w^{1} & \text { on } \Gamma_{0}\end{cases}
$$

where v denote the unit outward normal to Ω.
We define the energy associated with this system. Proceeding formally, multiply the first equation by φ_{t} and then integrate over Ω.

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{c}{\rho} \int_{\Omega} \nabla \varphi \cdot \nabla \varphi_{t} \mathrm{~d} x \mathrm{~d} y-\frac{c}{\rho} \int_{\Gamma} \frac{\partial \varphi}{\partial v} \cdot \varphi_{t} \mathrm{~d} \sigma+\frac{\gamma_{1}}{\rho} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y=0 \tag{2}
\end{equation*}
$$

However, the integral

$$
\int_{\Gamma} \frac{\partial \varphi}{\partial v} \cdot \varphi_{t} \mathrm{~d} \sigma=\int_{\Gamma_{1}} \underbrace{\frac{\partial \varphi}{\partial v}}_{=0} \cdot \varphi_{t} \mathrm{~d} \sigma+\int_{\Gamma_{0}} \underbrace{\frac{\partial \varphi}{\partial v}}_{-w_{t}} \cdot \varphi_{t} \mathrm{~d} \sigma-\int_{\Gamma_{2}} \frac{\partial \varphi}{\partial v} \cdot \underbrace{\varphi_{t}}_{=0} \sigma,
$$

which leads us

$$
\begin{equation*}
\int_{\Gamma} \frac{\partial \varphi}{\partial v} \cdot \varphi_{t} \mathrm{~d} \sigma=\int_{\Gamma_{0}} \frac{\partial \varphi}{\partial v} \cdot \varphi_{t}=-\int_{\Gamma_{0}} w_{t} \varphi_{t} \mathrm{~d} x \tag{3}
\end{equation*}
$$

Replacing (3) into (2) we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{2} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{c}{\rho}|\nabla \varphi|^{2}\right]+\frac{\gamma_{1}}{\rho} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y-\frac{c}{\rho} \int_{\Gamma_{0}} w_{t} \varphi_{t} \mathrm{~d} x=0 . \tag{4}
\end{equation*}
$$

Multiplying by w in the second equation of the system (1) and then integrate over Γ_{0}

$$
\begin{equation*}
\frac{1}{2 \rho} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Gamma_{0}}\left|w_{t}\right|^{2} \mathrm{~d} x-\frac{1}{\rho} \int_{\Gamma_{0}} w_{x x} w_{t} \mathrm{~d} x+\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}}\left|w_{t}\right|^{2} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \varphi_{t} w_{t} \mathrm{~d} x=0 \tag{5}
\end{equation*}
$$

Integrating by parts

$$
\int_{\Gamma_{0}} w_{x x} w_{t} \mathrm{~d} x=\left.\underbrace{w_{x}} w_{t}\right|_{0} ^{1}-\int_{\Gamma_{0}} w_{x} w_{t x} \mathrm{~d} x=-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Gamma_{0}}\left|w_{x}\right|^{2} \mathrm{~d} x .
$$

Replacing the above equation over (5) we obtain

$$
\begin{equation*}
\frac{1}{2 \rho} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Gamma_{0}}\left|w_{t}\right|^{2} \mathrm{~d} x+\frac{1}{2 \rho} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Gamma_{0}}\left|w_{x}\right|^{2} \mathrm{~d} x+\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}}\left|w_{t}\right|^{2} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \varphi_{t} w_{t} \mathrm{~d} x=0 \tag{6}
\end{equation*}
$$

which leads us to assert that, the energy of the system is given by

$$
\begin{equation*}
E(t)=E(\varphi, w ; t)=\frac{1}{2} \int_{\Omega}\left|\varphi_{t}\right|^{2}+\frac{c}{\rho}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{1}{2 \rho} \int_{\Gamma_{0}} w_{x}^{2}+w_{t}^{2} \mathrm{~d} x, \tag{7}
\end{equation*}
$$

for each $t \geq 0$.
Remark 1 The first two terms represents the energy of acoustic wave and the other terms is the energy of bungee wave.

The system has a natural dissipation. Indeed, to observe this fact multiply the first equation of (1) by φ_{t} and then the second equation of (1) by w_{t}, as was done in previous calculations

$$
\begin{equation*}
\frac{\mathrm{d} E(t)}{\mathrm{d} t}=-\frac{\gamma_{1}}{\rho} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y-\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}} w_{t}^{2} \mathrm{~d} x<0 \tag{8}
\end{equation*}
$$

if $\gamma_{1}^{2}+\gamma_{0}^{2} \neq 0$. Micu, S . in his doctoral thesis [7] shows non-exponential decay of the energy of the hybrid system (1).

2. Mathematical Formulation

Define the face space $\mathcal{H}=H^{1}(\Omega) \times L^{2}(\Omega) \times H^{1}\left(\Gamma_{0}\right) \times L^{2}\left(\Gamma_{0}\right)$ endowed with the Hilbertian scalar product given by

$$
\begin{equation*}
\langle U, V\rangle=\int_{\Omega} \frac{c}{\rho} \nabla \varphi_{1} \cdot \nabla \psi_{1}+\varphi_{2} \psi_{2} \mathrm{~d} x \mathrm{~d} y+\frac{1}{\rho} \int_{\Gamma_{0}}\left(\varphi_{3}\right)_{x}\left(\psi_{3}\right)_{x}+\varphi_{4} \psi_{4} \mathrm{~d} x, \tag{9}
\end{equation*}
$$

for all $U=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right), V=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right) \in \mathcal{H}$. We can show that the pair $(\mathcal{H},\langle\rangle$,$) is a Hilbert space.$
Since the first and second equation of the system (1), we obtain

$$
\begin{gathered}
\varphi_{t}=\varphi_{2} \text { then } \varphi_{2 t}=\frac{c}{\rho} \Delta \varphi_{1}-\frac{\gamma_{1}}{\rho} \varphi_{2} \\
w_{t}=\varphi_{4} \text { then } \varphi_{4 t}=\left(\varphi_{3}\right)_{x x}-\gamma_{0} \varphi_{4}-c \varphi_{2} .
\end{gathered}
$$

These equations lead us to define the operator $\mathcal{A}: \mathcal{H} \rightarrow \mathcal{H}$ by

$$
\mathcal{A}:=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{c}{\rho} \Delta & -\frac{\gamma_{1}}{\rho} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & -c & (\cdot)_{x x} & -\gamma_{0}
\end{array}\right]
$$

in this sense for all $U=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right) \in \mathcal{H}$,

$$
\begin{equation*}
\mathcal{A} U=\left(\varphi_{2}, \frac{c}{\rho} \Delta \varphi_{1}-\frac{\gamma_{1}}{\rho} \varphi_{2}, \varphi_{4},\left(\varphi_{3}\right)_{x x}-\gamma_{0} \varphi_{4}-c \varphi_{2}\right) . \tag{10}
\end{equation*}
$$

Note that $\mathcal{A} U \in \mathcal{H}$ if and only if

$$
\begin{aligned}
& \varphi_{2} \in H^{1}(\Omega), \quad \frac{c}{\rho} \Delta \varphi_{1}-\frac{\gamma_{1}}{\rho} \varphi_{2} \in L^{2}(\Omega), \quad \frac{c}{\rho} \Delta \varphi_{1}-\frac{\gamma_{1}}{\rho} \varphi_{2}, \quad \varphi_{4} \in H^{1}\left(\Gamma_{0}\right) \\
& -c \varphi_{2}+\left(\varphi_{3}\right)_{x x}-\gamma_{0} \varphi_{4} \in L^{2}\left(\Gamma_{0}\right) .
\end{aligned}
$$

Now, we consider the problem with Neumann boundary conditions

$$
\left\{\begin{array}{l}
\frac{c}{\rho} \Delta \varphi_{1}=\frac{\gamma_{1}}{\rho} \varphi_{2}+h \in L^{2}(\Omega), \quad h \in L^{2}(\Omega) \tag{11}\\
\frac{\partial}{\partial v} \varphi_{1}=0 \quad \text { on } \Gamma_{1} \\
\frac{\partial}{\partial v} \varphi_{1}=\varphi_{4} \quad \text { on } \Gamma_{0} \\
\varphi_{1}=0 \quad \text { on } \Gamma_{2}
\end{array}\right.
$$

where we can say that $\varphi_{1} \in H^{2}(\Omega)$ see [9]. Similarly, consider the problem

$$
\left\{\begin{array}{l}
\left(\varphi_{2}\right)_{x x}=c \varphi_{2}+\gamma_{0} \varphi_{4} \in L^{2}\left(\Gamma_{0}\right) \tag{12}\\
\left(\varphi_{3}\right)_{x}(0)=\left(\varphi_{3}\right)_{x}(1)=0 .
\end{array}\right.
$$

We can say that $\varphi_{2} \in H^{2}\left(\Gamma_{0}\right)$. In this sense we can define the domain of the operator \mathcal{A} which we denote $\mathcal{D}(\mathcal{A})$, as the set of $U=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right) \in \mathcal{H}$ such that $\varphi_{1} \in H^{2}(\Omega), \quad \varphi_{2} \in H^{1}(\Omega), \quad \varphi_{3} \in H^{2}\left(\Gamma_{0}\right)$, $\varphi_{4} \in H^{1}\left(\Gamma_{0}\right)$ satisfying

$$
\begin{aligned}
& \frac{\partial \varphi_{1}}{\partial v}=0 \quad \text { on } \Gamma_{1} \\
& \frac{\partial \varphi_{1}}{\partial v}=\varphi_{4} \quad \text { on } \Gamma_{0} \\
& \varphi_{1}=0 \quad \text { on } \Gamma_{2} \\
& \left(\varphi_{3}\right)_{x}(0)=\left(\varphi_{3}\right)_{x}(1)=0 .
\end{aligned}
$$

Remark 2 By previous observations we can say that the hybrid system (1) is equivalent to the Cauchy problem

$$
\left\{\begin{array}{l}
U_{t}(t)=\mathcal{A} U(t), t>0 \tag{13}\\
U(0)=U_{0}
\end{array}\right.
$$

where $U_{0}=\left(\varphi^{0}, \varphi^{1}, \omega^{0}, \omega^{1}\right) \in \mathcal{D}(\mathcal{A})$ and $U(t)=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right) \in \mathcal{D}(\mathcal{A}), t \geq 0$.

3. Solution Existence

We want to show that \mathcal{A} is a dissipative operator and $0 \in \rho(\mathcal{A})$ (The resolvent set of \mathcal{A}).
Remark 3 The operator \mathcal{A} is dissipative, ie $\langle\mathcal{A} U, U\rangle<0$ for all $U=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right) \in \mathcal{D}(\mathcal{A})$.
Applying (9), we get

$$
\langle\mathcal{A} U, U\rangle=-\frac{\gamma_{1}}{\rho} \int_{\Omega} \varphi_{2}^{2} \mathrm{~d} x \mathrm{~d} y-\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}} \varphi_{4}^{2} \mathrm{~d} x<0
$$

Resolvent Equation:

Given $F \in \mathcal{H}$, we find $U \in \mathcal{D}(\mathcal{A})$

$$
\begin{equation*}
(\lambda I-\mathcal{A}) U=F, \quad \lambda \in \mathbb{C} \tag{14}
\end{equation*}
$$

In particular, $0 \in \rho(\mathcal{A})$, if and only if, there is

$$
U \in \mathcal{D}(\mathcal{A}) ; \quad-\mathcal{A} U=F
$$

that is,

$$
\begin{gathered}
-\varphi_{2}=F_{1} \\
-\frac{c}{\rho} \Delta \varphi_{1}+\frac{\gamma_{1}}{\rho} \varphi_{2}=F_{2} \\
-\varphi_{4}=F_{3} \\
-\left(\varphi_{3}\right)_{x x}+\gamma_{0} \varphi_{4}+c \varphi_{2}=F_{4},
\end{gathered}
$$

where $F=\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$. By previous observations that there have $U \in \mathcal{D}(\mathcal{A})$. Using the application of Lummer Phillips Theorem [10] [11], we have the following result.

Theorem 1 The operator \mathcal{A} set to (10) is the infinitesimal generator of a contraction semigroup C_{0}.
Theorem 2 The \mathcal{A} is the infinitesimal generator of a semigroup C_{0} and verifies $U_{0} \in \mathcal{D}\left(\mathcal{A}^{3}\right)$ then the solution of (13) satisfies

$$
\begin{equation*}
U \in C^{1}(0, \infty ; \mathcal{H}) \cap C^{2}(0, \infty ; \mathcal{D}(\mathcal{A})) \tag{15}
\end{equation*}
$$

4. Asymptotic Behavior

We now show that the energy associated with the system decays exponentially. Multiplying by φ the first equation in (1) and integrating over Ω yields

$$
\int_{\Omega} \varphi_{t t} \varphi \mathrm{~d} x \mathrm{~d} y-\frac{c}{\rho} \int_{\Omega} \Delta \varphi \varphi \mathrm{d} x \mathrm{~d} y+\frac{\gamma_{1}}{\rho} \int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y=0
$$

equivalently

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y-\int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{c}{\rho} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y-\frac{c}{\rho} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial v} \varphi \sigma+\frac{\gamma_{1}}{\rho} \int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y=0 . \tag{16}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
-\frac{c}{\rho} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial v} \varphi \sigma=\frac{c}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x-\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi_{t} \mathrm{~d} x . \tag{17}
\end{equation*}
$$

From the second equation in (1), we obtain

$$
\begin{equation*}
-\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi_{t} \mathrm{~d} x=-\frac{1}{\rho} \int_{\Gamma_{0}} \omega\left(-\omega_{t t}+\omega_{x x}-\gamma_{0} \omega\right) \mathrm{d} x \tag{18}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t t} \mathrm{~d} x=\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x-\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x . \tag{19}
\end{equation*}
$$

From (17)-(19), we obtain

$$
\begin{equation*}
-\frac{c}{\rho} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial v} \varphi \sigma=\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x\right]+\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x-\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x+\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}} \omega \omega_{\mathrm{t}} \mathrm{~d} x . \tag{20}
\end{equation*}
$$

Replacing (20) into (16)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y-\int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{c}{\rho} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x\right] \\
& +\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x-\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x+\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{\gamma_{1}}{\rho} \int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y=0 \tag{21}
\end{align*}
$$

or equivalently

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y+\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x\right]-\int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{c}{\rho} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y \tag{22}\\
& +\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x-\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x+\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{\gamma_{1}}{\rho} \int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y=0
\end{align*}
$$

Now, since Poincaré inequality we have

$$
\begin{equation*}
\left|\frac{\gamma_{0}}{\rho} \int_{\Gamma_{0}} \omega \omega_{t}\right| \leq \frac{\gamma_{0} \lambda_{1}}{\rho}\left[\int_{\Gamma_{0}} \omega_{x}^{2}\right]^{1 / 2}\left[\int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x\right]^{1 / 2} \leq \frac{\alpha}{2 \rho} \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x+\frac{\gamma_{0} \lambda_{1}}{2 \alpha} \int_{\Gamma_{0}} \omega_{t}^{2}, \tag{23}
\end{equation*}
$$

where λ_{1} is the Poincaré constant. In a similar way,

$$
\begin{equation*}
\left|\frac{\gamma_{1}}{\rho} \int_{\Omega} \varphi \varphi_{t} \mathrm{~d} x \mathrm{dy}\right| \leq \frac{\theta}{2 \rho} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{\gamma_{1} \lambda_{1}}{2 \theta \rho} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y \tag{24}
\end{equation*}
$$

From (22), (23) and (24) we have

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y+\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x\right] \tag{25}\\
& \leq\left(1+\frac{\gamma_{1} \lambda_{1}}{2 c \rho}\right) \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y-\frac{3 c}{4 \rho} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{1}{\rho} \int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x-\frac{1}{2} \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x .
\end{align*}
$$

We define the operator

$$
\begin{equation*}
\mathcal{L}(t):=n E(t)+\int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y+\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x, \quad n \in \mathbb{N} . \tag{26}
\end{equation*}
$$

Differentiating (26) and using (8) we obtain

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{L}(t)= & n \frac{\mathrm{~d}}{\mathrm{~d} t} E(t)+\frac{\mathrm{d}}{\mathrm{~d} t}\left[\int_{\Omega} \varphi_{t} \varphi \mathrm{~d} x \mathrm{~d} y+\frac{1}{\rho} \int_{\Gamma_{0}} \omega \omega_{t} \mathrm{~d} x+\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x\right] \\
\leq & {\left[n \frac{\gamma_{1}}{\rho}-\left(1+\frac{\gamma_{1} \lambda_{1}}{2 c \rho}\right)\right] \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y-\frac{3 c}{4 \rho} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y } \tag{27}\\
& -\left[n \frac{\gamma_{0}}{\rho}-\left(1+\frac{\gamma_{0} \lambda_{1}}{2 \rho}\right)\right] \int_{\Gamma_{0}} \omega_{t}^{2} \mathrm{~d} x-\frac{1}{2} \int_{\Gamma_{0}} \omega_{x}^{2},
\end{align*}
$$

Considering n large enough, we can obtain a constant C such that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{L}(t) \leq-C E(t) \tag{28}
\end{equation*}
$$

On the other hand, using Poincaré, we can obtain

$$
\begin{equation*}
\left|\int_{\Omega} \varphi \varphi_{t} \mathrm{~d} x \mathrm{~d} y\right| \leq \frac{c_{0} \delta \lambda_{1}}{2} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y+\frac{1}{2 \delta} \int_{\Omega}\left|\varphi_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} y . \tag{29}
\end{equation*}
$$

In a similar way

$$
\begin{equation*}
\left|\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi \mathrm{~d} x\right| \leq \frac{c \lambda_{1}}{\rho}\left(\int_{\Gamma_{0}} \omega_{x}^{2}\right)^{1 / 2}\left(\int_{\Gamma_{0}}|\varphi|^{2} \mathrm{~d} x\right)^{1 / 2} \leq \frac{c \lambda_{1}}{2 \rho}\left(\theta \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x+\frac{1}{\theta} \int_{\Gamma_{0}}|\varphi|^{2} \mathrm{~d} x\right) \tag{30}
\end{equation*}
$$

Moreover, from trace

$$
\begin{equation*}
\int_{\Gamma_{0}} \varphi^{2} \mathrm{~d} x \leq \int_{\Gamma} \varphi^{2} \mathrm{~d} x \leq c_{3} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y \tag{31}
\end{equation*}
$$

Replacing (31) into (30) we have

$$
\begin{equation*}
\left|\frac{c}{\rho} \int_{\Gamma_{0}} \omega \varphi\right| \leq \frac{c \lambda_{1} \theta}{2 \rho} \int_{\Gamma_{0}} \omega_{x}^{2} \mathrm{~d} x+\frac{c \lambda_{1} c_{3}}{2 \rho \theta} \int_{\Omega}|\nabla \varphi|^{2} \mathrm{~d} x \mathrm{~d} y . \tag{32}
\end{equation*}
$$

From (23), (29), (32) and (26) we can to claim that there is a constant κ_{0} and κ_{1} such that

$$
\begin{equation*}
\kappa_{0} E(t) \leq \mathcal{L}(t) \leq \kappa_{1} E(t) \tag{33}
\end{equation*}
$$

leading to decay exponentially energy

$$
\begin{equation*}
E(t) \leq c_{2} E(0) \mathrm{e}^{-\kappa t}, \quad \forall t>0 \tag{34}
\end{equation*}
$$

where $\kappa=C \kappa_{0}$. The result follows.
Remark 4 In the case of $\gamma_{1}=0$ can be also said that a power decays exponentially.
The above results support the conclusion.
Theorem 3 If $\left(\varphi_{0}, \varphi_{1}, \omega_{0}, \omega_{1}\right) \in \mathcal{D}(\mathcal{A})$ and $\gamma_{0} \neq 0$ then the solution (φ, ω) of the hybrid system (1) decays exponentially over time.

Acknowledgements

Octavio Vera thanks the support of the Fondecyt project 1121120.

References

[1] Banks, H.T., Fang, W., Silcox, R.J. and Smith, R.C. (1993) Aproximation Methods for Control of Acustic/Structures Models with Piezoceramic Actuators. Journal of Intelligent Material Systems and Structures, 4, 98-116. http://dx.doi.org/10.1177/1045389X9300400113
[2] Micu, S. and Zuazua, E. (1996) Stabilization and Periodic Solutions of a Hybrid System Arising in the Control of Noise. Proceedings of the IFIP TC7/WG-7.2 International Conference, Laredo, Lecture Notes in Pure and Applied Mathematics, Vol. 174, Marcel Dekker, New York, 219-230.
[3] Micu, S. (1999) Periodic Solutions for a Bidimensional Hybrid System Arising in the Control of Noise. Advances in Differential Equations, 4, 529-560.
[4] Cindea, N., Micu, S. and Pazoto, A.F. (2012) Periodic Solutions for a Weakly Dissipated Hybrid System. Journal of Mathematical Analysis and Applications, 385, 399-413. http://dx.doi.org/10.1016/j.jmaa.2011.06.049
[5] Hansen, S. and Zuazua, E. (1995) Exact Controllability and Stabilization of a Vibrating String with on Interior Point Mass. SIAM Journal on Control and Optimization, 33, 1357-1391. http://dx.doi.org/10.1137/S0363012993248347
[6] Littman, W. and Marcus, L. (1988) Exact Boundary Controllability of a Hybrid System of Elasticity. Archive for Rational Mechanics and Analysis, 103, 193-236. http://dx.doi.org/10.1007/BF00251758
[7] Micu, S.D. (1995) Analisis de un Sistema Hibrido Bidimensional Fluido-Estructura. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid.
[8] Avalos, G. and Lasiecka, I. (2003) Exact Controllability of Structural Acoustic Interactions. Journal de Mathématiques Pures et Appliquées, 82, 1047-1073.
[9] Grisvard, P. (1985) Elliptic Problems in Non-Smooth Domains. Pitman.
[10] Muñoz Rivera, J.E. (2007) Semigrupos e Equações Diferenciais Parciais. Textos Pós Graduação, LNCC.
[11] Pazy, A. (1983) Semi-Groups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-5561-1

