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Abstract 
We study the asymptotic behavior of the solutions of a Hybrid System wrapping an elliptic opera-
tor. 
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1. Introduction 
In this paper, we address some issues related to the asymptotic behavior a hybrid system with two types of vi-
brations of different nature. The model under consideration is inspired in and introduced in [1]. However, there 
are some important differences between these two models. In [1] the flexible part of the boundary 0Γ  is occu- 
pied by a flexible damped beam instead of a flexible. Most of the relevant properties see [2]. In [3] the authors 
are interested on the existence of periodic solutions of this system. Due to the localization of the damping term 
in a relatively small part of the boundary and to the effect of the hybrid structure of the system, the existence of 
periodic solutions holds for a restricted class of non homogeneous terms. Some resonance-type phenomena are 
also exhibited. Cindea, Sorin and Pazoto [4] consider the motion of a stretched string coupled with a rigid body 
at one end and we study the existence of periodic solution when a periodic force facts on the body. The main 
difficulty of the study is related to the weak dissipation that characterizes this hybrid system, which does not 
ensure a uniform decay rate of the energy. For more examples of hybrid systems see [5] [6]. We refer to [7] for a 
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discussion on the model and references therein. In [8] the authors to discern exact controllability properties of 
two coupled wave equations, one of which holds on the interior of a bounded open domain Ω , and the other on 
a segment 0Γ  of the boundary ∂Ω . Moreover, the coupling is accomplished through terms on the boundary. 
Because of the particular physical application involved the attenuation of acoustic waves within a chamber by 
means of active controllers on the chamber walls control is to be implemented on the boundary only. 

We consider the bi-dimensional cavity 1 0\Ω = Ω Ω  and that 0Ω  an open class C2 with limited boundary 
contained in Ω1, filled with an elastic, in viscid, compressible fluid, in which the acoustic vibrations are coupled 
with the mechanical vibration of a string located in the subset ( ) ( ){ }0 ,0 ; 0,1x xΓ = ∈  a part of the boundary of 
omega of 1Ω , 1 1 0\Γ = ∂Ω Γ  and 1 0Γ = ∂Ω ∂Ω  with 1 0 ,φ∂Ω ∂Ω =  is boundary of Ω . The subset 1Γ  
is assumed to be rigid and we impose zero normal velocity of the fluids on it. The subset 0Γ  is supposed to be 
flexible and occupied by a flexible string that vibrates under the pressure of the fluid on the plane where Ω  
lies. The displacement of 0Γ , described by the scalar function ( ),w w x t= , obeys the one-dimensional dissipa- 
tive wave equation. As Ω  is compressible fluid where the velocity field v  is given by the potential 

( ) ( ), , , .x y tϕ ϕ ϕ= = ∇v  All deformations are supposed to be small enough so that linear theory applies. 
The linear motion of this system is described by means of the coupled wave equations 

( )

( )

( )

( )
( )

( ) ( )
( ) ( )
( ) ( )

1

1

0

2
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x x

t

t

c

w

w w w c
w t w t t

w w w w

ρϕ ϕ γ ϕ
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ν
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γ ϕ

ϕ ϕ ϕ ϕ

 − ∆ + = Ω× ∞
∂ = Γ × ∞
∂
∂ = − Γ × ∞
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 = Γ × ∞


− + + = Γ × ∞
 = = >
 = = Ω
 = = Γ

                           (1) 

where ν  denote the unit outward normal to Ω . 
We define the energy associated with this system. Proceeding formally, multiply the first equation by tϕ  and 

then integrate over Ω . 

2 211 d d d d d d d d 0.
2 d t t t t

c cx y x y x y
t

γϕϕ ϕ ϕ ϕ σ ϕ
ρ ρ ν ρΩ Ω Γ Ω

∂
+ ∇ ⋅∇ − ⋅ + =

∂∫ ∫ ∫ ∫                (2) 

However, the integral 

 

1 0 2
0

0

d d d ,

t

t t t t

w

ϕ ϕ ϕ ϕϕ σ ϕ σ ϕ σ ϕ σ
ν ν ν νΓ Γ Γ Γ

=
= −

∂ ∂ ∂ ∂
⋅ = ⋅ + ⋅ − ⋅

∂ ∂ ∂ ∂∫ ∫ ∫ ∫  

which leads us 

0 0
d d .t t t tw xϕ ϕϕ σ ϕ ϕ

ν νΓ Γ Γ

∂ ∂
⋅ = ⋅ = −

∂ ∂∫ ∫ ∫                             (3) 

Replacing (3) into (2) we obtain 

0

2 22 1d 1 d d d d d 0.
d 2 t t t t

c cx y x y w x
t

γ
ϕ ϕ ϕ ϕ

ρ ρ ρΩ Ω Γ

 
+ ∇ + − = 

 
∫ ∫ ∫                  (4) 

Multiplying by w in the second equation of the system (1) and then integrate over 0Γ  

0 0 0 0

2 201 d 1d d d d 0.
2 d t xx t t t t

cw x w w x w x w x
t

γ
ϕ

ρ ρ ρ ρΓ Γ Γ Γ
− + + =∫ ∫ ∫ ∫                  (5) 
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Integrating by parts 

0 0 0

21
0

1 dd d d .
2 dxx t x t x tx xw w x w w w w x w x

tΓ Γ Γ
= − = −∫ ∫ ∫  

Replacing the above equation over (5) we obtain 

0 0 0 0

2 2 201 d 1 dd d d d 0,
2 d 2 dt x t t t

cw x w x w x w x
t t

γ
ϕ

ρ ρ ρ ρΓ Γ Γ Γ
+ + + =∫ ∫ ∫ ∫                 (6) 

which leads us to assert that, the energy of the system is given by 

( ) ( )
0

2 2 2 21 1, ; d d d ,
2 2t x t

cE t E w t x y w w xϕ ϕ ϕ
ρ ρΩ Γ

= = + ∇ + +∫ ∫                    (7) 

for each 0t ≥ . 
Remark 1 The first two terms represents the energy of acoustic wave and the other terms is the energy of 

bungee wave. 
The system has a natural dissipation. Indeed, to observe this fact multiply the first equation of (1) by tϕ  and 

then the second equation of (1) by tw , as was done in previous calculations 

( )
0

2 201d
d d d 0,

d t t

E t
x y w x

t
γγ

ϕ
ρ ρΩ Γ

= − − <∫ ∫                             (8) 

if 2 2
1 0 0.γ γ+ ≠  Micu, S. in his doctoral thesis [7] shows non-exponential decay of the energy of the hybrid 

system (1). 

2. Mathematical Formulation 
Define the face space ( ) ( ) ( ) ( )1 2 1 2

0 0H L H L= Ω × Ω × Γ × Γ  endowed with the Hilbertian scalar product 
given by 

( ) ( )
0

1 1 2 2 3 3 4 4
1, d d d ,

x x

cU V x y xϕ ψ ϕ ψ ϕ ψ ϕ ψ
ρ ρΩ Γ

= ∇ ⋅∇ + + +∫ ∫                    (9) 

for all ( ) ( )1 2 3 4 1 2 3 4, , , , , , , .U Vϕ ϕ ϕ ϕ ψ ψ ψ ψ= = ∈  We can show that the pair ( ), ,  is a Hilbert space. 
Since the first and second equation of the system (1), we obtain 

1
2 2 1 2thent t

c γ
ϕ ϕ ϕ ϕ ϕ

ρ ρ
= = ∆ −  

( )4 4 3 0 4 2then .t t xx
w cϕ ϕ ϕ γ ϕ ϕ= = − −  

These equations lead us to define the operator : →    by 
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in this sense for all ( )1 2 3 4, , , ,U ϕ ϕ ϕ ϕ= ∈  
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Note that U ∈   if and only if 
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Now, we consider the problem with Neumann boundary conditions 
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                           (11) 

where we can say that ( )2
1 Hϕ ∈ Ω  see [9]. Similarly, consider the problem 
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( ) ( ) ( ) ( )

2
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x x
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                                (12) 

We can say that ( )2
2 0 .Hϕ ∈ Γ  In this sense we can define the domain of the operator   which we denote 

( )  , as the set of ( )1 2 3 4, , ,U ϕ ϕ ϕ ϕ= ∈  such that ( )2
1 ,Hϕ ∈ Ω  ( )1

2 ,Hϕ ∈ Ω  ( )2
3 0 ,Hϕ ∈ Γ   
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x x

ϕ ϕ= =  

Remark 2 By previous observations we can say that the hybrid system (1) is equivalent to the Cauchy prob-
lem 

( ) ( )
( ) 0

, 0
0 ,

tU t U t t
U U
 = >
 =


                                 (13) 

where ( ) ( )0 1 0 1
0 , , ,U ϕ ϕ ω ω= ∈   and ( ) ( ) ( )1 2 3 4, , , , 0.U t tϕ ϕ ϕ ϕ= ∈ ≥   

3. Solution Existence 
We want to show that   is a dissipative operator and ( )0 ρ∈   (The resolvent set of  ). 

Remark 3 The operator   is dissipative, ie , 0U U <  for all ( ) ( )1 2 3 4, , , .U ϕ ϕ ϕ ϕ= ∈   
Applying (9), we get 

0

2 201
2 4, d d d 0.U U x y x

γγ
ϕ ϕ

ρ ρΩ Γ
= − − <∫ ∫  

Resolvent Equation: 
Given F ∈ , we find ( )U ∈   

( ) , .I U Fλ λ− = ∈                                (14) 

In particular, ( )0 ,ρ∈   if and only if, there is 
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( ); ,U U F∈ − =    

that is, 

2 1Fϕ− =  

1
1 2 2

c Fγ
ϕ ϕ

ρ ρ
− ∆ + =  

4 3Fϕ− =  

( )3 0 4 2 4 ,
xx

c Fϕ γ ϕ ϕ− + + =  

where ( )1 2 3 4, , , .F F F F F=  By previous observations that there have ( ).U ∈   Using the application of 
Lummer Phillips Theorem [10] [11], we have the following result. 

Theorem 1 The operator   set to (10) is the infinitesimal generator of a contraction semigroup 0C .  
Theorem 2 The   is the infinitesimal generator of a semigroup 0C  and verifies ( )3

0U ∈   then the 
solution of (13) satisfies 

( ) ( )( )1 20, ; 0, ; .U C C∈ ∞ ∞                              (15) 

4. Asymptotic Behavior 
We now show that the energy associated with the system decays exponentially. Multiplying by ϕ  the first eq-
uation in (1) and integrating over Ω  yields 

1d d d d d d 0,tt t
cx y x y x yγ

ϕ ϕ ϕϕ ϕ ϕ
ρ ρΩ Ω Ω

− ∆ + =∫ ∫ ∫  

equivalently 

0
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Observe that 
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t
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From the second equation in (1), we obtain 
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− = − − + −∫ ∫                          (18) 

On the other hand, 
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= −∫ ∫ ∫                            (19) 

From (17)-(19), we obtain 
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Replacing (20) into (16) 
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or equivalently 

0 0

0 0 0
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d
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Now, since Poincaré inequality we have 

0 0 0 0 0

1 2 1 2
2 2 2 20 0 1 0 1d d ,
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   ≤ ≤ +      ∫ ∫ ∫ ∫ ∫                   (23) 

where 1λ  is the Poincaré constant. In a similar way, 
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≤ ∇ +∫ ∫ ∫                         (24) 

From (22), (23) and (24) we have 
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                  (25) 

We define the operator 

( ) ( )
0 0

1: d d d d , .t t
ct nE t x y x x nϕ ϕ ωω ωϕ

ρ ρΩ Γ Γ
= + + + ∈∫ ∫ ∫                       (26) 

Differentiating (26) and using (8) we obtain 
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  
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∫ ∫

∫ ∫



                    (27) 

Considering n large enough, we can obtain a constant C such that 

( ) ( )d .
d

t CE t
t

≤ −                                       (28) 

On the other hand, using Poincaré, we can obtain 

220 1 1d d d d d d .
2 2t t

c
x y x y x y

δλ
ϕϕ ϕ ϕ

δΩ Ω Ω
≤ ∇ +∫ ∫ ∫                         (29) 

In a similar way 

( ) ( )
0 0 0 0 0

1 2 1 22 22 21 1 1d d d d
2x x

c cc x x x xλ λ
ωϕ ω ϕ θ ω ϕ

ρ ρ ρ θΓ Γ Γ Γ Γ

 ≤ ≤ + 
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Moreover, from trace 

0

22 2
3d d d d .x x c x yϕ ϕ ϕ

Γ Γ Ω
≤ ≤ ∇∫ ∫ ∫                               (31) 
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Replacing (31) into (30) we have 

0 0

22 1 31 d d d .
2 2x

c ccc x x y
λλθ

ωϕ ω ϕ
ρ ρ ρθΓ Γ Ω

≤ + ∇∫ ∫ ∫                          (32) 

From (23), (29), (32) and (26) we can to claim that there is a constant 0κ  and 1κ  such that 

( ) ( ) ( )0 1 ,E t t E tκ κ≤ ≤                                   (33) 

leading to decay exponentially energy 

( ) ( )2 0 e , 0.tE t c E tκ−≤ ∀ >                                 (34) 

where 0Cκ κ= . The result follows. 
Remark 4 In the case of 1 0γ =  can be also said that a power decays exponentially. 
The above results support the conclusion. 
Theorem 3 If ( ) ( )0 1 0 1, , ,ϕ ϕ ω ω ∈   and 0 0γ ≠  then the solution ( ),ϕ ω  of the hybrid system (1) decays 

exponentially over time. 
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