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Abstract

In this paper we present the Mellin transform method for the valuation of the American power put
option with non-dividend and dividend yields, respectively. We use the Mellin transform method
to derive the integral representations for the price and the free boundary of the American power
put option. We also extend our results to derive the free boundary and the fundamental analytic
valuation formula for perpetual American power put option which has no expiry date. Numerical
experiments have shown that the Mellin transform method is a better alternative technique com-
pared to the binomial model (BSM), recursive method (RM) and finite difference method (FDM)
for the valuation of the American power put option. In general, the Mellin transform method is
accurate, flexible and produces accurate prices for the optimal exercise boundary of the American
power put option for a wide range of parameters. Hence the Mellin transform method is mutually
consistent and agrees with the values of the analytic option valuation formula called the “Black-
Scholes model”.
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1. Introduction

Option valuation has been studied extensively in the last three decades. Many problems in financial mathematics
entail the computation of a particular integral. In many cases these integrals can be valued analytically and in
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some cases they can be computed using a partial differential equation, or valued using numerical integration.

Power option is defined as a contingent claim on the product of powers of several underlying assets. The
holder has either the right, but not the obligation to buy, as in the case of the power call option, or the possibility
to sell, as in the case of the power put option, an asset for a certain price at a prescribed date in the future. The
difference between the American and the European power options is that the European power option can only be
exercised at the maturity or expiry date while the American power option can be exercised by its holder at any
time before the expiry date. This early exercise feature makes the valuation of the American power option
mathematically challenging and therefore, creats a great field of research.

A perpetual American power option is an option that has no expiry date. In other words, this type of power
option never expires. In a special case of a plain vanilla perpetual option, a closed form solution for the free
boundary and price of the American put was derived by [1].

Mellin transforms in option theory were introduced by [2], [3] extended the results obtained in [2] and
showed how the Mellin transform approach could be used to derive the valuation formula for the perpetual
American put options on dividend-paying stocks. [4] considered the Mellin transform method for the valuation
of some vanilla power options with non-dividend yield. They derived the fundamental valuation formula known
as the Black-Scholes model using the convolution property of the Mellin transform method. The analytical
valuation of the American options was considered by [5]. An alternative approach to the valuation of American
options and applications was considered by [6].

For the mathematical background of the Mellin transform method in derivatives valuation see [7]-[15], just to
mention few. In this paper, we focus on the Mellin transform method for the valuation of the American power
put option with non-dividend and dividend yields, respectively, and its extension to power option which has no
expiry date, i.e. “perpetual American power put option”. The rest of the paper is structured as follows: in Section
2, we present American power options and the payoffs for power call and put options. Section 3 presents the
Mellin transform method for the valuation of the American power put option. Section 4 considers the extension
of the Mellin transform method to the valuation of the perpetual American power put option. In Section 5, we
present some numerical experiments. Section 6 concludes the paper.

2. American Power Options

The power options can be seen as a class of options in which the payoff at expiry is related to the n™ power of
the underlying price of the asset. American power options are options that can be exercised before or at the
expiry date with non-linear payoff. The American power option comes in two forms, namely, the American
power call option and the American power put option. The American power call option is an option with non-
linear payoff given by the difference between the price of the underlying asset at maturity raised to a strictly
positive power and the exercise price. The American power put option is an option with non-linear payoff given
by the difference between the exercise price and price of the underlying asset at maturity raised to a strictly
positive power. For an American power option on the underlying price of the asset S; with exercise price K
and time to expiry T, we have the payoffs for the American power call and put options as

A (s7.t)=(s7-K) = max(s] -K,0) 1)
and
AL (S7.t)=(K-87) =max(K-57,0) @)

respectively.
Remark 1
e For n=1, the payoffs for American power call and put options in (1) and (2) become the payoffs for plain
American call and put options, i.e.

A (S;,t)=(S; —K)" =max(S; —K,0) ®3)
and
A, (S;.t)=(K-S;) =max(K-S;,0) @)

respectively.
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3. The Mellin Transform Method for the Valuation of the American Power Put
Option

There are many methods for the valuation of the American power option leading to different but equivalent
mathematical formulations. We consider the derivation of the integral representation for the price of the
American power put option and the integral equation to determine the free boundary of the American power put
option via the Mellin transform method for the case of both non-dividend and dividend yields.

3.1. American Power Put Option with Non-Dividend Yield

Consider the non-homogeneous Black-Scholes partial differential equation for the American power put option
with non-dividend yield given by
oA (S!.1)

oAl (St
—+n(lo-2 (n-1)+ rjst“ M
ot 2

oS/

t

(®)
O*A (St
+%(on8{‘ )ZL;)—rAQ (S'.t)=f(S!t)
o(s/)
where the early exercise function f defined on (0,00)x(0,T) is given by
—rK, if 0<S"<§"
f(sit)= P (6)
0, if S>S/.

The final time condition given by A, (S!,T)=4(S!")=max(K -5/,0)=(K -5/}  on [0,e0) is called the
high contact condition. The other boundary conditions are given by

S!nianAg(S[”,t):O on[0,T) @)
sI{!To A (SP.t)=K on[0,T) (8)

The free boundary §t“ is determined by the smooth pasting conditions given by

A (81 t)=K-§ )
and
oA, (SMt
L‘):—l (10)
oS/
Applying the Mellin transform to (5), we have that
A (ot) n2o? n-1 2r 2r 7, z
Bl e {a)2+a)(l— - —no_zj—nzo_szp(w,t): (1) (11)

2

Setting alz(l—n—_l— 2r ) and ¢, :%.Then (11) yields
n no n“o

6,5\3 (a),t) n20'2

p +T(a)2+wal—a2),&; (o,t) = f (@) (12)
The Mellin transform of the early exercise function in (12) is obtained as
3 o n @1 an S 7?1 jon —TK én )
flot)=["f(sht)(s!)" dsf=["-rK(s)" ds; =# (13)

Solving further, we have the particular solution of (12) as

)
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- T 1K (étn )w 20262 (2 rago-az )(y-1)
A; (a)vt)(p.sol) = J.t — ¢ ( 1 2)

The complementary solution to the left hand side of (12) is obtained as

dy (14)
w

1
—Enzcrz(a)z +ow—ay )t

A; (a)’t)comp.sol = C([l))e (15)
where c(w) is the integration constant obtained as
1 20'2 w2+a O—a;
c(o)=d(aer T (6
(/Z(a)t) is the Mellin transform of the final time condition and is given by
~ © n\t n -1 K n n -1 K(u+1
plot)=[(K=st) (s7)" =[] (K=S7)(s7) ) an
Using (16) and (17) in (15) we have that
~ K @+l 7£n202((u2 +ao-ay )(T —t)
A (ot =——e? 18
p (a) )comp.sol C()([O+1) e ( )
Hence the general solution to (12) is given by
~h ~n ~n Ko+t —lnzaz((uzﬂx w-a )(T—t)
AP (w’t): AP (w’t)comp.sol +AP (w‘t)(p.sol) :m 2 1 2
- o (19)
+J-T rK (Sy) e%nzaz((uz-#alw—az)(y—t)dy
t 0]
The Mellin inversion of (19) is obtained as
n n 1 ce+io K“Hl 7£n202((02+a1w—a2)(T—[) @
AP(St ’t)zz_ni.[c—ioo w(a)+1)e ’ (S* ) deo
) ~
rK cc+io a7 S; 1nzgz(werozlm—ozz)(y—t)
o[ (80) e dyde
where (St” ,t) € {(O,oo)x[O,T)} ,ce(0,00) and {a) € C|O <Re(w)< oo}.

Remark 2

e The first term in (20) is the integral representation for the price of the European power put option (stems
from the minimum guaranteed payoff of the American power put) which pays no dividend yield (see [4]).
The second term in (20) is called the early exercise premium (the value attributable to the right of exercising
the option early) for the American power put option with non dividend yield denoted by e;(St”,t).
Therefore (20) becomes

A (SIt)=Ep(S!.t)+e (S0t (21)
where
n n 1 covieo KQHI Ln2g? o +ano—ay |(T- n\"@
R e A rr R LU AE

_ $n)”
T e

e Setting S = §t” in (21) and using the smooth pasting conditions given by (9) and (10), we have the integral
representation for the free boundary of the American power put option with non-dividend yield as

()
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o

A \O
n
Sy ) 1nzz:rz(a)zﬂzzlw—azz)(y—t)
~ 7/ @2

S; =K-E! (é‘n't)_;_:i :i:(s‘tn )T - dyde (22)
where
- C+ioo o+l —lnzcz w2+alw—a2 — 2n\"¢
E, (St”,t):ziﬂ'[mw w?a)+1) il ) t)(st ) do

We formalized the properties highlighted in Remark 2 in the following results.
Theorem 1 The American power put option A; (St”,t) which pays no dividend yield satisfies the decom-
position

A (St”,t) —Er (St",t)+ﬁ c+iw(Stn )—m IT@e;nZGZ(MZMMaz)(yt)dydw

2mi Yo ' o
n-1 2r 2r n
where alz(l—T—nazj and %= (St ,t)e{(O,oo)x[O,T)},Ce(O,oo) and

{we Clo< Re(a))<oo}.

A A oA, (S1.1)
Theorem 2 Using the smooth pasting conditions given by A, (St”,t) =K-§" and T =-1, the free
t

boundary formulation of the American power put option with non-dividend yield is given by

St k- (5] 1 gy gttty

2mi Yoo v o

3.2. American Power Put Option with Dividend Yield

The derivation of the integral representation for the price of the American power put option which pays dividend
yield using the Mellin transform method is given in the following result.

Theorem 3 Let S be the price of the underlying asset, K be the strike price, r be the risk interest rate, q be
the dividend yield and T be the time to maturity. Assume S vyields dividend, then the integral representation
for the price of the American power put option Ag (St” ,t) is given by

1 porie K(')Jrl —1n202(102+af(u—a2)(T—t) -
A(S"t)=—| ———e? S') do
p( t ) 2 Je-iw w(a)+1) ( t )
. =n @ 1 .
+ﬁj~c+|w(sn )—w JuT (St (y)) eznzaz(a}eralw—az)(y—t)

dyd 23
27 ! yde 23)

c—iw

t 10}

— o+l

q C+ioo @ (Sn (y)) in20'2 wzﬂzfa)—az (y-t)
"o Je-io (s7) LTTEZ | o dyde

Proof. Consider the non-homogeneous Black-Scholes partial differential equation for the American power put
option with dividend yield given by

oA (St oA (St
—pgtt )+n(%az(n—1)+(r—q)j8t”—pa(slnt )
(24)

where



S. E. Fadugba, C. R. Nwozo

f(Sln,t)z —-rK -i—qSt ) |f 0<Sl_S St (25)
0, if §'>8

on (0,0)x[0,T) and S the free boundary of the American power put option+with dividend yield. The high

contact condition is given by A, (S/.T)= ¢S18tn )=max(K-S/,0)=(K-S) on [0,c0). The other con-

ditions are given by (7) and (8). With the smooth pasting conditions given by

A, (S.t)=K-§ (26)
and
oA (St
M:—L (27)
s/
The Mellin transform of (24) gives
&&"(a},t) nc? n-1 2(r-q) 2r |, -
pT+T(a)2+a)[l— P 2 Ap(a),t)zf(a),t) (28)

. . n-1 2(r-— 2r .
Putting o, =[1—T_%J and azzw,(%) yields

(a)2+a)a1*—a2);5\; (o,1) = f~(a),t) (29)

where

-1 \@ — o+l
P o o At” n\@- n -rK Sn o] Sn
)=t ()0 05 = [ vy g - ST

Following the same procedures for the case of non-dividend yield, the general solution to (30) is obtained as

(30)

A: (a)’t) _ o+l e%nzaz(MZJraIw—az)(T—l) J-T rk (S_;) e%nzaz(a}ZJraIw—az)(y—t)dy
t
w(w+1) 1 ® 31)
—J‘T Q(Sy ) e%nzgz(w2+afw—a2)(y4)dy
oo+l
The Mellin inversion of (31) is given by
n n 1 cc+im KaHl En20'2(wzﬂzrfa)—gzz)(T—t) n\@
(st =55k (@) (s7) " do
rK pesio s g\ (T (S_y” )w 20202 (o? rajo-az)(y-1)
e (s')" [ e dyde (32)
q [o+iw g ) T(§; )“’*1 %nzaz(wZJraIw—az)(V*t)d q
_%jc—iw(t) Jt a)+1e ydw
Equation (32) is the integral representation for the price of American power put option with dividend yield,
where (S/',t)e{(0,%0)x[0,T]},ce(0,) and {@eC|0<Re(w)<wx}. 0

Remark 3
e The first term in (32) is the integral representation for the price of the European power put option (stems
from the minimum guaranteed payoff of the American power put) with dividend yield and the last two terms
denote the early exercise premium (the value attributable to the right of exercising the option early) for the
American power put option with dividend yield denoted by eg (St” ,t) . Therefore (32) becomes
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A (SI.t)=Ep(Sit)+ep (S0t (33)
where
n n 1 C+ioo Kw+1 1nzaz ?+ag o-a — n\~@
Ep(St-t)=gL_iwm2 el (51) g

—\@ .
e; (Sln,t) _ rk c+iw(sn)—m J~T (Sy ) e%nzgz(mzmlw—az)(y—t)dydw

E c—ioo t t @
=n o+l .
_ij-cﬂoo(sn )—w IT (Sy ) %nzo'z(a)eralw—aQ)
i Je-io \ Tt t
e Setting S"=S" in (33) and using the smooth pasting conditions given by (26) and (27), we have the
integral representation for the free boundary of the American power put option with dividend yield as

" yde

o+l

= ~ +io f — \—@ §ﬂ ! 1 262 (o +oq 0-a —|
Stn = K_E;(S‘n’t)_;_:i.l.cc—iw (S‘n) -[tT(yT)ezn ( 1 2)(y t)dyda’
()" -
+io f — \—® Sn lr\zt)'z ?+aq o-a (y-t)
() e e

where

Ka)+1 12 2( 2, *

) 1 (o+ieo 2"\ +a1m_a2)(T_t) (§ln )7[” do

E(Sht)=— "
( 2mi "o o(w+1)

p\Tt?

From Remark 3, we have the following results.
Theorem 4 The American power put option A; (St“ ,t) which pays dividend yield satisfies the decomposition

AT (S0,8) = ED(St) + [ (s7) IT(SL)Q”Z"Z(”’Z*“I‘”“2)(y”dyda)

t

ﬁ c—io t )
O TR ) g e Ao oy
_EJ‘H% (st) L — e dydw

where af=[1—n—_1_2(r_q)J and a, = 2r (St”,t)e{(O,oo)x[O,T)},Ce(O,oo) and

n no? n’c?’
{weC|0<Re(w) <o}
oA, (S.)
oS,
the free boundary formulation of the American power put option with dividend yield is given by
S =K-Ep(S.1)

Theorem 5 Using the smooth pasting conditions given by A, (§t”,t) =K —§[” and =-1. Then

_ﬁj-wiw(gtn )—w J-T (S_; )w e%nzo’z(a)z+al*a)—a2)(y—t)dyda)

2mi t o
q (et zny@ (T (g; )(‘Hl Enzaz(a)z+0:1*w—otz)(y—t)
L n A7) a2
+27ti J‘C*ioo (St ) .[t o+1 € dyde
The following results present some special cases of (20) and (32).
Theorem61f T -t and n=1, then
(i) The integral representation for the American power put option which pays no dividend yield (20) reduces
to the integral equation derived by Kim [6] for the price of the plain American put option given by

)

c—io
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A, (S..7)=E,(S,.7)+[ rKe "N (~d, )dn (35)

where

= (36)

(ii) The free boundary for the American power put option which pays no dividend yield (22) reduces to the
integral equation derived by Kim [6] for the price of the plain American put option given by

S, =K-E, (SAT,T)—J';rKe’”’N (~d,)dn (37)

where

(38)
" 0'\/;
Proof. Setting n=1 and 7z =T -t in(20) yields
1 esie K2 202 (0frao-a)0) o -0
A (S.,7)=— ——e? S d
p (80:7) 27 o(w+1) (8.) " de
o (39)
+ﬁ t:+ioo(S )—a) J-T(Sy) e%gz(q}?+a1w—a2)(r—y)dyda)
27'Ei c—ioo 2 0 )
where ¢, = (1—2—2j and «, =2—2 . Equation (39) can be be written as
o o
A, (Sr,r)z Ep(ST,T)+ep (Sr,r) (40)

where E_(S,,z) and e, (S,,r) denote the price of the European put option with no dividend yield and free
boundary for the American put option with no dividend yield respectively. Let

& (S..7)=[.Q(S..S,.7.y)dy (41)
where
I 1 C+ico 2 ~ —w
Q(s..$,.7, y):z_ni " (0,y)é(0y)S e (42)
The early exercise function is given by
rK, if S, (0,S
f(S,.7)= ( y] (43)
0, ifS, > Sy
and
12 (u2+alw—a T—
Eloy)=e” Tk (44)
Using the convolution property of the Mellin transform, (42) becomes
2y S 1
Q(s,.S,.0.y)=[f(v, y)é(j, y);dv (45)

Substituting the value of the early exercise function f (v,y) from (43) and
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f(S ) 76272(?)/)[0{27”)2 Sl_gz 7%[ I\n/s%y] (46)
=e e “\9VF
’ ou/Zn(r—y)
into (45), we have that
Sl g e
Q(s,.§,.0,y)=rKk[”° e V) gy (47)

Using the transformation given by

1 .\ . 1-a,
A:JH(In(T’j—G (r—y)Taj (48)

(47) becomes
;»2
8 S N S e R PR ) N
Q(Sr,Sy,r,y)—rKe \/ﬂjdye 2di=rKe "IN (-d, ) (49)

Substituting (49) into (41) we have the early exercise premium for the American put option with non-dividend
yield as

e, (S..7)=rK[e"“YN(-d,)dy (50)
where
S o’
In| == ——(z-
n[s ]-i—[r Zj(r y)
d, = d (51)
o\T—Y

Setting 7 =7 — vy, then (50) becomes
e, (S..7)=[rke N (~d,)dn (52)

where

Substituting (52) into (40) we get the integral equation (35) obtained by Kim [6] as
A, (S..7)=E,(S,.7)+[ rKe "N (~d, )dn

Hence (i) is established. For the second reduction, setting S_ = §T in the last integral equation above and

) ) oA, ($..7)
using the smooth pasting conditions given by A, (S,,r): K-S, and T we obtain the free boun-

dary SA, of the American put option which pay no dividend yield (37) derived by Kim [6] as
S =K- E, (SAT,T)—J.OTrKe’”’N (—d})dn

where

()
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0

Theorem 7 If t — T, then the optimal exercise boundary S, of the American power put option with n=1
with dividend yield is given by

limS, =min[K,%) (53)

t->T

Proof. Let =T -t and n=1, (34) becomes

5K, (S.e) 2K (5 ) [ gt g .

q petio/z \@ 7 (Sy )“”1 laz(wzﬂsz—azz)(r—
+2_7[i c—io (ST> J-O—ez

where ¢, = [1— 2(r ;q)} and «, :2—2. Factorizing and rearranging, (54) becomes
o3 o

y)
dydw
o+l y

1

< | ”(N d, (5. K.7))-1)-n, o5
‘ 1+e‘qT(N(d1(§7,K r )—1)—qu
where
[S_rJ ( 1 ZJ
In| = |+ r-q+>-0° |7
_ K 2
d(S,.K,7)= - (56)
In[s_fj+(r—q—0'2)r
— K
d, (S,.K,7)= gy (57)
1 (oo, = \-o T(S_ )“’ éoz(zonraz*w—oz )(17)
it (8) [T e (58)
and
J :if (s ) - e%(’z(‘”z”f‘”‘“z)(”y)dyda) (59)
T 2mideie VT ° w+1

Notice first that critical stock price is bounded from above i.e. S_ <K,V 7 >0. Taking the limits of (56) and
(57)as = — 0", we have that

_ 0, forsS, (O*) =K
lim d, (S,,K,7)= _ (60)
0" —o0, for S (0*)< K
and

_ 0, forS, (07)=K
limd, (S,,K,7)= B (61)
0" o0, for §,(07) <K
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respectively. If

lim S, =K (62)
We have
lim N(d, (S, K, 7)) = lim N (dZ(S_T,K,T))Z% (63)

Using (63), the limit of (55) is obtained as

limS, =K lim -
r—0" 70" 1+e7qT(N(d1(s1—1Klf))_1)_qu
_ S—limrl,
lim§, =K| 2= (64)
e ~—limqgJ,
0"
Since
liml, =0
70"
and
limJ, =0
70"
Then (64) becomes
lim = =1 (65)
70"
If
limS, <K
70"
We have that
lim S—T=[£j lim ('—J (66)
-0t K q 70" ‘]r
The first integral 1. can also be written as
1 Ctio f — \—@ (gy )w élfz(zonrnzfzo—ozz)(T—y)
=1, gL_iw (S) — dyde (67)

Applying the residue theorem of complex number given by
k
jcf (w)dw = 27t|JZ:(:)ResW:WJ f(w),weC (68)

Then the inner integral in (67) becomes

Ctiw f — \—o § ’ éc;'z o w-ay )(r-
% ”(s.) ﬂez (o aior-ze) dydo =) (69)
Tl e 0]
Substituting (69) into (67) yields
_ 1_e—rr
I, :g (70)
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Similarly,
—(1-e ™
J, =—( ) (71)
q
Substituting (70) and (71) into (66) for q < r, we have that
_ 1_e—rr
lim S = [ X jim | — | = him [ 228 |21 (72)
0" K q >0t 1—e ar —0t| 1—e ar
q
Using the I’Hospital rule, for q > r, (64) becomes
lim >e = - (73)
0" K q
Combining (72) and (73)
limS._ = min[K,ﬁJ
r—0" q
Hence (53) is established. O

Remark 4

The above results confirm the formula of Kim and Yu [6]

Theorem 8 If the underlying asset price follows a lognormal diffusion process and the interest rate is a
positive constant, then the optimal exercise boundary of the American power put option with n=1 at maturity

is given by
rK
o —, forg>r
limS, =< q (74)
K, forqg<r

Proof. Let t+sz=t—T . In order to investigate the behaviour of the optimal exercise boundary S_ of the
American power put option with n=1 near maturity, we consider (55) which is of the form

1+ (N(d, (S, K,7))-1) -1,
1+e (N(dy(S,.K,7))-1)-a3,

S. =K

If g>r, the limit of the right hand side of (55) as  — 0 can be evaluated using the I’Hospital’s rule we
have that

lims, = (75)

7—0 q

If g<r,the limit of the right hand side of (55) as = — 0 is obtained directly as
limS, =K (76)

7—0

Combining (75) and (76), we have the optimal exercise boundary of the American power put option with
n=1 at maturity given by

rK
o —, forg>r
limS, =< ¢
K, forqg<r

Hence (74) is established. O
Remark 5
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From (75), we notice that when q>r the American put can have a positive value at expiration given that it
has not been exercised earlier. This indicates that large dividend payouts reduce the incentives of early exercise.

From (76), we deduce that when g <r the American put will have a zero payoff at expiration even if it has
not been exercised earlier. This is because it is not possible for the underlying asset price at expiration to fall

below K without crossing the exercise boundary at an earlier time.

Theorem 9 The integral representation for the price of the American power put option which pays dividend

yield given by (32) can be reduced to integral representation derived by Kim [6].
A (S..7)=E,(S,.7)+ [ rKe"""IN(=d, (S, .S,z ~n))dn
~[los,6 "IN (=d, (.S, 7~ 7)) dn

where

T O-Z
In S +(r—q+2J(r—n)

S
4,(5,.5,. ¢ n) =

r=T-t
S, <8,
Proof. Setting t+> z =T —t, then (32) becomes

&@ﬂﬂ=EM$,)Qﬁff@w”r(;)é”wﬂﬁwﬂ”MWw

q C+io - T(S_n )“H'l L 62(m2+a1*¢u—a2)(r*y)
(St ) jo 4 e? dydw

 2mj de-i w+1
where al*z[l_n_—l_Z(r_—zq)J and azz%, (s7.7){(0,%)x[0,T]},c€(0,0) and
n no n‘oc
{a)eC|O< Re(a))<oo}.
Using the procedures of [3], (78) can be written as
3 (5125) = B3 (81 [ e 1 (o)) ooy

with the Mellin transforms of f(S:,y) and 5( T,y) given by

3 —rk(SM)” o
Hoy)= i)y) +a)(11< )

Lh2,2 (a)z o o-ay )(T—y)

E(oy)=¢?

respectively. Using the convolution theorem of the Mellin transform we have that

w(2.6) = £3(5210)- 1 e S Loy

The price of the American power put option which pays dividend yield can be expressed as

(77)

(78)

(79)

(80)

(81)
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A (! z)=Ep(Sl.z)=[1(S!,y)dy (82)

The integral | (S:, y) is evaluated as follows

1(S..y)=[f(vy é[s y]ldv
\ \Y

i) (s1)

1(S",y)=-rKe
(83)

+qe

. 71 Ini i

where p, =

n2c? . o 1. n-1 2(r-q)
V), o=t =g —= 2 U
(7=¥).p2 =5 2( N no?

] and «, :nzz—;z. Using the following variables

transformation given by

and

For the first and second integrals in (83) respectively, we have that

1(S",y)=-rke "N (—dz,n (s1.8).7- y))

PP ) “
Substituting (84) into (82) yields
A (S;‘,r) =E] (S,”,r)+rrKe"(T’”N (—dz‘n (S:,S_y”,r— y))dy
(1(0-2)-na-2n(n-2)0% i) i (85)
~[*qe N( d,,(S!.S).z y))dy
By changing y =7, (85) becomes
A (S0.7)=Ep(SI7)+ [ ke "IN (=d,, (.57, 7 —n))dn
(rtn-)-ras3n(n-2)0? =) — (86)
~[ e N (~d,, (87,577 =7))dn
Hence by setting n =1, this proves (77). O

4. Application of the Results to Perpetual American Power Put Option Valuation

Now, we apply the results generated for the integral equations in (20) and (32) to power options which have no
expiry date. The following results shows the derivation of the expression for the free boundary of perpetual the
American power put option and its closed form solution for both non-dividend and dividend yields, using the

Mellin transform method.
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Theorem 10 (Non-Dividend Yield) If T —o and 0<Re(w)<a,, then the free boundary of the
perpetual American power put option is given by

2 2 a
S!=8"(t)=K 2 87

and the price of the perpetual American power option becomes

ANEIA . .
AQ(Stn’t):(K_SoZ)(S“_th for S] <S/ (88)
where
2r

az = nzo_z (89)

Proof. The integral representation for the price of the American power put option which pays no dividend
yield given by (20) can be expressed as

AL (S t)=Ep(S.t)+R"(S!t) (90)
where EJ(S,t) and Pl”(St”,t) are given by

ED(S,.t)=Ke "IN (~d,, )—st”e(r N(-d,,) (91)
with
In(s‘]+n£r+(n—ljo—2j(T—t)
4 - K 2
L no~T -t
n 2
In[S‘J+n(r—UJ(T—t)
K 2
d2n =
’ novT —t
and
n n rK cc+io n\~@ §n ! 1HZO'Z 0 +aqo-a (—t)
R (S, 't)zz_nij.cfiw(st) f—( 2)) g2 el g (92)

respectively. For (90) to hold as T — o, it is necessary that Re(a)2+ala)—a2)<0 i.e. 0<Re(w)<a,,
where ¢, is given by (89). The second smooth pasting condition (10) for a perpetual power put can be written
as

OE " (§;,t) . P (§Q,t)
oS! oS!
Differentiating (91) at S = S" we have that

=-1asT >w (93)

GE; (SAQ,t) ~ e(r(n—1)+;n(n—l)crz](T—t)N( g )
- = - - 1,n

= 94
=) (94)

where

d,= (95)
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As T — oo, &Ln — oo and therefore
OE] (St)
oS!

©

N (96)

Also differentiating (92) yields

-

6Pn Sn,t C+ioo - n 1nzo-2 o +aqo—a —
Mz_r_K. ' (Sn) 1 J-T SAt @2 ( 1 z)(y l)dy do (97)
osy 2 Je-i “L(sy)
Taking the limit of (97) as T — oo, we have
R (SI) 1K periey oyt [ ol SP) e (o sanoa)y-0
-\ S | e? dy |d 98
aStn an Cc—ioo ( t ) J.t Sol':J y @ ( )
Therefore,
GP" S;,t C+ioo
1 ( n ): K- 22|'2J' i 1 do (99)
os) 2mi ng” Je gN (0)2 +a1a)—0:2)

where @’ +aw-a, =(0-a)(0-0,) with @ <-1<0<wo, <a,. The limiting cases & =a, and o, =-1
are the roots of @” + o, — ar, . Hence (99) becomes
P (Sht .
M:L L — do (100)
oS! 2nin°c” " ST (w+1)(0—a,)

Since 0<Re(w)<a,, application of the residue theorem given by (68) leads to

op" (St
- (A >:a2 = K =—0, = K (101)
oS! So (@, - ) Sy (a, +1)

Substituting (96) and (101) into (93) yields

0-a,—= =-1
S (a, +1)
- a
S"=K 2 102
< (a, +1) (102)

Equation (102) is the expression for the free boundary of a perpetual American power put option. Next, we
use (102) to derive an expression for the price of perpetual American power put option A (St” ,t) . Note that the
price of a perpetual European power put option is zero, since it can never be exercised. Therefore, taking the
limitas T — oo in (90), the price of perpetual American put option for S > §; is given by

C+ico n\ 0 Enzcr2 m2+a1w—a2 =
Aﬂ(st",t):ﬁ {5_1} l“ ol Jis t)dyjdw (103)

2mi Y= | S w

where Re(a)2 +a,0— a2> < 0. Integrate the inner integral, (102) becomes

A, (S0t)= rKij”‘w(SA—th S S (104)

© 2mi n’g? e S, ) o(o+l)(e-a,)

Once again we apply the residue theorem (68) to get
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n n An Sn - An n
(S, ,t):(K—Sm)[éJ for §" < (105)
Equation (105) is the price of a perpetual American power put option obtained as a limit of the price of a
finite-lived American power put option. O
Theorem 11 (Dividend Yield) If T -0 and 0< Re(a))<al*, then the free boundary of the perpetual
American power put option is given by

= = ,
SP=SI(t)=K—2 106
o0 oo( ) (a)1+1) ( )
and the price of perpetual American power put option equals
_ (srY ™ _
AQ(St,t):(K—Sw”)(S_—‘n] for S" <§" (107)
where
. \2
—a, +4/ley ) +ha
W =— () 2 (108)
2
and
. n-1 2(r-q) 2r
“ :(1‘7‘ v e

Proof. The integral representation for the price of the American power put option which pays dividend yield
given by (32) can be expressed as

A (S8 t)=Ep(S!t)+R(S.t)+P(S! 1) (110)
where ES(S[”,t), PZ”(SI”,t) and Pz”(Sl”,t) are given by

1
Ep(S7.t)=Ke " IN(-d, )~ sl"e(r(”’”’”q*a“"*““z](T—r)

{2l s

N (—o|Ln ) (111)

with

b ™ S
In [SIEJJF n[r—q —J;J(T -t)
G2 = noT -t
R R w2
g po+io - T (g; )“”l Enzaz(mzﬂzfm—mz)(y—t)
Pzn (Stn,t) = —2—ni i (ST) L mez dyda) (113)

respectively. The roots of @’ + o, w—a, are

* )2
- + (al) +4a,

2

W, =
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and

Thus we write that

o'+ o-a,=(0-o)(0-o,)

with w<-1<0<®, <a,. For (110) to hold as T — o, it is necessary that Re(a)2+al*a)—a2)<0 ie.

0<Re(w)<a,, Where o and a, are given by (109). The second smooth pasting condition (10) for a per-

petual power put which pays dividend yield can be written as
OEp(SI.t) . R’ (811 . oy (S1.1)
as.! oS, s,
Differentiating (111) at S" =S we have that

6Eg (S_Oz ,t) _ _e(r(n—l)—nq+%n(n—l)azJ(T—t) N (_d_lvn)

=-1lasT >

oS!
where
s” 1
In| == |+n|r- n-=lo* (T -t
_ {Kj ( q{ 2)GJ( )
dln=
' novT —t
As T —oo,d,, — o and therefore
OE" (St
p(_ )—>0
5"

Now differentiating (112) w.r.t S/ and taking the limit T — o« we have that
aF)ln (Stn’t) rK cc+ioo n\ L 0 Stn - 1”20'2((4)2*'11’1*10‘0‘2)()/4)
e ==l (80| S dy |de

Therefore, by setting S =S we have that

R (St K 2r [ 1 o
oS! 2min?g? de-ie gD (a)2 +a1*a)—a2)

et 2=y and o 40, = (0-a1)(0-)
o

aRLn (§2:t) K J-C+ioo 1

\_ = — d
as) 2mi "ot Sy (0—aw)(0-aw,) ©

In the same manner, setting T — oo and differentiating (113) w.r.t S, we have that

oS! 2midei |t 41| ST

0P} (5.t crie| o O L2 o)y
P50 {L_w [E_J o0 |y,

Therefore,

(114)

(115)

(116)

(117)

(118)

(119)

(120)
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P} (St) 1 (o*n(n-1)+2n(r—g)-2r
oS! 2xi n’c?

cHim @ S! (o) 1
EROR AR (a) +a1a)—a2)
Setting S =S and solving (121) further we have that

Py (S11) i(o-zn(n—1)+2n(r—q)—2rJIc+ioo o

B n?o? i (o+1)(0—a;)(0-o,)

— - dw
oS, 2mi

Once again by the application of residue theorem (68), then (120) and (122) yield

oP" (St
MZQZK — ! =—052 — K
oS, So (o —w,) Sr(a, +1)

and
8P2”(Sw”,t)=(1_a*_a )( , B 1 J
an 1 2
oS! (0, +1) (0, — ) (0, +1)( 0, +1)
respectively. Substituting (117), (123) and (124) into (114), we obtain

Qn 2

S
T (o +1)

(121)

(122)

(123)

(124)

(125)

Equation (125) is called the free boundary of the perpetual American power put option which pays dividend

yield.
The price for the perpetual American power put option is given by

. . __azK CH+oo S_tn - 1
Aﬁ(St,t)— i J.cloc[s_ozj a)(a)—a)l)(a)—a)z)da)
By

27i n’c?

x Icm_” [E—‘n]_w ! do
cie |\ 81 (o+1)(0-o)(0-o,)
Using the residue theorem (68), then (126) becomes

AQ(St”,t):[i_‘n]wl wl(azK _{o‘zn(n—l)Jan(r—q)_gr]

S! w, — ) n*c?

©

[:_Lwl n 1)% ~0,)

5. Numerical Experiments

In this section we present some numerical experiments and discussion of results.
Experiment 1

(126)

127)

We consider the valuation of the American power put option for n={1.90,1.95,2.00,2.05,2.10} which pays

dividend yield g =0.06 with the following parameters:
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S, =%$10,K =$100,0 = {0.1,0.15, 0.20,0.25, 0.30} ,r=0.08T=05

The result generated is shown in Table 1 below.

Experiment 2

We consider the valuation of the American power put option for n=1 which pays non-dividend yield with
the following parameters:

S, =$40,K ={$35,$40,$45} , T =0.083,r = 0.05,0 ={0.2,0.3,0.4}

The results generated for the price of the American power put option via Black-Scholes model (BSM),
binomial model (BM) and the Mellin transform method (MTM) are shown in Tables 2-4 below. Also the results
generated for the free boundary of the American power put option are shown in Tables 5-7 below.

Experiment 3

We consider the valuation of the American Power put option with the following parameters:

S, = $40,K = {$35,$40,$45}, T = 0.583,r = 0.05,0 = 0.4,n=1,c = 2

The comparative results analysis of the Mellin transform method (MTM) in the context of Black-Scholes
model (BSM), binomial model (BM), recursive method (RM) and Finite difference method (FDM) are shown in
Table 8.

Table 1. American power put values.

o\n 1.90 1.95 2.0 2.05 2.10
0.1 18.274 10.289 4.354 1.309 0.275
0.15 18.997 12.147 6.809 3.316 1.403
0.20 20.160 14.102 9.175 5.548 3.125
0.25 21.535 16.058 11.453 7.832 5.129
0.30 23.008 17.981 13.653 10.077 7.251

Table 2. The price of American power put option using n=1,c=2,0=0.2,r =0.05,S, = $40,T =0.083.

K Black-Scholes Model (BSM) Binomial Model (BM) Mellin Transform Method (MTM)
35 0.006 0.006 0.007
40 0.840 0.851 0.852
45 4.840 5.000 5.031

Table 3. The price of American power put option using n=1c=2,6=0.3,r =0.05,S, =$40,T =0.083.

K Black-Scholes Model (BSM) Binomial Model (BM) Mellin Transform Method (MTM)
35 0.076 0.076 0.078
40 1.295 1.310 1.310
45 4.975 5.051 5.058

Table 4. The price of American power put option using n=1,c=2,0 =0.4,r =0.05,S, =$40,T =0.083.

K Black-Scholes Model (BSM) Binomial Model (BM) Mellin Transform Method (MTM)
35 0.244 0.245 0.247
40 1.753 1.766 1.768
45 5.231 5.285 5.300
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Table 5. The free boundary of American power put option using n=1,¢c=2,0 =0.2,r =0.05,T =0.083.

Strike Price, K Underlying Asset Price, S, Free Boundary SA‘
35 40 31.740
40 40 36.273
45 40 40.810

Table 6. The free boundary of American power put option using n=1,¢c=2,0 =0.3,r =0.05,T =0.083.

Strike Price, K Underlying Asset Price, S, Free Boundary SA‘
35 40 29.783
40 40 34.040
45 40 38.291

Table 7. The free boundary of American power put option using n=1,¢c=2,0 =0.4,r =0.05,T =0.083.

Strike Price, K Underlying Asset Price, S, Free Boundary SA‘
35 40 27.850
40 40 31.830
45 40 35.804

Table 8. The comparative results analysis of some numerical methods for the valuation of American power put option.

K S, o) ® n r T BSM BM MTM RM FDM
35 40 0.4 2 1 0.05 0.083 2.104 2.144 2.157 2.160 2.168
40 40 0.4 2 1 0.05 0.083 4.232 4.330 4.354 4.370 4.357
45 40 0.4 2 1 0.05 0.083 7.144 7.364 7.384 7.390 7.380

Discussion of Results

From Figure 1 below, we observe that the higher the volatility, the higher the values of the American power put
option. Also the higher the power of the American put option, the lower the values of the option. Figures 2-4
below show that the Mellin transform method is mutually consistent, performs very well, accurate and agrees
with the values of Black-Scholes model (BSM). In Figure 5 below, we plot the free boundary §t as a function
of the strike price K for different values of volatility o . We observe that the higher the volatility, the lower the
optimal exercise boundary of the American power put option. Figure 6 below demonstrates that the Mellin
transform method is a better alternative technique compared to the Black-Scholes model (BSM), binomial model
(BM), recursive method (RM) and finite difference method (BM) for the valuation of the American power put
option. Hence the Mellin transform method is a good technique for the valuation of the American power put option.

6. Conclusion

In this paper, we have derived the integral representations for the price and the free boundary of the American
power put option for non-dividend and dividend yields using the Mellin transform method. We also extended the
integral equation for the price of the American power put option to derive the expression for the free boundary
and the price of the perpetual American power put option which pays both non-dividend and dividend yields as
the limit of a finite-lived option by means of smooth pasting condition. In general, numerical experiments have
shown that the Mellin transform method is accurate, flexible, efficient and produces accurate prices for the
optimal exercise boundary for a wide range of parameters.
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Figure 1. American power put option values using Table 1.
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Figure 2. The comparative results analysis using Table 2.
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Figure 3. The comparative results analysis using Table 3.
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Figure 4. The comparative results analysis using Table 4.
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Figure 5. The free boundaries of American power put option
with n = 1.
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Figure 6. The comparative results analysis using Table 8.
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