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Abstract

In this paper, we introduce a new type of graph energy called the non-common-neighborhood
energy E ., (G), NCN-energy for some standard graphs is obtained and an upper bound for

Enen (G) is found when G is a strongly regular graph. Also the relation between common neigh-

bourhood energy and non-common neighbourhood energy of a graph is established.
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1. Introduction

Let G be a simple graph with n vertices, and let A= Pij be its adjacency matrix. The eigenvalues A4, 4,,---,4,
of A are the (ordinary) eigenvalues of the graph G [1]. Since A is a symmetric matrix with zero trace, these
eigenvalues are real with sum equal to zero.

The energy of the graph G is defined [2] as the sum of the absolute values of its eigenvalues:

E(G)=3 /A

Details on the theory of graph energy can be found in the reviews [3]-[5], whereas details on its chemical
applications in the book [6] and in the review [7]. Let G be simple graph with vertex set V (G)={v,,v,,---,v,} .

For i= j, the common neighborhood of the the vertices v, and v,, denoted by F(vi,vj), is the set of

vertices, different from v, and v;, which are adjacent to both v; and v;. The common-neighborhood matrix
of Gisthen CN=CN(G)= |, where
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N A%
7 0 otherwise.

The common-neighborhood energy (or, shorter, CN-energy) of the graph G is
Ecn = Ecy (G) = Z|7i|'
i=1

where 7,,7,,---,7, arethe eigenvalues of the CN(G), for more details about CN-energy, see [9]
Theorem 1. [8] For almost all n-vertex graphs

E(G):(3i+o(1)jn3/2.

7T

Theorem 1 immediately implies that almost all graphs are hyperenergetic, making any further search for them
pointless.

In what follows we shall need a few auxiliary results.

Lemma 1. [1] Let G be a connected k-regular graph with n vertices and k >3. Let k,4,,---,4, be its
eigenvalues. Then the eigenvalues of the line graph of G are 2k-2,4,+k—-2,---,4, +k-2, and -2 with
multiplicity n(k-2)/2.

Lemma 2. [1] Let G be a graph with an adjacency matrix A and with eigenvalues 4,4,,---,4,, then the
det A=]]/’ 4. forany polynomial P(x), P(1) isaneigenvalueof P(A) andhence detP(A)=]] " P(4).

Corollary 1. [9] Let G be a connected k-regular graph and let k,4,,---,4, be its eigenvalues.

1) The common-neighborhood eigenvalues of the complement of G are

(n—k-1)(n-k-2),4 +24, —n+k+2,--, A7+ 24, —n+k+2.
2) The common-neighborhood eigenvalues of the line graph L(G) of G are
4k? —10k +6,1; +(2k —4) A, +k* =6k +6,-+-, 47 +(2k —4) 4, + k* -6k + 6,6 — 2K
where the CN-eigenvalue 6—2k has multiplicity n(k-2)/2.

Definition. A strongly regular graph with parameters (n,k, 4, x) is a k-regular graph with n vertices, such
that any two adjacent vertices have 4 common neighbors, and any two non-adjacent vertices have x common
neighbors.

2. Non-Common Neighbourhood Energy of Graphs

Definition. Let G be simple graph with vertex set V (G)={v,,v,,---,v,}. For i= j, the non-common neigh-
borhood set of the the vertices v, and v;, denoted by F’(vi,vj) , is the set of vertices, different from v, and

v;, which are not adjacent to both v; and v;. The non-common neighborhood matrix of G is then
NCN =NCN(G) = ||a‘j|| , Where
aij = {‘F,{vi'vj}‘ I # J

1
0 otherwise.

According to the above definition, the non-common neighborhood matrix is a real symmetric nxn matrix.
Therefore its eigenvalues y,,7,,---,7, are real numbers. Since the trace of NCN(G) is zero, the sum of its

eigenvalues is also equal to zero. the eigenvalues y,,7,,---,7, of the matrix NCN(G) are called the CNC-
eigenvalues of G

Definition. The non-common neighborhood energy (or, shorter, CNC-energy) of the graph G is
Enen = Enen (G) = Z|7i|'
i=1

We will Denote by |, the unit matrix of order n, and by J, the square matrix of order n whose all
elements are equal to unity. Let further O stand for a matrix (or pertinent dimension) whose all elements are
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equal to zero. .
Proposition 2. Eycy (K, )= E(Kn =0, where K, isthe complete graph of order n.

Proof. Observing that NCN(K, )= ( ),we get Eyen (K )=E(K_n)=0.

Proposition 3. ENCN(Ka,b)_ [(a-1)(a-2)+(b-1)(b-2)], where K,, is the complete bipartite
graph of order a+b.
Proof. First observe that if the vertices of K, are labeled so that all vertices v,,---,v, are adjacent to all

vertices v then
0 (a—2)(Ja—Ia)J

NCN(Ka,b):((b_Z)(Jb—lb) 0

Observing that J, -1, = A(K,) and J, -1, = A(K;), we have

. (a-2)A(K,)
NCN(Ka,b)Z{(b—Z)A(Kb) 0 J

Which implies Eyqy (K, )=(a-2)E(K,)+(b-2)E(K,)=2[(a-1)(a-2)+(b-1)(b-2)].
Corollary 2. Eycy(Py) = Eyen (Kz2) = Enon (Py) =0

a1 Varp

Proposition 4. E,, (Ka,a) = (n - 2)(n —4) , where K, is the complete bipartite graph of order a+a=n.
Proposition 5. For any totally disconnected graph K, Eyo K, =2(n-1)(n-2).
Proof. Observing that for any two vertices u and v in NCN(K_H) there are n—2 vertices not adjacent to

both vertices u and v. Therefore NCN(K_n)=(n—2)A(Kn), where A(K,) is the adjacency matrix of the
complete graph with n vertices. Hence, E,.y (m) =(n-2)E(K,)=2(n-1)(n-2).

The complete multipartite graph Ko, is a graph on nzz::lpi vertices. The set of vertices is

P2, Pr
partitioned into parts of cardinalities p,, p,,---, p,; an edge joins two vertices if and only if they belong to
different parts. Thus K., , isthe complete graph K . In the following proposition we get the CNC-energy of
the multipartite graph K

Pr P2 Pr
Proposition 6. Let K, be The complete multipartite graph on n= Z::lpi vertices, where p, >3.
Then,
ENCN (Kplvav"'vpr ) = Zi:1(( Pi _2) E<Kpi )) = Zi:l(ECN (Kpi ))
Proof. Let G = Koy ppnr be a complete multipartite graph with n= Zir:lpi vertices. From the definition

of complete multipartite graph we observe for any two distinct vertices v,,v, if they belong to the same partite
set S, with |Spi|= P, then I'(v,,v,)= p;—2. But if the two vertices belongs to different partite sets we
have TI"(v,,v,)=0.Hence the NCN-matrix of K is of the following form.

(p.—2)A(K,) 0 pwpro 0
0 (p,—2)A(K,,) 0 0
0 0 (ps—2)A(K,, ) - 0 ,
6 6 6 (pr—Z)'A(Kpr)

where A(Kpi );i =1,2,---,r s the adjacency matrix of the complete graphs K ,;i=1,2,---,r . Hence,

ENCN(K"i'pZ"“'pr):(pl_z)E(Km)+(p2_2)E(sz)+"'+(pr_2)E(Kpr)
(0 -2E(k, ) - Z (k)
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Corollary 3. For graph G =K, ., we have,

Enen (K ) = 2r(m=1)(m—2).

Corollary 4. For any cocktail party graph G which is the complement of (n/2)K, ,
Eqen(G) =0,

The proof of the following result is straightforward.
Proposition 7. If the graph G consists of (disconnected) components G,;,G,,--+,G,, then

ENCN (G) = ENCN (Gl)+ ENCN (Gz)+"'+ ENCN (Gp)'

Theorem 8. Let G be a graph on n vertices, and let A(G) is the adjacency matrix of G, and B(G) = ||bi,j||,
where

deg(v,)+deg(v;), ifi= jandvy, eE;
by, =1deg(v,)+deg(v;)+2, if i jandvy, ¢E;
0, otherwise.

and Let D(G)=diag| deg(v,),deg(v,), -, deg(v,)]. Then,
NCN(G)=n(J,-1,)-B(G)+A(G)' -D(G).
Proof. Since (NCN(G))”_
NCN(G)=n(J,-1,)-B(G)+CN(G) and as we know that CN(G)zA(G)Z—D(G).Hence
NCN(G)=n(J,-1,)-B(G)+A(G)" -D(G).
Lemma3.Let G=(V,E) be k-regular graph and B(G):"bi‘j",where

is equal to size of the set T"(v;,v; ). Therefore

deg(v;)+deg(v;), if i = jand vv, € E;
b; =1deg(v,)+deg(v;)+2, ifi=jandvy, ¢E;

0, otherwise.
Then
B(G)=(2k+2)(J,-1,)-2A(G).
Proof. Observing that if G =(V,E) isk-regular, then B(G)=||b,'j||,where

2k, if i jandvyv; €E;
b j=12k+2, ifi=jandvy, ¢E;
0, otherwise.
Therefore,
B =2KA(G)+(2k+2)(J,—1,- A(G)).
Hence

B=(2k+2)(J,~1,)-2A(G).
Proposition 9. For any k-regular graph G,
NCN(G) = A(G)* +2A(G)+(n-2k-2)J, —(n-k-2)1,.
Proof. By Theorem 8 and Lemma 3, we have
NCN(G)=A’+2A(G)+(J, - 1,)-(2k+2)(J,—1,)—kI,.
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Hence
NCN(G): A(G)2 +2A(G)+(n—2k—2)Jn —(n—k—2) .

Theorem 10. For any graph G, Eyey (G) = Ecy(G).
Proof. Since NCN(G)ij for i j isthe number of vertices which not adjacent to both v; and v; and it is
equal to the number of vertices which adjacent to both v, and v; in G, that means (NCN(G))_j = (CN(G_)) :
1 IJ

Theorem 11. Let G be a connected k-regular graph with eigenvalues k,A,,---, 4, . Then the NCN-eigenvalues

of Gare (k—n+1)(k-n+2),(4) +24 —n+k+2,-,(4,) +24, —n+k+2.
Proof. Theorem 11 follows from Proposition 8 and Lemma 2 or by applying Theorem 10 and Corollary 1
Theorem 12. Let G be a connected k-regular graph and let k,A,,---,4, be its eigenvalues. Then The NCN-
eigenvalues of the line graph L(G) of G are

2(k—n+1)(k—n+2)-2,(4)" +24, —n+2k,,(4,)" +24, —n+2k.

Proof. Theorem 12 follows from Proposition 8 and Lemma 2 or by applying Theorem 10 and Corollary 1

Theorem 13. For any connected graph G, E,.(G)=0 if and only if G is complete multi bipartite graph
Koo, for some positive integer m> 2, where n, <2 for i=12,---,m.

Proof. Let G = Koy for some positive integer m>2, where n, <2 for i=12,-.,m. Suppose thatu
and v any two vertices in G, if u and v adjacent, then does not exists any vertex in G which is not adjacent to
both of u and v, similarly if u and v are not adjacent that means NCN(G) is zero matrix. Therefore

Exen (G) =0 and Corollary 2 are spacial cases of multi bipartite graph Koy, .- for some positive integer

m>2,where n <2 for i=12---,m. B
Conversely, if G is connected graph and E,.,(G)=0, then by Theorem 10 ECN(G):O. Therefore

Gz (aKlu,BKz) for some positive integers «, #>0. Hence G is complete multi bipartite graph K,

for some positive integer m>2, where n, <2 for i=12,---,m.
Lemma 4. If G is a strongly regular graph with parameters (n,k, 2, «), then

Al =n[k(n-2k+ 2) ~(k—n+1)(n-2k+ -2’ | )
i=1
Proof. If v, and v; are adjacent vertices of G, then y; =n—2k+A4.1f v, and v; are non-adjacent ver-

n
tices of G, then y; = p—2k+x—2. Since G has nk/2 pairs of adjacent vertices, and (J—nk/z pairs of

non-adjacent vertices,

i|7i|2 :Tr(NCN(G))2 = iiym = ii(n— )2

i1 im1j-1 im1j-1
nk 2 ny) nk 2

=2|—|(n-2k+1) +2 —-——|(n—=2k -2),
{Z}m LAY+ HZJ 2}(n u-2)

from which Equation (1) follows straightforwardly.
Theorem 14. If G is a strongly regular graph with parameters (n,k, 4, «), then

Exen (G) < (k—n+1)(k—n+2)

+\/(n—1)[n[k(n—2k+ﬂ)2 ~(k=n+1)(n-2k+u-2) |-(n-1 (k-n+1)(k-n+2)] |

Proof. follows an idea first used by Koolen and Moulton [10] [11]. Let y,,7,,---,7, be the common neigh-
borhood eigenvalues of G, and let y, be the greatest eigenvalue. Because the greatest ordinary eigenvalue of G
is equal to k, by Theorem 14, », =(k—-n+1)(k-n+2).

The Cauchy-Schwarz inequality states that if (a,,a,,---,a,) and (b,b,,---,b,) are n-vectors, then

@
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(Bn) <[22

Now, by setting a =1 and b =|y|, i=2,3,-,n,inthe above inequality, we obtain

g )37

Therefore
RN CEE IS
g|7i|—(k—n+l)(k—n+2) < \/(n_l){glyilz —[(k—n+1)(k—n+z)ﬂ

Enen (G) < (k—n+1)(k—n+2)+\/(n_l){iznl:b,d2 ~[(k=n+1)(k —n+2)]2}.

By using Lemma 4,

Exen (G) < (k—n+1)(k-n+2)

+\/(n_1)[n[k(n_zk+/1)2_(k_n+1)(n_2k+ﬂ_2)2]_(n_1)[(k_n+1)(k_n+z)ﬂ.
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