

On the Non-Common Neighbourhood Energy of Graphs

Ahmad N. Al-Kenani¹, Anwar Alwardi², Omar A. Al-Attas¹

¹Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

²Department of Studies in Mathematics, University of Mysore, Mysore, India

Email: aalkenani10@hotmail.com, a wardi@hotmail.com, Omar alattas30@hotmail.com

Received 20 May 2015; accepted 30 June 2015; published 3 July 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, we introduce a new type of graph energy called the non-common-neighborhood energy $E_{\rm NCN}(G)$, NCN-energy for some standard graphs is obtained and an upper bound for $E_{\rm NCN}(G)$ is found when G is a strongly regular graph. Also the relation between common neighbourhood energy and non-common neighbourhood energy of a graph is established.

Keywords

NCN-Eigenvalues (of Graph), NCN-Energy (of Graph), NCN-Adjacency Matrix (of Graph)

1. Introduction

Let G be a simple graph with n vertices, and let $A = \|a_{ij}\|$ be its adjacency matrix. The eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ of A are the (ordinary) eigenvalues of the graph G [1]. Since A is a symmetric matrix with zero trace, these eigenvalues are real with sum equal to zero.

The energy of the graph G is defined [2] as the sum of the absolute values of its eigenvalues:

$$E(G) = \sum_{i=1}^{n} |\lambda_i|.$$

Details on the theory of graph energy can be found in the reviews [3]-[5], whereas details on its chemical applications in the book [6] and in the review [7]. Let G be simple graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. For $i \neq j$, the common neighborhood of the the vertices v_i and v_j , denoted by $\Gamma(v_i, v_j)$, is the set of vertices, different from v_i and v_j , which are adjacent to both v_i and v_j . The common-neighborhood matrix of G is then $\mathbf{CN} = \mathbf{CN}(G) = \|\gamma_{ij}\|$, where

$$\gamma_{ij} = \begin{cases} \left| \Gamma \left\{ v_i, v_j \right\} \right| & \text{if } i \neq j \\ 0 & \text{otherwise.} \end{cases}$$

The common-neighborhood energy (or, shorter, CN-energy) of the graph G is

$$E_{\mathrm{CN}} = E_{\mathrm{CN}}(G) = \sum_{i=1}^{n} |\gamma_i|.$$

where $\gamma_1, \gamma_2, \dots, \gamma_n$ are the eigenvalues of the $\mathbf{CN}(G)$, for more details about CN-energy, see [9]

Theorem 1. [8] For almost all n-vertex graphs

$$E(G) = \left(\frac{4}{3\pi} + o(1)\right) n^{3/2}.$$

Theorem 1 immediately implies that almost all graphs are hyperenergetic, making any further search for them pointless.

In what follows we shall need a few auxiliary results.

Lemma 1. [1] Let G be a connected k-regular graph with n vertices and $k \ge 3$. Let $k, \lambda_2, \dots, \lambda_n$ be its eigenvalues. Then the eigenvalues of the line graph of G are $2k-2, \lambda_2+k-2, \dots, \lambda_n+k-2$, and -2 with multiplicity n(k-2)/2.

Lemma 2. [1] Let G be a graph with an adjacency matrix A and with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_p$, then the $\det A = \prod_{i=1}^p \lambda_i$, for any polynomial P(x), $P(\lambda)$ is an eigenvalue of P(A) and hence $\det P(A) = \prod_{i=1}^p P(\lambda_i)$.

Corollary 1. [9] Let G be a connected k-regular graph and let $k, \lambda_2, \dots, \lambda_n$ be its eigenvalues.

1) The common-neighborhood eigenvalues of the complement of G are

$$(n-k-1)(n-k-2), \lambda_2^2 + 2\lambda_2 - n + k + 2, \dots, \lambda_n^2 + 2\lambda_n - n + k + 2.$$

2) The common-neighborhood eigenvalues of the line graph L(G) of G are

$$4k^{2} - 10k + 6, \lambda_{2}^{2} + (2k - 4)\lambda_{2} + k^{2} - 6k + 6, \dots, \lambda_{n}^{2} + (2k - 4)\lambda_{n} + k^{2} - 6k + 6, 6 - 2k$$

where the CN-eigenvalue 6-2k has multiplicity n(k-2)/2.

Definition. A strongly regular graph with parameters (n,k,λ,μ) is a k-regular graph with n vertices, such that any two adjacent vertices have λ common neighbors, and any two non-adjacent vertices have μ common neighbors.

2. Non-Common Neighbourhood Energy of Graphs

Definition. Let G be simple graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. For $i \neq j$, the non-common neighborhood set of the the vertices v_i and v_j , denoted by $\Gamma'(v_i, v_j)$, is the set of vertices, different from v_i and v_j , which are not adjacent to both v_i and v_j . The non-common neighborhood matrix of G is then $\mathbf{NCN} = \mathbf{NCN}(G) = \|a_{ij}\|$, where

$$a_{ij} = \begin{cases} \left| \Gamma' \left\{ v_i, v_j \right\} \right| & i \neq j \\ 0 & \text{otherwise.} \end{cases}$$

According to the above definition, the non-common neighborhood matrix is a real symmetric $n \times n$ matrix. Therefore its eigenvalues $\gamma_1, \gamma_2, \dots, \gamma_n$ are real numbers. Since the trace of $\mathbf{NCN}(G)$ is zero, the sum of its eigenvalues is also equal to zero. the eigenvalues $\gamma_1, \gamma_2, \dots, \gamma_n$ of the matrix $\mathbf{NCN}(G)$ are called the \mathbf{CNC} -eigenvalues of G

Definition. The non-common neighborhood energy (or, shorter, CNC-energy) of the graph G is

$$E_{\text{NCN}} = E_{\text{NCN}}(G) = \sum_{i=1}^{n} |\gamma_i|.$$

We will Denote by I_n the unit matrix of order n, and by J_n the square matrix of order n whose all elements are equal to unity. Let further 0 stand for a matrix (or pertinent dimension) whose all elements are

equal to zero.

Proposition 2. $E_{NCN}(K_n) = E(\overline{K_n}) = 0$, where K_n is the complete graph of order n.

Proof. Observing that $NCN(K_n) = A(\overline{K_n})$, we get $E_{NCN}(K_n) = E(\overline{K_n}) = 0$.

Proposition 3. $E_{NCN}(K_{a,b}) = 2[(a-1)(a-2)+(b-1)(b-2)]$, where $K_{a,b}$ is the complete bipartite graph of order a+b.

Proof. First observe that if the vertices of $K_{a,b}$ are labeled so that all vertices v_1, \dots, v_a are adjacent to all vertices v_{a+1}, \dots, v_{a+b} , then

$$\mathbf{NCN}(K_{a,b}) = \begin{pmatrix} \mathbf{0} & (a-2)(\mathbf{J}_a - \mathbf{I}_a) \\ (b-2)(\mathbf{J}_b - \mathbf{I}_b) & \mathbf{0} \end{pmatrix}.$$

Observing that $J_a - I_a = A(K_a)$ and $J_b - I_b = A(K_b)$, we have

$$\mathbf{NCN}(K_{a,b}) = \begin{pmatrix} \mathbf{0} & (a-2)\mathbf{A}(K_a) \\ (b-2)\mathbf{A}(K_b) & \mathbf{0} \end{pmatrix}$$

Which implies $E_{NCN}(K_{a,b}) = (a-2)E(K_a) + (b-2)E(K_b) = 2[(a-1)(a-2) + (b-1)(b-2)]$.

Corollary 2. $E_{NCN}(P_3) = E_{NCN}(K_{2,2}) = E_{NCN}(P_2) = 0$

Proposition 4. $E_{NCN}(K_{a,a}) = (n-2)(n-4)$, where $K_{a,a}$ is the complete bipartite graph of order a+a=n.

Proposition 5. For any totally disconnected graph $\overline{K_n}$, $E_{NCN}\overline{K_n} = 2(n-1)(n-2)$.

Proof. Observing that for any two vertices u and v in $NCN(\overline{K_n})$ there are n-2 vertices not adjacent to both vertices u and v. Therefore $NCN(\overline{K_n}) = (n-2)A(K_n)$, where $A(K_n)$ is the adjacency matrix of the complete graph with n vertices. Hence, $E_{NCN}(\overline{(K_n)}) = (n-2)E(K_n) = 2(n-1)(n-2)$.

The complete multipartite graph K_{p_1,p_2,\cdots,p_r} is a graph on $n=\sum_{i=1}^r p_i$ vertices. The set of vertices is partitioned into parts of cardinalities p_1,p_2,\cdots,p_r ; an edge joins two vertices if and only if they belong to different parts. Thus $K_{1,1,\cdots,1}$ is the complete graph K_n . In the following proposition we get the CNC-energy of the multipartite graph K_{p_1,p_2,\cdots,p_r} .

Proposition 6. Let K_{p_1,p_2,\cdots,p_r} be The complete multipartite graph on $n=\sum_{i=1}^r p_i$ vertices, where $p_i \geq 3$. Then,

$$E_{\text{NCN}}(K_{p_1,p_2,\dots,p_r}) = \sum_{i=1}^r ((p_i - 2)E(K_{p_i})) = \sum_{i=1}^r (E_{\text{CN}}(K_{p_i})).$$

Proof. Let $G = K_{p_1,p_2,\cdots,p_r}$ be a complete multipartite graph with $n = \sum_{i=1}^r p_i$ vertices. From the definition of complete multipartite graph we observe for any two distinct vertices v_s, v_t if they belong to the same partite set S_{p_i} with $\left|S_{p_i}\right| = p_i$, then $\Gamma'(v_s, v_t) = p_i - 2$. But if the two vertices belongs to different partite sets we have $\Gamma'(v_s, v_t) = 0$. Hence the NCN-matrix of $K_{p_1, p_2, \cdots, p_r}$ is of the following form.

$$\begin{cases} (p_1-2)A(K_{p_1}) & 0 & 0 & \cdots & 0 \\ 0 & (p_2-2)A(K_{p_2}) & 0 & \cdots & 0 \\ 0 & 0 & (p_3-2)A(K_{p_3}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & (p_r-2)A(K_{p_r}) \end{cases},$$

where $A(K_{p_i})$; $i = 1, 2, \dots, r$ is the adjacency matrix of the complete graphs K_{p_i} ; $i = 1, 2, \dots, r$. Hence,

$$E_{\text{NCN}}(K_{p_1, p_2, \dots, p_r}) = (p_1 - 2)E(K_{p_1}) + (p_2 - 2)E(K_{p_2}) + \dots + (p_r - 2)E(K_{p_r})$$

$$= \sum_{i=1}^{r} ((p_i - 2)E(K_{p_i})) = \sum_{i=1}^{r} (E_{\text{CN}}(K_{p_i})).$$

Corollary 3. For graph $G = K_{r \times m}$ we have,

$$E_{\text{NCN}}(K_{rym}) = 2r(m-1)(m-2).$$

Corollary 4. For any cocktail party graph G which is the complement of $(n/2)K_2$,

$$E_{NCN}(G) = 0.$$

The proof of the following result is straightforward.

Proposition 7. If the graph G consists of (disconnected) components G_1, G_2, \dots, G_p , then

$$E_{\text{NCN}}(G) = E_{\text{NCN}}(G_1) + E_{\text{NCN}}(G_2) + \dots + E_{\text{NCN}}(G_p).$$

Theorem 8. Let G be a graph on n vertices, and let A(G) is the adjacency matrix of G, and $B(G) = ||b_{i,j}||$, where

$$b_{i,j} = \begin{cases} \deg(v_i) + \deg(v_j), & \text{if } i \neq j \text{ and } v_i v_j \in E; \\ \deg(v_i) + \deg(v_j) + 2, & \text{if } i \neq j \text{ and } v_i v_j \notin E; \\ 0, & \text{otherwise.} \end{cases}$$

and Let $D(G) = \operatorname{diag} \left[\operatorname{deg}(v_1), \operatorname{deg}(v_2), \dots, \operatorname{deg}(v_n) \right]$. Then,

$$\mathbf{NCN}(G) = n(\mathbf{J}_n - \mathbf{I}_n) - \mathbf{B}(G) + \mathbf{A}(G)^2 - \mathbf{D}(G).$$

Proof. Since $(NCN(G))_{ii}$ is equal to size of the set $\Gamma'(v_i, v_j)$. Therefore

$$\mathbf{NCN}(G) = n(J_n - I_n) - B(G) + \mathbf{CN}(G)$$
 and as we know that $\mathbf{CN}(G) = A(G)^2 - D(G)$. Hence

$$\mathbf{NCN}(G) = n(\mathbf{J}_n - \mathbf{I}_n) - \mathbf{B}(G) + \mathbf{A}(G)^2 - \mathbf{D}(G).$$

Lemma 3. Let G = (V, E) be k-regular graph and $B(G) = ||b_{i,j}||$, where

$$b_{i,j} = \begin{cases} \deg(v_i) + \deg(v_j), & \text{if } i \neq j \text{ and } v_i v_j \in E; \\ \deg(v_i) + \deg(v_j) + 2, & \text{if } i \neq j \text{ and } v_i v_j \notin E; \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$B(G) = (2k+2)(J_n - I_n) - 2A(G).$$

Proof. Observing that if G = (V, E) is k-regular, then $B(G) = ||b_{i,j}||$, where

$$b_{i,j} = \begin{cases} 2k, & \text{if } i \neq j \text{ and } v_i v_j \in E; \\ 2k+2, & \text{if } i \neq j \text{ and } v_i v_j \notin E; \\ 0, & \text{otherwise.} \end{cases}$$

Therefore,

$$\boldsymbol{B} = 2k\boldsymbol{A}(G) + (2k+2)(\boldsymbol{J}_n - \boldsymbol{I}_n - \boldsymbol{A}(G)).$$

Hence

$$\boldsymbol{B} = (2k+2)(\boldsymbol{J}_n - \boldsymbol{I}_n) - 2\boldsymbol{A}(\boldsymbol{G}).$$

Proposition 9. For any k-regular graph G,

$$NCN(G) = A(G)^{2} + 2A(G) + (n-2k-2)J_{n} - (n-k-2)I_{n}$$

Proof. By Theorem 8 and Lemma 3, we have

$$NCN(G) = A^2 + 2A(G) + (J_n - I_n) - (2k + 2)(J_n - I_n) - kI_n$$

Hence

$$NCN(G) = A(G)^{2} + 2A(G) + (n-2k-2)J_{n} - (n-k-2)I_{n}$$

Theorem 10. For any graph G, $E_{NCN}(G) = E_{CN}(\overline{G})$.

Proof. Since $NCN(G)_{ij}$ for $i \neq j$ is the number of vertices which not adjacent to both v_i and v_j and it is equal to the number of vertices which adjacent to both v_i and v_j in \overline{G} , that means $(NCN(G))_{ii} = (CN(\overline{G}))_{ii}$.

Theorem 11. Let G be a connected k-regular graph with eigenvalues $k, \lambda_2, \dots, \lambda_n$. Then the **NCN**-eigenvalues of G are $(k-n+1)(k-n+2), (\lambda_2)^2 + 2\lambda_2 - n + k + 2, \dots, (\lambda_n)^2 + 2\lambda_n - n + k + 2$.

Proof. Theorem 11 follows from Proposition 8 and Lemma 2 or by applying Theorem 10 and Corollary 1

Theorem 12. Let G be a connected k-regular graph and let $k, \lambda_2, \dots, \lambda_n$ be its eigenvalues. Then The NCN-eigenvalues of the line graph L(G) of G are

$$2(k-n+1)(k-n+2)-2,(\lambda_2)^2+2\lambda_2-n+2k,\cdots,(\lambda_n)^2+2\lambda_2-n+2k.$$

Proof. Theorem 12 follows from Proposition 8 and Lemma 2 or by applying Theorem 10 and Corollary 1 **Theorem 13.** For any connected graph G, $E_{NCN}(G) = 0$ if and only if G is complete multi bipartite graph K_{n_1, n_2, \dots, n_d} for some positive integer $m \ge 2$, where $n_i \le 2$ for $i = 1, 2, \dots, m$.

 K_{n_1,n_2,\cdots,n_m} for some positive integer $m \ge 2$, where $n_i \le 2$ for $i=1,2,\cdots,m$. **Proof.** Let $G \cong K_{n_1,n_2,\cdots,n_m}$ for some positive integer $m \ge 2$, where $n_i \le 2$ for $i=1,2,\cdots,m$. Suppose that u and v any two vertices in G, if u and v adjacent, then does not exists any vertex in G which is not adjacent to both of u and v, similarly if u and v are not adjacent that means $\operatorname{NCN}(G)$ is zero matrix. Therefore $E_{\operatorname{NCN}}(G) = 0$ and Corollary 2 are spacial cases of multi bipartite graph K_{n_1,n_2,\cdots,n_m} for some positive integer $m \ge 2$, where $n_i \le 2$ for $i=1,2,\cdots,m$.

Conversely, if G is connected graph and $E_{NCN}(G) = 0$, then by Theorem 10 $E_{CN}(\overline{G}) = 0$. Therefore $G \cong (\alpha K_1 \cup \beta K_2)$ for some positive integers $\alpha, \beta \geq 0$. Hence G is complete multi bipartite graph $K_{n_1, n_2, \cdots, n_m}$ for some positive integer $m \geq 2$, where $n_i \leq 2$ for $i = 1, 2, \cdots, m$.

Lemma 4. If G is a strongly regular graph with parameters (n,k,λ,μ) , then

$$\sum_{i=1}^{n} |\gamma_i|^2 = n \left[k \left(n - 2k + \lambda \right)^2 - \left(k - n + 1 \right) \left(n - 2k + \mu - 2 \right)^2 \right]. \tag{1}$$

Proof. If v_i and v_j are adjacent vertices of G, then $\gamma_{ij} = n - 2k + \lambda$. If v_i and v_j are non-adjacent vertices of G, then $\gamma_{ij} = p - 2k + \mu - 2$. Since G has nk/2 pairs of adjacent vertices, and $\binom{n}{2} - nk/2$ pairs of non-adjacent vertices,

$$\sum_{i=1}^{n} |\gamma_{i}|^{2} = Tr(\mathbf{NCN}(G))^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} \gamma_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} (\gamma_{ij})^{2}$$

$$= 2 \left[\frac{nk}{2} \right] (n - 2k + \lambda)^{2} + 2 \left[\binom{n}{2} - \frac{nk}{2} \right] (n - 2k + \mu - 2)^{2},$$

from which Equation (1) follows straightforwardly.

Theorem 14. If G is a strongly regular graph with parameters (n,k,λ,μ) , then

$$E_{NCN}(G) \le (k-n+1)(k-n+2) + \sqrt{(n-1)\left[n\left[k(n-2k+\lambda)^2 - (k-n+1)(n-2k+\mu-2)^2\right] - (n-1)\left[(k-n+1)(k-n+2)\right]^2\right]}.$$
(2)

Proof. follows an idea first used by Koolen and Moulton [10] [11]. Let $\gamma_1, \gamma_2, \dots, \gamma_n$ be the common neighborhood eigenvalues of G, and let γ_1 be the greatest eigenvalue. Because the greatest ordinary eigenvalue of G is equal to k, by Theorem 14, $\gamma_1 = (k-n+1)(k-n+2)$.

The Cauchy-Schwarz inequality states that if (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) are *n*-vectors, then

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Now, by setting $a_i = 1$ and $b_i = |\gamma_i|$, $i = 2, 3, \dots, n$, in the above inequality, we obtain

$$\left(\sum_{i=2}^{n} |\gamma_i|\right)^2 \le \left(\sum_{i=2}^{n} 1^2\right) \left(\sum_{i=2}^{n} |\gamma_i|^2\right).$$

Therefore

$$\sum_{i=2}^{n} \left| \gamma_i \right| \le \sqrt{\left(n - 1 \right) \sum_{i=2}^{n} \left| \gamma_i \right|^2}$$

i.e.,

$$\sum_{i=1}^{n} |\gamma_{i}| - (k-n+1)(k-n+2) \le \sqrt{(n-1) \left[\sum_{i=1}^{n} |\gamma_{i}|^{2} - \left[(k-n+1)(k-n+2) \right]^{2} \right]}$$

i.e.,

$$E_{\text{NCN}}(G) \le (k-n+1)(k-n+2) + \sqrt{(n-1)\left[\sum_{i=1}^{n} |\gamma_i|^2 - \left[(k-n+1)(k-n+2)\right]^2\right]}.$$

By using Lemma 4,

$$\begin{split} &E_{\text{NCN}}\left(G\right) \leq \left(k - n + 1\right)\left(k - n + 2\right) \\ &+ \sqrt{\left(n - 1\right)\left[n\left[k\left(n - 2k + \lambda\right)^{2} - \left(k - n + 1\right)\left(n - 2k + \mu - 2\right)^{2}\right] - \left(n - 1\right)\left[\left(k - n + 1\right)\left(k - n + 2\right)\right]^{2}\right]}. \end{split}$$

Acknowledgements

We thank the Editor and the referee for their comments.

References

- [1] Cvetković, D., Doob, M. and Sachs, H. (1995) Spectra of Graphs—Theory and Application. Barth, Heidelberg.
- [2] Gutman, I. (1978) The Energy of a Graph. Ber. Math. Stat. Sekt. Forschungsz. Graz, 103, 1-22.
- [3] Gutman, I. (2001) The Energy of a Graph: Old and New Results. In: Betten, A., Kohnert, A., Laue, R. and Wassermann, A., Eds., Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 196-211. http://dx.doi.org/10.1007/978-3-642-59448-9_13
- [4] Gutman, I. (2011) Hyperenergetic and Hypoenergetic Graphs. In: Cvetković, D. and Gutman, I., Eds., *Selected Topics on Applications of Graph Spectra*, Math. Inst., Belgrade, 113-135.
- [5] Gutman, I., Li, X. and Zhang, J. (2009) Graph Energy. In: Dehmer, M. and Emmert-Streib, F., Eds., Analysis of Complex Networks. From Biology to Linguistics, Wiley-VCH, Weinheim, 145-174. http://dx.doi.org/10.1002/9783527627981.ch7
- [6] Gutman, I. and Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-70982-1
- [7] Gutman, I. (2005) Topology and Stability of Conjugated Hydrocarbons. The Dependence of Total π-Electron Energy on Molecular Topology. *Journal of the Serbian Chemical Society*, **70**, 441-456.
- [8] Nikiforov, V. (2007) The Energy of Graphs and Matrices. *Journal of Mathematical Analysis and Applications*, **326**, 1472-1475. http://dx.doi.org/10.1016/j.jmaa.2006.03.072
- [9] Alwardi, A., Soner, N.D. and Gutman, I. (2011) On the Common-Neighborhood Energy of a Graph. Bulletin T. CXLIII de l'Académie Serbe des Sciences et des Arts 2011 Classe des Sciences Mathématiques et Naturelles Sciences Mathématiques, 143, 49-59.
- [10] Koolen, J. and Moulton, V. (2001) Maximal Energy Graphs. Advances in Applied Mathematics, 26, 47-52. http://dx.doi.org/10.1006/aama.2000.0705
- [11] Koolen, J.H., Moulton, V. and Gutman, I. (2000) Improving the McClelland Inequality for Total π-Electron Energy. *Chemical Physics Letters*, **320**, 213-216. http://dx.doi.org/10.1016/S0009-2614(00)00232-3