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ABSTRACT 
In this work we describe a reconstruction algorithm for zero-order hold (ZOH) waveforms measured by a parallel sam-
pling scheme. In the method the ZOH signal is fed to a parallel network consisting of resistor-capacitor (RC) filters, 
whose outputs are sampled simultaneously. The algorithm reconstructs N previous samples of the input signal from 
output samples of N parallel RC circuits. The method is especially useful in sampling and reconstruction of the ZOH 
signals produced by the digital-to-analog converters. Using the parallel sampling method the sampling rate of the ana-
log-to-digital converters can be increased by a factor of N. We discuss a variety of applications such as reconstruction 
of ZOH pulse sequences produced by ultra wide band (UWB) transmitters. 
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1. Introduction 
The present sampling methods are based on the Shan-
non’s famous theorem [1], which concerns the sampling 
of the band-limited signals at equidistant time intervals. 
However, for example the measurement of ultra wide 
band (UWB) pulses gives rise to an extended demand for 
the signal sampling devices. The analog-to-digital con-
verters (ADCs) have a limited conversion time, which is 
not sufficient for sampling of the short term transients. In 
signal processing society the sequential sampling scheme 
based on the finite rate of innovation (FRI) has been an 
object of active interest for reconstruction of the UWB 
pulses and other discontinuities [2-6]. In FRI methods the 
transient signal is fed to an analogue network, which 
broadens the signal for sampling with an ADC. The re-
construction algorithm is based on the ad hoc knowledge 
of the signal waveform. In our previous work [7] we in-
troduced a new method for sampling and reconstruction 
of continuous transient waveforms. The signal is fed to 
the parallel network consisting resistor-capacitor (RC) 
filters. The outputs of the RC filters are sampled simul-
taneously. N signal samples can be reconstructed from 
the single samples of N parallel RC circuits. The recon-
struction algorithm was based on the replacement of the 

convolution integral by the Riemann sum. Recently we 
observed that in reconstruction of transient pulse se-
quences, the Riemann sum is too rough estimate for the 
convolution integral. Especially when the signal is pro-
duced by the digital-to-analog converter (DAC), the re-
construction of the ZOH (piecewise constant) signal may 
involve unpredictable errors. In the following we present 
an algorithm for computation of the convolution integral. 
We describe the parallel RC network, develop the recon-
struction algorithm and describe potential applications of 
the parallel sampling scheme.  

2. Parallel Sampling Scheme for ZOH  
Signals 

A causal continuous-time signal  x t  under considera-
tion is defined as 

    for 0
.

0 for 0

x t t
x t
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 


              (1) 

The signal  x t  is fed to the network consisting of N 
parallel RC filters shown in Figure 1. The exponential 
impulse responses of the RC filters are for  0t 

( ) , 1, 2, ,it
i i ih t C A e i N             (2) 

where  1i i i  and C is the scaling constant. For 
the RC filter outputs, which are sampled simultaneously  
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Figure 1. The s ampling scheme consisting of N parallel RC 
filters. 
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where * denotes convolution and   the dummy integra-
tion variable. For computation of (3) the measurement 
instant 0  is divided to N equal intervals t 0t t N  . 
The discrete samples of the measurement signal are de-
noted by    x n x n t 


 and the outputs of the RC fil-

ters by   iy N y N t  . Supposing that the measure-
ment signal is a ZOH signal yieded by DAC with a fre-
quency 1 t  the convolution (3) can be integrated on 

intervals. We have t
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Using the short notation expiu t   we obtain 
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which yields  the following matrix/vector representation 
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Equation (6) includes a non-singular Vandermonde 
matrix having rank . This enables us to solve the input 
signal 

N
 x n , , from the outputs 1,2,n ,  N  iy N  

of N parallel RC filters, sampled at the time instant 

0t N t 

t

. The signal vector x, containing N discrete 
values, can be reconstructed from 

 1x u z                  (7) 

Since the inverse matrix  depends only on the 
properties of RC filters and the discretization interval 

1u

 , the signal reconstruction in later measurements is 
obtained by a single matrix-vector multiplication with the 
previously computed 1u . 

The above formulation is relevant only for the recon-
struction of the N consecutive samples from the causal 
ZOH pulse sequence. For measurement of the next se-
quence of N samples, the parallel RC network was modi-
fied by adding a FET switch and a sample and hold (S/H) 
circuit (Figure 2). The switch resets the output at the 
beginning of the measurement period at the time instant 

0t   and the S/H circuit samples the signal at 0t N t  . 
The next measurement period follows the same proce-
dure. With this arrangement the ZOH waveform can be 
reconstructed without discontinuities. 

The theoretical validation of the reconstruction algo-
rithm (6,7) was tested by simulating the parallel RC net-
work (Figure 1) via the analog electronic circuit simula-
tor (Spice). In the absence of noise the reconstruction 
algorithm recovered the ZOH waveforms with machine 
precision. When the random noise was added to the ZOH 
signal, the RC filters reduced clearly the noise level in 
the outputs. In the presence of noise the reconstruction 
produced ZOH signal levels, which matched the time 
averaged values 
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d 0,1, ,
k t

k t

1x t t k N
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3. Experiments and Results 
The measurement equipment consisted of eight parallel 
RC-circuits equipped with FET switches and sample and 
hold (S/H) circuits. The i t   parameter varied in the 
range 0.1, , 0.7. The outputs of the S/Hs were fed to 
the differential eight channel 12 bit ADC unit, hich had 
the +/–5 V measurement range. Using this arrangement 
eight ZOH signal samples were reconstructed corre-
sponding to the measurement interval 



 0,t N t .  
 

 
Figure 2. Parallel RC filt er equipped with the FET switch 
and the sample and hold (S/H) circuit for sampling of ZOH 
waveforms. 
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The piecewise constant test signals were produced by 
eight bit DAC, whose output was equipped with a unit 
gain buffer amplifier. The DAC pulse frequency varied 
between 10 kHz and 1 MHz. All experimental tests were 
performed in a Faraday gage. 

The ZOH pulse sequences comprised of sinusoidal, 
damped sinusoidal and various types of pulse waveforms. 
In all cases the algorithm reconstructed the ZOH signals 
with an average error being typically in the range 3.5 - 
4.2 mV. Most of the error was related to the quantization 
noise of the ADC unit. 

4. Discussion and Conclusions 
In our earlier work [7] we described a new measurement 
and sampling concept, which permits the reconstruction 
of short term transient signals. The key idea was the use 
of the parallel RC filters, whose outputs are measured 
simultaneously. The reconstruction algorithm was based 
on the replacement of the convolution integral (3) by the 
Riemann sum. In this work we reformulated the recon-
struction algorithm for the ZOH waveforms. The key 
idea is that since the ZOH signal is convolved with the 
impulse response of the RC filter, the convolution inte-
gral can be calculated analytically integrating on t  
intervals. 

In our previous work we calibrated the measurements 
by denoting the impulse response of the RC circuit as 

  , 1, 2, ,it
i ih t A e i N             (9) 

We wrote in [7] “In an ideal case, i iA  , but in 
practise they may slightly differ from each other”. To 
obtain relevant results each of the iA  values were inde-
pendently calibrated. The Riemann sum reconstruction 
method yielded the following result  

   1
i

i

z N y N
A t


 i             (10) 

It is interesting that for small i t   values we may 
take two terms of the series expansion  exp i t    
1 i t   in (6). By equalizing i iA C  we obtain 

 
1 1

exp 1
i

ii A tC t


   
         (11) 

i.e. series approximation reduces (5) to that yielded by 
Riemann sum (10). However, in most cases the series 
approximation is too rough for ZOH signals. The scaling 
constant C affects the gain of the different channels and 
only one calibration coefficient is needed to calibrate all 
channels in parallel RC network. 

In the present parallel sampling scheme the simulta-
neous measurements at the outputs of the RC filters are 
taken at  intervals. During that period the ZOH 

signal has N transitions. The role of the RC network is to 
work as a low-pass filter by smoothing the abrupt 
changes of the pulse edges and filtering the random 
noise.  

N t

The reconstruction of the N signal samples needs only 
one matrix-vector multiplication (7). The analytical for-
mulae for the inversion of the Vandermonde matrix in (6) 
are well known [8-13]. The explicit solutions are pre-
ferred since they are more accurate than the general ma-
trix inversion algorithms. 

The conversion time of the ADCs is limited to the 
through output time of the comparator chain. In VLSI 
design the most effective configuration would be to use 
individual ADCs equipped with a S/H circuits to measure 
the parallel RC filters separately. By using N parallel RC 
filter network the conversion time of each ADC can be 
prolonged to N t . This makes it possible to increase 
the sampling rate of the data acquisition system by a fac-
tor of N. 

In test measurements we found only a tiny interference 
due to the operation of the FET switches. Obviously the 
RC filters effectively reduce most of the high frequency 
noise imposed on the signal.  

The present method has plenty of applications includ-
ing the measurement of pulse trains yielded by pulse la-
sers and ultra wide-band (UWB) pulse transmitters. Usu-
ally the UWB pulses are short transients and the infor-
mation is coded to the appearance time of the pulses. The 
information may also be coded to the shape of the UWB 
pulses [14]. Using a single receiver several transmitters 
can be measured simultaneously e.g. in multisensor ap-
plications.  

The present parallel sampling scheme can be seen as a 
special case of the setup called sparse or compressive 
sampling [15-20], which can be adapted to recover cer-
tain signals from far fewer measurements than conven-
tional sampling methods require. 
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