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Abstract

In this paper, we consider the direction and stability of time-delay induced Hopf bifurcation in a
delayed predator-prey system with harvesting. We show that the positive equilibrium point is
asymptotically stable in the absence of time delay, but loses its stability via the Hopf bifurcation
when the time delay increases beyond a threshold. Furthermore, using the norm form and the
center manifold theory, we investigate the stability and direction of the Hopf bifurcation.
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1. Introduction

Due to its universal existence and importance, the study on the dynamics of predator-prey systems is one of the
dominant subjects in ecology and mathematical ecology since Lotka [1] and Volterra [2] proposed the well-
known predator-prey model [3]-[6]. Recently, a new method of central manifold has been developed to study the
stability of delay induced bifurcation. In this paper, we study the following system:

dt K | g+x'
dy bx(t—7)y @
E:_(E +5Y)+m,
with
X(0)=%,20,y(0)=y,20,0 <b, (2)

where dot means differentiation with respect to time t, x(t) and y(t) are the prey and predator population
densities, respectively. Parameter r >0 is the specific growth rate of prey in the absence of predation and
without environment limitation. K is environmental carrying capacity. The functional response of the predator
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is of Holling’s type with a,b, 8 > 0. And all parameters involved with the model are positive.

The purpose of this paper is to investigate the effect of time-delay on a modified predator-prey model with
harvesting. We discussed the existence of Hopf bifurcation of system (1) and the direction of Hopf bifurcation
and the stability of bifurcated periodic solutions are given.

2. Positive Equilibrium and Locally Asymptotically Stabiliy

After some calculations, we note system (1) has no boundary equilibria. However, it is more interesting to study
the dynamical behaviors of the interior equilibrium points E,"(x’,y,) and E,"(x,,y, ), where

- r[K(b—5)+5ﬁ]+A o r[K(b—5)+5ﬁ}—A

A :\/rZ[K(b—a)—aﬂT —4(b-5)KaE,

' 2r(b—o) 2 2r(b-5)
y*_brxi*(K—xl*)—KaE « brx, (K —x,)— KaE
! Kas e Kas '

The two distinct interior equilibrium points E,",E,” exist whenever

r*[K(b-5)-o8]

(H) O0<E<
4(b-s)Ka

3B <K(b-5)

holds.
We transform the interior equilibrium E"(x",y") to the origin by the transformation X =x-x", y=y-y .
Respectively, we still denote X and y by x and y. Thus, system (1) is transformed into

) « t . .
H_ ey 1o X XD | ey +y)
dt K K P+ X+X @)
3
bl x(t—7)+x |(y+Y
d—y:—(EJr5y+5y*)+ [ (t-) J(y*y)l
dt B+x(t—7)+x
First, we give the condition such that E"(x",y") is locally stable. For simplicity, we denote
/1+[—r[1—x ]}rx e’“+Ly2 - .
K K (ﬂ+x*) L+X
G(2) = I " (4)
bpey” Are-2
(B+x) B+x
The characteristic polynomial of G(4) is
(A1) =22 +bA+b, +(bA+b, )e ™, (5)
where
bl:rx . apy 5 bx __yr bz:(rx . apgy G- bx ),
K (ﬁ+x*) B+X K (/5'+x*) B+X
rx* rx* bx” abpx'y”*
b, =%, b, =X (52X AAXY
K K B+X (ﬁ+x*)
Now we consider the locally asymptotically stabiliy of the system without time-delay. Then we have
A%+ (b, +b)A+b, +b, =0. (6)
If
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(H2) b +b,>0b,+b, >0

holds, then it follows from the Routh-Hurwitz criterion that two roots of (6) have negative real parts.
Theorem 1. If (H1) and (H2) hold, the interior equilibrium point E* of system (1) is locally asymptot-
ically stable.

3. Hopf Bifurcaion

In the section, we study whether there exists periodic solutions of system (1) about the interior equilibrium point
E”. Now we have the following results.

Theorem 2. If the system (1) satisfies the hypothesis (H1) (H2) and (H3)bx —8x < B < 2bx -5
holds, then there exists a critical point ¢~ such that the positive equilibrium point E” is locally asymptotically
stable for 7 €[0,7"] and unstable for 7 e (z",%),where 7~ is defined in Equation (14).

By the use of the instability result for the delayed differential Equations, in order to prove the instability of the
equilibrium point, it is sufficient to show that there exists a purely imaginary iw and a positive real z such
that

p(4,7)=0 U]

where ¢@(4,7) is defined in Equation (5).
If iw isarootof Equation (7), then we have

b,wsin oz +b, cos wr = w* —b,,
. (8)
b,wcoswr —b, sinwr = -bw,
which leads to
R(w)=0"-(2b, +b’ -b’)e’ +b,’ —b* = 0. 9)
Let z=w?, then Equation (9) takes the form
2* —(2b, +b -b?)z+b,* ~b,* =0. (10)

Since (H3) holds, we have b, —b, <0 , which leads to b,”—b,” <0. Thus Equation (10) has at least one
positive root, which leads to

\/sz +b32 —bf +\/(2b2 +b32 —bf)2 —4(b22 —bf)
W, =
]

. 11
5 (11)
arccos(h(w;)) . .
t —————— asthe root of Equation (8) with @ = w; , we have
[OR
]
arccos(h(w;
70 = ((’»+275n:QLm (12)
@ @
where
b,o.> —bb, —bb,w
h(w;) =~ 13
( J) b32a)j2 +b42 ( )
Then +tiw; are a pair of simple purely imaginary roots of Equation (8) with 7 = r}”) , and we have
*_ 20 = mindz @1 ) =
T =T = ',-TJJQ{TJ' ho = (14)

Then by the Butler’s Lemma, E” is unstable for 7 >7". On the other hand, if 7 <[0,7"), then Equation (7)
have no roots on the imaginary axis. Then Equation (7) for 7z [0,7"), only has negative real part roots, which
implies that E” is locally asymptotically stable for 7 <7".
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Theorem 3. If the system (1) satisfies the hypothesis (H1) (H2) and (H3), then the system (1) under-

goes Hopf bifurcationat E* when r=17".
Proof. The Hopf bifurcation will be proved if we can show that

sgn[Re(:—i)} ) > 0. (15)

=T

From Equation (7), we have

(d/lj e’ b,A% +2b,A+bb, —b,b, T (16)
dr y) (b,A+D,)? A
Substituting Equation (8) into Equation (16), we have
-1 At 2 _
sgn Re(d—lj _sgnRe e*" b4 +2b4/1+blb24 bb,
dr ). A (b; A +b,) A)_. a7

=sgn{b,‘@™® + 307D 0" +[ 20,7 ~b,b2)b,” +(b7b,” ~b, b )b’ | +[ (Bb,” ~b,’b,%) ~ 2b,,” .7}
Substituting Equation (14) into the above equation, we have
sgn [Re(d—ﬂ)} >0.
dr” ] _»

Therefore, the transversality condition is satisfied. Therefore Hopf bifurcation occursat 7 =17".

4. The Direction and Stability of the Hopf Bifurcation

In this section, we analyze the direction and stability of the Hopf bifurcation of (3) obtained in Theorem 3 by
taking ¢ as the bifurcation parameter.

Let w,=x,w,=Yy,y=7-7 , then y=0 is the Hopf bifurcation value of system (3). Rescale the time by
t=t/7z tonormalize the delay. The periodic solution of system (3) is equivalent to the solution of the following

system
* W t_l * *
dw —(7+T)[I’(W+X)(1—X _ 1( ))_a(Wl-FX)(WZj'y)
dt K K L+W, +X 18)
w, (t=1)+Xx")(w, +y*
aw, —2=(y+7")[(E+5W, +5Y") + b (t-1)+x)( 2 y )]
dt B+w, (t-1)+x
We define i,j,I as nonnegative integer, define f®(w,w,,h), @ (w,,h), @+ j+1=1), fP(j+1=1)
as follows
* * * i+l g @
10 o ) =+ ) - YD g ST CAD),
+W, + X W,
£ (wy, ) = —(E + ow, + ")+ 2OHOMe +Y) pr 0 19(0,0)
2 2 B+h+x 0 ow,’h'
Rewrite system (18) to
dw; 1
dt = (y + ) F5ow, + figw, + foGiw, (t-1)+ le mel w,'w' (t-1)],
i+j+l> .
(19)
dw. 1
T_(;/+ ) Pw, + 2w (t-1)+ ZZJTW w,' (t-1)],
j+=
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where
X" rx’ r X" apgy” 6bsy”
W=t B @ = 1 =1 | g A
K B+x k K (B+x) (B+x)
a 2a 2ap8y" 6agy” bgy*
fl(llg == ﬂ* 2! fz(llg) = ﬂ* 3! fz(é()J = IBy* 3! f3(01()) == ﬂy* 4 fo(lz) = ﬂy* 21 (20)
(ﬂ+x) (ﬂ+x) (,B+x) (ﬁ+x) (,B+x)
bx* b —2bpy* -2b
O =5+ 0 = B , £ = By - £ = )] -
B+X (,B+x*) (ﬂ+x) (ﬂ+x*)

We use the method which is based on the center manifold and normal form theory, and define C =C([0,1],R?).
Then the system (19) is transformed into a functional differential equation as
w(t) =L, (w)+ f (7. w), (21)

where w(t) = (w,(t),w,(t))" eR* and L, :C—>R? f:RxC—R? are respectively represented by
£ O 0 @O 0 -1
L;/ (¢) — (T* + 7) 100 0102 (¢1( )J"r (T* + 7) 0021 [¢l( )j' (22)
f.2 )\ #,(0) f2 0N\ A(D)

Z .,‘.”¢£(0)¢; 0 (-1
f(r.9)=( +») 1 : (23)
> 124 (0)4 (-1)

jl
jersa !

where ¢(0) = (¢,(9),4,(0)) e C. By the Riesz representation theorem, there exist a 2x2 matrix 7(0,7),
whose elements are of bounded variation functions such that

and

L¢ = ["[dn(6,)14(6), for p < C. (24)
In fact, we can choose
o[ T Tom o ffol 0
n0N=6 4| )" o JFOE N o150, (25)
where ¢ is the Dirac delta function. For ¢ e C*([-1,0],R?), we define
M, for 6 €[-1,0),
Ay)p=1 40 (26)
[Lldn(s,)14(s),  for 6=0,
and
for 6 €[-1,0),
"= {f( $)  foro=o. 1)
Thus system (21) is equivalent to
W(t) = A(y) (W) + R(7) (W), (28)
where w,(0) =w(t+8) for 0<[-1,0].
For w eC'([-1,0],(R?)"), define
- dy/(s)’ for s €[-1,0),
Ay (s) = ds (29)

Jil//(—t)dnT (t,0), for s=0,

@,
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and a bilinear inner product
(¥(9).60)) =790 - [ [ 7(& - 0)dn(@)p()d¢, (30)

where 7(0) =7(0,0). Then A(0) and A" are adjoint operators. From the discussion in Theorem 2, we know
that +iw'z  are eigenvalues of A(0) and therefore they are also eigenvalues of A”.
Suppose q(6) = (q,,0,) € ¢ is the eigenvector of A(0) corresponding to iw'z . Thus, A(0)q(6)=

iw 7 q(d) . From the definition of A(0) we have
flEJlg + fo%ieiim*r* -’ fO(llg [ql j =0
f et £ o' \%

£+ fie ™ —iw" ;0
4(0) = -2 e, (31)

010

Then we have

Similarly, let q*(s):M(ql*,q;)e“”*T*S be the eigenvector of A" corresponding to —iw'z". Then by

EE

A'q*(s)=—iw'z’q"(s) and the definition of A", we obtain

@ ;= (NPT (2) i7" *
oo Hi@ + e fo'e [ql ] _0

1 2) i o= *

1Ay £ +iw" )\ 0,

@) e
0 =M™ (z)ffioi po Ll (32)
10

Therefore

In order to ensure, we need to determine the value of M , from Equation (29) we have

(a().(0)) =T (@a©) - [ [T (¢ -)dn(®)a(£)dé
MG, (g, +7°e™" (fiild, +00,)) + MT; (0, +7'e™" (£, +00,)) (33)
= M (@0 + 0, + 6T foolee ™+, fir'e ™).

Then we can choose M such as

M = 1 (34)

o+ 0,0, + (@ f + T o) 'e ™
where M is the conjugate complex number of M .

Next we will compute the coordinate to describe the center manifold C, at y =0. Let w, be the solution
of Equation (27) when y =0 . Define

2(0)=(a",w ), W(t,0) =w,(0)-2Re{z(t)q(0)}- (35)
On the center manifold C,, we have W (t,8) =W (z(t),z(t),6), where

2 52

- z _ 4
W (2(1) Z(1), 0) =Wo () —-+Wa, (6)2Z + Wy (0) —-+ -+, (36)
z and 7 are local coordinates for the center manifold C, in the direction of q and q_ Note that W is

real if w, is real. We only concern with the real solutions. For solution w, € C, of Equation (27), since y =0
and Equation (35), we have

2()= (T W) =i0'r'z +q°(0) F(O,W (2,Z,0) + 2Re{zq(0)}) 2 iw'r"2+q (0) f (2, 7). (37)
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We rewrite above equation as
) =iw'c"z+9(z,7), (38)

where

72 =2 =2
Z

71°7
9(z,7)=q (O)f (z,2)= gzo +g1122+goz 5 tOu—+ (39)

2
From Equation (35) and Equation (36), we obtain that

z° _ z° _
o, (0) =W (t,0)+2Re{z(t)q(0)} =W, (9)?+W11(0) 27 +W,, (.9)?+ 20+70 +- -
(40)
ZZ — 72 io' ™ = = 0T 0=
=W,, (0)?+W11(6)zz +W,, (49)7+(q1,q2 ) ez +(q,T,) e 0T+
Substituting Equation (23) and Equation (40) into Equation (39), we have
— — P |IJII| Ty i e (1)

90(2.2)=q (0),(z2) =" ) fy(z.0) =M 7" (5,5, )| '™ _ @

3w (-

j+I1=2

= p,2° + p,2Z + p,Z° + p,2°Z + hot.,
where h.ot. stands for higher order terms, and
—io*c* =k —iw*r" 1 ~2iw"r*
P =Mz '[(f5q, + fe fz%g) +0, (f,Pq,e +E fie 7)),
P, =Mz [f9(q,+T,)+ £ (e"”’ e+ (D Mg P @ + e )+ £2],

o' N A = jio T 1 iw'c*
P = Mz (fl(llg flgl)e Py fz%r)J) +M77G, (f (Z)qz E fo(ZZ)e2 ),

— 1 _ 1
P4 =Mz [fl(llg (_Wz(ol) (O)qz +W1(11) (O)qz +W1(12) (O) +_W11(‘9)) fz(olg (1) (0) 2W1(11) (O)) s f o

300
+ fiod (—Wz%)(O)e'”’ AW 0™ HW (D) + W“)( 1))+—f2(1%(q2+2qz)]
NGO WS O+ 0 +WP (-1)q, + WP ()
+%f(2)(\N“’( 1)e‘w*f"+2vv1<11>(—1)e-‘w*f*)+%f1<2>(— e +2q2)+—f0<;>e-"”]

Comparing Equation (39) and Equation (41), we get
920 =2P1, 011 = P2 Yop = 2P3: 951 = 2P, (42)

Since g,, dependson W,,(¢) and W, (&), we need to find the values of W,,(¢) and W,,(&). From Equ-
ation (21) and Equation (35), we have

W= Vi, - 20 -7 = AW =2Re (T (0) ()} _1£6<0'3AW+H(z70) (43)
‘ AW —2Re{T"(0) f,(6)} + f,, 0=0, T

where
2 =52

H(zj,@)zH20%+Hllzi+H02%+-~. (44)

From Equation (36), we have

@
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W=W,2(t)+W,Z(t)

= (W (0) 2+ W,y (0)Z +-) (i0'7 2(t) + 9 (2,7)) +(Wyy (0) 2+ Wp, (0) 7 +-+-) (-l 'rZ (1) + T(2,7) ). (#9)
It follows from Equation (39) that
= A(0) Wy (6 ) +W11(9)Z?+Woz(‘9)i+”')+Hzo(9)2_2+H11(€)Z?+H02(9)T_2+"’
2 2 2 (46)

7 _ 7’
= (A(0)Wy (6)+Hyy (9))?+(A(O)Wﬂ(9)+ Hy1(0))ZZ+( A(0)Wy, (6)+ Ho, (9))?+
Comparing the coefficients of z* and zz from Equation (45) and Equation (46), we get
(A(0) = 2iw't 1 )Wy (6) = —Hy, (6), AW, (6) = —Hy,(6). (47)
Then for 6 <[0,1], we have

H(2,7,60) = -3°(0) 1,(6) - 4" (0) {,a(6) = —9(2,2)a(6) - 3(2, 2)q(0)
2 72 72 72 (48)
= (O S+ 0T+ Gy - )U(O) = G+ G + T+

Comparing the coefficients of z* and zZ between Equation (44) and Equation (48), we get

H 20 (‘9) = _gon(g) - gozq(e)y H11 (9) =-0ud (‘9) - guq_(a)- (49)
From the definition of A(9) and Equation (49), we have
W (0) = 2ie"r Wa(0) + 800(0) + TonT (6)- (50)

Since () = (q,,9,)" ", we obtain
_ igzo i'c" 0 igoz — P 2in*c* 0
W, (0) =—==-a(0)e +-—,-0q(0)e +Ee ) (51)
oT 3ot

where E, =(E®,E{?)" is a constant vector. Similarly, we have

W, (0) = ;'g q(0)e" " +%a(0)e*“"f*9 +E, (52)

where E, = (EL’,E?)" is a constant vector. Now, we shall find the values of E, and E,. From the defini-
tion of A(0) and Equation (50), we have

[° dn(OM,5(6) = 2"t W, (0) ~ Ho (0), (53)
and
[° dn(@,,(6) = —H,,(0), (54)
where 7(8) =1r(6,0) . In view of Equation (43), we induce that when 6 =0.
H(z,7,0)-2Re{q"(0) f,a(0)}+ f, =-9(z,7)q(0) - g(z,2)q(0) + f,. (55)
Then we have
7’ 72 7’ 7° 7’ 7°
Hzo?+ H,zZ+H,— 2 (gzo +0,,2Z + goz—+ 2q(0)- (g20 +0,2Z + 902—+ 27(0) + f,. (56)
Comparing both sides of Equation (56), we obtain
Hao = =0500(0) ~ 0,0(0) + 22" (Hy, H,)', Hy, =-0,,0(0) - 8,,G(0) + 2" (R, B,)", (57)
where H =(H,,H,)" and P=(P,P,)" are respectively the coefficients of z* and zz of f,(z,Z). Thus

we have
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—
f(l) + f(l)e-lw A (3] L _ D iwt e "
| ke (18w e e )+ 1
H= 1 P= . .. , (58)
Lo o @) (7 o i (2)
fPq.e'" += fPe?r fi (@™ " +0," " )+
2

Lok
ot

where ®=e"" +e
Since iw'z" isthe eigenvalue of A(0) and q(0) is the corresponding eigenvector, we get

(i0'c'1 - [ e dy(6)q(0) = O, (59)
(iw'z'l - [ e dn (6))d (0) = 0. (60)
Therefore, substituting Equation (53) and Equation (59) into Equation (60), we have
(2io' 71 - [ €™ *dp(6))E, = 2r°H, (61)
that is
H'E, = 2H, (62)
where
. [zw_ - e gl ] -
19 2iw’ — 12

Thus E® :%, A=Det(H"), and A, is the value of the determinant U,, where U, is formed by re-

placing the i th column vector of H” by another column vector (H,,H,)" for i=12. Ina similar way, we
have

P'E, = 2P, (64)

where

@) (2)
- fmo - f10

p* — (_ flgg - fo(oli - fo(lz) ] (65)

y 24, . . - . .
Thus EY :T' where A=Det(P) and A, is the value of the determinant V, that is formed by re-

placing the i th column vector of P* by another column vector (P,P,)" for i=12. Therefore, we can de-
termine W,,(0) and W, (9) from Equation (51) and Equation (52). Furthermore, we can easily compute g, .

Then the Hopf bifurcating periodic solutions of system (1) at 7~ on the center manifold are determined by
the following formulas

. 2
i g
Cl(O)ZW(Q11920—2|911|2—%)+%, V, =—

Re{C,(0)}

Re( (=)} -

-Im{C, O} +v, I ()

%
T O

B, = 2Re{C,(0)}, T,

Here v, determines the direction of Hopf bifurcation. If v, >0(v, <0), then the Hopf-bifurcation is for-
ward(backward) and the bifurcating periodic solutions exist for ¢ >¢"(r <7’). Again S, determines the sta-
bility of the bifurcating periodic solutions. The bifurcating periodic solutions are stable (unstable) if 5, <0(f5, >0) .
T, determines the period of periodic solutions: the period increases (decreases) if T, >0(T, <0). Therefore,

we have the following results.
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Theorem 4. The Hopf bifurcation of the system (1) occurring at E* when z=7"is forward (backward) if
v, >0(v, <0) and the bifurcating periodic solutions on the center manifold are stable (unstable) if

Re{C, (0)}< 0(> 0).

5. Conclusion

This paper introduces modified time-delay predator- prey model. Then we study the Hopf bifurcation and the
stability of the system. Our results reveal the conditions on the parameters so that the periodic solutions exist
surrounding the interior equilibrium point. It shows that 7 is a critical value for the time delay z . Further-
more, the direction of Hopf bifurcation and the stability of bifurcated periodic solutions are investigated.
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