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Abstract

A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé
and some exact solutions are discussed. The Backlund transformation and bilinear equations are
obtained through Painlevé analysis. Some exact solutions are deduced by Hirota method and ge-
neralized Wronskian method.
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1. Introduction

Recently high dimensional nonlinear partial differential or difference equations attract much interest. Both inte-
grable and non-integrable equations have their physical and mathematical values but the former posses some
special properties such as infinite conservation laws and symmetries, multi-soliton solutions, B&cklund and
Darboux transformation (c.f. [1]-[3]). Among these high dimensional equations some are deduced from physics
phenomenon originally, say KP equation, but others are deduced firstly from (1 + 1) dimensional equation
mathematically ([4]-[8]). However, the findings of new solutions or special constructions of these equations
makes nonlinearity of equations be realized clearly, which helps the development of subject of nonlinear science.
In this paper we will consider a (2 + 1) dimensional KdV-mKdV equation as follows

U, + Uy, +4uu, —4u’u, +2u,0,'u, - 2uxa;1(u2)y -0, (1)
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2
where subscript means a partial derivative suchas u, = a—u,uxy _ou
ot Oxoy
that if y=x the equation becomes a mixed KdV-mKdV equation, which is widely researched by many
authors (see [7]-[10]). The related negative KdV equation and (2 + 1)-dimensional KdV equation were also

discussed by several authors (c.f. [11]-[14]). Now we set

and o7u= J'_qu(x, y,t)dx. It is obvious

Vv, =u, —2uu, (2)
to treat the integral appearing in equation. The Equation (1) is then rewritten as
Uy + Uy, +4uu, —4u’u, +2u,v =0. A3)
We will prove it has Painlevé property firstly, then deduce a Backlund transformation and bilinear equation.
Using bilinear equation we can construct Wronskian solutions and present some exact solutions finally.
2. Painlevé Test

Painlevé analysis method is an important method for testing integrability [15]-[19]. As we know, the basic
Painlevé test consists of the following steps (taking (1 + 1) dimensional case as an example) [15] [19].
Step 1. Expanding the solution of a PDE as Laurent series of a singular manifold

u= ¢#§uj¢11

where 4 <0 is constant to be determined and coefficients u; =u; (x,t). Then substitute it into PDE to find
all dominant balances.

Step 2. If all exponents u are integers, find the resonances where arbitrary constants can appear.

Step 3. If all resonances are integers, check the resonance conditions in each Laurent expansion.

Conclusion. If no obstruction is found in Steps 1 - 3 for every dominant balances, then the Painlevé test is

satisfied.
The situation of high dimensional case is similar. For step 1, we can simply let
U = Uy V= V. (4)
Substituting them into (2, 3) gives us
u=-1Lv=-2u,=€ed v, =44, )
where e==1. Thus
u =iuj¢j‘l,v=ivj¢j‘2. (6)
i=0 i=0
Insert them into (2, 3) and equal coefficients of both side of ¢~ in(3), ¢ in (2) we have
8¢, 0,U, — 2¢47v, = Agp, — 24,9, — 4ed b9, O]
2¢4,8, U + BN, = €9, B, + BBy — Bod,- ®)
From them we work out
u1=%—2¢;:,v1=¢xy. 9)

To get resonances we collect the coefficient of ¢"* in (3), ¢"° in (2) for general term number r respec-
tively, we have

4(r=3)ugp,u, —2(r —1)veu, —(r=1)(r —2)(r -3) g4, u, + 2u, 4V, = F, (10)
(r - 2)(2u0¢yur +¢xvr) = G! (11)
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where F, G are functions of ¢,u,,v, (i < r) and their derivatives. This gives the resonances r =-1,2,3,4, and
r =—1 means the singular manifold ¢ =0.

Now we proceed to verify the resonance conditions. First we consider r=2. For this purpose we extract
¢ in(3) and set it be zero. We readily have

_2¢x2¢yu2 + 2€¢x2v2 = _6¢x¢y _6¢x¢xy + 6¢xx¢xy _€¢x¢t' (12)
or equivalently
4 4 14
=—y %~ P , 13
T T2g 24 2lg, ), &
The partof ¢ in(2) gives
Ugy (1-2u) —2uqu, —v;, =0 (14)

and it is true by employing u,,v,,i =0,1 obtained above. This result shows that an arbitrary appears in reso-
nance r =2, i.e. resonance condition is satisfied. Further, we verify resonance condition for r=3. Collecting
the terms of ¢ in (3) reads

24, (2vu; —UgVs )+ A=0, (15)
where
A=-2¢ (3¢xyu2 +2¢,U,, + @, ) + 2Ug, V, —8UgUyUy, — AUy U7+ 2Uy, v, + 4(UgUy ), + Ugg +Upyy-
In a similar way, collecting the terms of ¢° in (2) makes us have
—2Uop Uy — Vs +B =0, (16)
where
B = —2uyd,u,u, + ¢ U, —2Uy U, — 2UgUy, + Uy, — 2U Uy, — Vs,

we need to verify

-A _2¢xu0 _ 4¢XV0 -A _
-B -9 -2¢u, -B
. . 4¢XVO _2¢xu0 . . . .
because r =3 is a resonance, i.e. 260 p =0. By inserting (13) into and through a dull calculation
=%yt —Px

we can complete the proof of compatible condition. It is a turn to consider u,,v, which emerge from ¢° in (3)
and ¢' in(2). They are

—44i g, — 24V, +S =0, 7
where
S = 6¢, B, Us + 26, Us, — 265U, + 2€ B, V5 + B U, —Ae B Uz —%uz +2¢,U,V, +2U,V,
+5¢, Uy, + 5@, U, +GU, + 4 Uy, + G Uy, + 26Uy, —AUUL + AU U, + Uy + Uy,
and
e p U, +243,+T =0, (18)
where
T= —25Mu3 +2e¢ Uy + 26Uy, +Vy, + 2¢yu22 +2u,,U, +2u,U,, —U,,.
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Its resonance condition is verified similarly but is more complex. Thus we prove that (2 + 1) dimensional
KdV-mKdV equation passes Painlevé test.
Now we consider to truncate the series (6). To meet this end we must let u; =0, j=2,3,---;v; =0, j=3,4,--.

Thus we will have

u v, V,
u:zo+ul,v:¢—g+g1+v2 (19)
and combine the equation satisfied by ¢ we obtain a Bécklund transformation actually. In fact, if we take

u, =0 then (13) gives
v, _ % 4 1| (20)

20, 24, 2 ¢, ),
Furthermore, If we continue to set u, =v, =0 we get following relations from (15, 16)
2Uy,V, —8UgUy Uy, — AU U + 2V, + 4(UgUy ), +Ugy +Ugyy =0, (21)
and

Vo = Uy, — 204U, . (22)

The condition u, =v, =0 produces another identity
2U,,V, — AUfu; + AU, + Uy, +Uy, =0, (23)

Using (20)-(23) we may truncate the series. Thus we indeed get a Backlund transformation by noting (22, 23).
But it is more important pointing that the identities (20)-(23) have only two independent expressions, say (22,
23). Applying the definition of Schwartzian derivative

P 30
(0ix) = 2( ]

22 &
we simplify them as a concise form, i.e. so called Schwartzian derivative equation
4o A 9o (24)
dxl g ¢ ) dt

It is the condition satisfied by function ¢ in Bé&cklund transformation (19).

3. Hirota Method for Finding Exact Solutions

In this section we will give the bilinear equation of Equation (1) and present some exact solutions from it. The
truncation form (19) suggests us to try the transformation

1
u=5+e|n(%l. (25)
We first take an integral with respect to x on Equation (1). Then eliminate the remaining integral operator by
setting
Dig-f =0, (26)
where D is bilinear operator. Thus we can transfer Equation (1) into
(D}D,+D,+D,)g-f =0. (27)

Equations (26, 27) are bilinear equations of (1). To find its solutions we set g = f" further, where * means
complex conjugation. Expanding f as perturbation series

f=1+fe+ fe?+ e+, (28)
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and substituting it into bilinear equations, equaling coefficients of power of ¢ vyields

1:lxx + flxx = O (29)
i+ fiy + oy = (i + oy + fry ) = 0. (30)

Take
f, :egﬁiil &= k1X+|1y+a)1t+§1(0), (31)

where i=+-1 and kl,ll,a)l,fl(o) are all real constants (the similar condition will be imposed on later text but
omitting), we know the relation immediately

—(L1+ k)1, (32)
The coefficient of &° can take as zero according to this result. So we get a single solution solution as
follows
- %-%ﬁé (33)
If we take
f,=eftin? Lot iW2 £ _kxily+at+E?, (34)
then after substituting it into (29, 30) we know relations
—(1+KZ ) i=12 (35)
are valid. Again compare coefficient of &2, we have
g f, +f, =-DXf -f, (36)
fot Toy+ Tooy =(Tor + foy + fy ) =—(D} + D+ D, ) £, 1. (37)
When employing (34),
X, 2
f, = Ae® 2 A = [k T ] (38)
are obtained. After that we consider coefficient of &°
&% Ayt Ty =—D7 (f, - f+ £ 1), (39)
oo+ fay + Topy =(for + foy + oy ) =—(DID, + D+ D, )(f, - f,+ - 1,). (40)

The r.h.s is computed to zero. Thus we may truncate the perturbation series and 2-soliton solution is got as

i & i & & +&p +in
u=l+g In1 le” e + Age . (41)
2 L+ie? +ie + A 172" |

Further, keeping these results in mind we can conjecture the N-soliton solution taking on

1 f*
=—+¢|In— 1|, 42
u 2+e(n fl (42)

where f =)’ exp[Zy (5 +|—j D i .,] and &% = A, :(It::zjj .

#=0,1 i=1 1<i<j<N
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4. Wronskian Solutions

Wronskian technique is one of the powerful methods in finding exact solutions of nonlinear integrable evolution
equation [20] [21]. It can be used to solve whole integrable evolution equation hierarchy (c.f. [22] [23]) and its
application had been extended to negative nonlinear evolution equation (c.f. [23] [24]), high dimensional
nonlinear evolution equation [25], etc. The generalization of this method can obtain several types of exact
solutions (c.f. [26] [27]). Here we use the Nimmo's brief notation to denote Wronskia determinants:

IN|=W (¢.0,0,++,0"0),
N =W (0,0.5%0,,02 "),
|—1, N| =W (a;lrﬂ,@xwr"ﬁ?ﬁ”)’
and

NT1]=w (p.32p..0)"),
where ¢ = (¢1x¢2v"'v¢’N+l)T and
W (p,0,0.+,0)p) = det(p,0,0,---,0)'p).

Supposing that vectors ¢ =(g,,@,,+,¢y.,)  satisfies the following conditions

2

A . . .
Ou =00y = N0 0 =g =0y, 9 = 2R, (43)

where A is a non-singular real constant (N +1)><(N +1) matrix. We will prove that f :‘N‘ is the solution of

bilinear Equations (26) and (27). We first point out that in this situation, g = f* can be expressed by related
Wronskia determinant:

g=K[NF1, K=(=20)"" 4™
To get down to our work we need the help of two Lemmas, we list out them first.

Lemma 1 ([26] [27]) Assuming that M is a nx(n —2) matrix and a,b,c,d are n-dimensional vectors, then
the following determinantal identity is valid:

|Mab||Mcd | —|Mac||Mbd | +|Mad||Mbc| = 0.

Lemma 2 ([23] [24]) Assuming P isa nxn matrix, £,p,,---,/, arethe columns of another nxn matrix,
then we have the following foluma

(0P) BB o] = S| B PB, oo
j=1

We first treat bilinear Equations (26). Computing derivatives of Wronskians f,g and substituting them into

(26) yields
Dig- f :KUN‘\(\NTLN+1,N+2\+|N“,N+3|)—2‘|\T?1,N+1HN,N+2| ”
+(‘I\I/—\2,N,N+].‘+‘I\I/—\1,N+2‘)‘m]
When apply Lemma 2 into Wronskians f,g  we get an identity as follows
O:KDNMN\—/LN+1,N+2‘—|I\~I,N+3|)+(—‘N/—\1,N,N+].‘+‘i\l/—\l,N+2‘)‘N\+/l‘}. (45)

Then adding it to (44) gives us
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Dfg- f = 2K{|N|[N=1 N +1,N +2 [N =L N+1[|N,N+2[+|N =1, N +2[[N 1)), (46)

which equals zero by using Lemma 1. Now we can focus our attention on the bilinear Equation (27). We also
calculate the derivative of Wronskians f,g prior to carrying out our procedure. For example, we have

f, =%(‘—1,W—’1,N +1+[N]), 9, =§(‘N_—1,N +1,N+2/+[N,N +3+2|N,N +2|).

Then (Dny +D, + Dy)g -f becomes as

%[(‘N_—l,N LN+ 2]+ [N N +3+3]N,N +2))| N <N+ -1 N=2,N N+

+H-LN=LN +2‘+3‘N/?1, N +]{)—(‘N71 N+LN +2|+[N,N +3|)|—1,N| (47)
+(‘i\T—\2,N,N +1HN/—\1,N +2‘)‘N_+1‘—2|N,N +2”N/—\1,N +].‘+2|N,N +2|FLN=LN +1”

Again using Lemma 2, we produce two identities as follows:

Ozg[—(‘N_—l,N +1,N +2‘—|I\_I,N +3|)‘IQ‘+‘N_H.‘(‘N/—\2,N,N +]HN/—\1,N +2m, (48)

0 =§[—‘NT1‘(‘—1, N=2,N,N+1-[-L N=L N +2])+([N=LN 1 N +2|- [N, N +3]) -1, NH (49)
The substitution of (48, 49) into (47) yields
(D;D,+D,+D,)g- f
:§[2(‘N_—1 N+1 N +2“N‘+‘N_H.“N/jl, N +2‘—|N, N +2”N/—\1, N +].‘)

+2(—|N, N +3-1 N|| —‘N\le—l, N-2,N,N +4+|N, N +2H—1, N_-1N +4) 0

+3{|N, N+ 2[R [N+ [N =2 N +Jm
To vanish r.h.s of this equation we apply Lemma 1 again, which give us a valuable identity
IN=LN+1 N+ 2||N[+[NFZ[N=L N +2-[N,N +2[N=L N +1[ =0,
Multiply K = det(—ZiA’l) to this identity we work out another relation as follows:
~|N N +3[|-L N| = [NF1|-L N=2,N, N +2 [N, N + 2| -L N =1L N +1 =0.
It is because of
det(~2iA" )N -,N +1 N +2|N| =|-LN=2,N,N +1 | =(\—1, N=2,N,N +1HN‘)
~ (det(~2iA)[-LN=2,N,N +1Hm)
In a same way, we deduce
NN+ 2f|N| =[N [N =1 N+ =

Thus we complete the proof that (D;D, + D, +D, )g- f =0.

Now we present some exact solutions as examples. Firstly, we may write out the expression of spectral vector
Q:

¢ =e2"C e, (51)
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where C,D are two real constant vectors and
-1 -1
Q(x,y,t):§x+—y—[A—+é]t+i%I, (52)

where | is (N +1)><(N +1) unit matrix. If we choose A as diagonal matrix then soliton solutions of equation (1)
can be got again. In fact, supposing

A:diag(ﬂl,ﬂg:"',%u): Ahy Ay %0,

and
.
C =211 D=(-1L(-1)"")
then spectral vector ¢ adopts the following formula

T
- - N+l _
¢:(e§1_e 51,652 +e 52’,,_,efN+1 +(_1) + e §N+1) ’

& Ae iy (A A 1 N
=t x+ Ly L+ t+i—, j=12,---,N +1.
RS R R LR

The solutions given by (25) are solitons solutions in this situation. In fact, when N =0, it is exactly the
solution (33). When consider N =1, we compute out

f =24,sinh & sinh &, —24, cosh & coshé,, g =§Alﬂ?(ﬂz cosh& cosh&, — 4 sinh & sinh &, ).

This gives the same solution as (41) or simplified form:

u=%+i€(ﬂi+/12) ﬂ?cosh2§1+ﬂ1C25h2<§z CE=e-ilj=12 (53)
(%_ﬂ?)sinhz(gﬁ+§2)+(2ttj cosh®(&-&,)

which is a two-soliton solution. We can also take into account other solutions. For instance, let

s 2y o)

Thenwe find Q(x,y,t) in this situation:

Q(x,y,t)=n+§a+i%|, (54)
ey 1 Byt
n_z{a(x t)+a2+ﬂ2},§—2{ﬂ(x t) a2+ﬂ2}' (55)

Taking C=D= (1,0)T , the spectral vector is got then:

.
Q= (ZCOSh (n+igjcos§,25inh (n+i%jsin ;j .
The correspondent solution of Equation (1) is

Asinh 2(n+i2)—asin 20

Uu==+¢lIn

, (56)
psinh 2(77+ iZ]Jrasin 24

X

or simplified form



Y. Q. Liuetal.

pcosh2ncos2¢ —asinh2nsin2¢
B?cosh?2n+a’sin®2¢ '
This is known as a complexiton solution (c.f. [26]).

u= %+ dicaf (57)

5. Conclusion

Utilizing Painlevé test we prove the integrability of a (2 + 1) dimensional KdV-mKdV equation in the sense of
Painlevé. And in the mean time a Bécklund transformation is produced. Through bilinear equation we get
several exact solutions by Hirota method and generalized Wronskian method. Some explicit formulas of exact
solutions are obtained. Particularly, 2-soliton solution and complexiton solutions are presented as examples.
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