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Abstract

Many researchers have discussed zero-inflated univariate distributions. These univariate models are not
suitable, for modeling events that involve different types of counts or defects. To model several types of de-
fects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorpo-
rate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article,
we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the
parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson
Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series
distribution is also discussed.

Keywords: Bivariate Zero-Inflated Power Series Distribution, Bivariate Zero-Inflated Poisson Distribution,

K-Variate Zero-Inflated Power Series Distribution

1. Introduction

In a manufacturing process there may exist several types
of (say m) defects—for example, solder short circuits,
solder voids, absence of solder etc. on one printed circuit
board. These defects cause different types of product
failure and generate different types of equipment prob-
lems. In the above example there can be only one type of
defect which occurs more frequently and the other de-
fects occurs very rarely. Another situation could be both
types of defects occur rarely and so on. To model several
types of defects, multivariate Poisson model is one of the
appropriate models to use. This can further be modified
to incorporate inflation at zero and we can have multi-
variate zero-inflated Poisson (MZIP) distribution. There
are several ways to construct MZIP distributions. In the
literature, Chin-Shang et al. [1] have discussed various
types of MZIP models and investigated their distribu-
tional properties. Deshmukh and Kasture [2] have stud-
ied bivariate distribution with truncated Poisson marginal
distributions. Gupta et al. [3] have considered inflated
distributions at the point zero and studied the structural
properties of the inflated distribution. Gupta et al. [4]
have discussed score test for zero-inflated generalized
Poisson regression model. Holgate [5] described the es-
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timation of covariance parameter of bivariate Poisson
distribution by iterative method. Lambert [6] considered
zero-inflated Poisson regression model. Laxminarayana
et al. [7] have studied bivariate Poisson distribution and
the distributional properties of the model. Patil and
Shirke [8] studied testing parameter of the power series
distribution of a zero-inflated power series model. Patil
and Shirke [9] also studied equality of inflation parame-
ters of two zero-inflated power series distributions. It
appears that majority of the study in the literature is re-
stricted to Poisson distribution and its extension to mul-
tivariate set up. Relatively less has been reported for the
family of distributions containing other distributions.

In this article, we introduce a new Bivariate Zero-In-
flated Power Series Distribution (BZIPSD) and discuss
inference related to the parameters involved in the same.
The rest of the paper is organized as follows. Section 2,
introduces the BZIPSD along with moments of the same.
Section 3, deals with inference related to the parameters
involved in the BZIPSD. In Section 4, we discuss infer-
ence related to Bivariate Zero-Inflated Poisson Distribu-
tion (BZIPD). The data set reported by Arbous and Ker-
rich [10] is modeled by Bivariate Zero Inflated Poisson
Distribution. The paper concludes with generalization to
multivariate setup.
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2. Bivariate Zero-Inflated Power Series
Distribution

Let X and Y be two random variables with probabil-
ity mass functions

a(x)e* b
R(X»@):f(—) and P,(y,0,)=—"—-

X, yeT.
where T is the common supportof X and Y, 6 >0,
6,>0, a(), b()>0 f(6)=>a(x)g",

f,(6,)=>.b(y)6,".

Define,
Px,v (X, y,HI,HZ,a): Pl(x,HI)Pz(y,Hz)

<[ 1+a(9,(x)-E(0,(X)))(9: (¥) - E(9:(Y)))]

where, g,(x) and g,(y) are bounded function on R*.

,(2.1)

We note that Py (X, y,6,,0,,c) is a proper bivariate

distribution for a suitable choice of « € R . Based on the
distribution (2.1), in the following we introduce three
types of BZIPSD.

Type-1 BZIPSD: When there is an inflation only at

(x, y)' = (0,0)' , we define the BZIPSD as

1-n)+7P, (0,0,6,6,,@), (xy) =(0,0),0<n<l
Pty 0a)=] ) (00.080) ,( Y) ,( ) < 22)
Py (%Y,1.6,6,.a), (%y) #(0,0)
Type-11 BZIPSD: When there is inflation at X component only, we define the BZIPSD as
1-7n)+7P,, (0,Y,6,6,,a), (xy) =(0,0),0<n<l
Pyl tpa)=] T (O%AOa) (Y] =(00),0<x 23)
Py (XY, m,6,60,,a), (xy) #(0,0)
Type-111 BZIPSD: When there is inflation at Y - component only, we define the BZIPSD as
P (X Y, 0,,01.0t) = (1-m)+7P, (x,0,6,,6,,), (xy) =x(0,0), x=0,1,2,-
7.(:PX,Y (Xayannglﬂgzaa)a X=0,1,2,"‘,y:1,2,3,"‘ (24)
O<m<l1
In the present discussion we focus only on Type-IBZIPSD, Moment Generating Function
results on the remaining two can be obtained analogously. The moment generating function of (X,Y) is
MX!Y (t],tz):E(enX+t2Y)
M XY (tl’tZ) (2.5
:1—n+n{M1(tl)Mz(tz)Jra{{E[et]xgl(X)]—Ml(tl)E[gl(X)}}{E[etzng(Y)]—Mz(tZ)E[gz(Y)}}}}
Therefore, we have Suppose f/(#) and /(@) denote M and
M, (t) =M, (t.0) St 06
:1—n+n{Ml(t,)} 2.6) %2) respectively for j=1,2. This gives us
M, (t,) =My, (0.t ' :
Y(Z) X’Y( 2) E(X)zl\/l' (0):”‘91f1(91)
=l-n+n{M,(t,)} X f,(6))
where M, (t,) and M, (t,) are the moment generat- 0.5/ (0
ing functignslof randonr v;riables X and Y of zero- E(Y): MY’( ):#()2)
2 2

inflated power series distribution and M, (t;) and
M, (tz) are the moment generating functions of random
variables having power series distribution with parame-
ters 6 and 6, respectively.
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Var (x)= - «zntam(a)—%J
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70,

f,(6,)

and the correlation coefficient is

{Hz f2”(02)+ le(ez)_M ]

f,(6,)

>

[fl(@/e)_ fi(6/e) f{(ﬁl)J[ f,(6/e) _f(6./¢) fz'(ﬁz)j
f, (6 f, (@
pea f(ae)l% ] e (8) € :(6) @
AR ; : 6,16, ] , 6,1,(6,)
\/{HI f1(91)+ f, (01)_nf((9))]\/[62 f, ('92)"' f, ('92)_nf(é))]
3. Estimation of the Parameters of BZIPSD n, 7P, (0,0,6.6,.)
be a random sample ob- (1-m)+nPy (0,0.6,.6,.) (3.6)

Let (X,,Y;)i=123,-,n
served from BZIPSD (m,6,,60,,a). The likelihood
function for the observed random sample is given by.

L(m.6,.6,.:%, )
1-a

“T1((1-)+ 7Py (0.0,6,0,.2)) G.1)

i=1
x(nPXY (xi,yi,Hl,Hz,a))a'

where a =1 if (x,y;)#(0,0)and a =0 otherwise.
The corresponding log likelihood function is given by,

log L(nnelneba;zazn)
=n, log((1-m)+nP, (0,0,6,.6,,a)) 3.2)

n n
+y alogm+Y alogP, (X,Y;.6.6,,a)
i=1 i=1

alOgL:(),alOgL:(),mOgL:() and alogL:
on 06, 00, oa
give the following equations.

0

n
ny Py (0,0.6,,6,,a)~1) 5 &
(I—m)+7P, , (0,0,6,,6,,)

=0 (3.3)

n,aP, , (0,0,6,,6,,a)
(1-m)+ 7P, (0,0,6,,6,,a)

3 a P(g‘)x,y(xisyi’@’aﬂa) =0
T Py (%.Y1,60,.0,,)

(3.4)

n,wP'*), | (0,0,6,,6,,a)
(1-m)+ 7P, ,(0,0,6,,6,,@)

n a P(HZ)X,\((Xi’yiﬁelﬁezaa)
1 I PX,Y(Xi’yiﬂglﬂezaa)

3.5)

+
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. a P(a)x,v (%, Yi:6,,60,,2) ~0
1 I P)(’\( (Xi’yiaglagzaa)
(@) 0

where P/, () denote FY Py ()

Solving Equations (3.3) to (3.6) simultaneously we get
maximum likelihood estimators of the desired four pa-
rameters. We note that all the four likelihood equations
are non-linear in nature and do not have closed form so-

lution. Now, we discuss a particular case of BZIPSD
namely BZIPD.

4. Bivariate Zero-Inflated Poisson
Distribution

Let us set a(x):(x!)'l, b(y):(y!)’l, g,(x)=e",
9,(y)=e”, f(6)=e*,1,(6,)=e" in the model

(2.1). Then we get BZIPD with probability mass func-
tion.

P(X=xY=Y)
(1—1’[)+7‘ce_(91+92)(1+a(1_e—910)(1_e—920))’

(x.y) =(0.0)
= ne—(ﬁwez)elxazy (4. 1)

a1 (1+a(e’x—e‘“°)(e’y—e‘92°)),

() =(0.0)
where ¢=1-(1/e)

The moment generating function of (X,Y) is

—lonend Y 6P x,0, P, (y,0
55 R (AR (101) )

(1 (0, ()~ E (9, (X))-(9: (1) ~E (5. (Y))
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It is clear from the expressions of moment generating
functions of X and Y that the marginal distributions
of X and Y are univariate zero-inflated power series dis-
tributions with parameters (m,6,) and (m,6,) respec-
tively. Further we have

E(X)=n6, and E(Y)=n6,
Var(X)=n6,(1+6 (1-m))
and Var (Y ) ==, (1+6,(1-m))
The correlation coefficient is turns out to be

~ ac’,[6,6,e 4% 43)

\/(1+(1—n)(91 +0,)+(1-7)" 66,
Remark 1: When there is no inflation (m =
9192 e—(€1+:92)c’

which coincides with the correlation coefficient given by
Laxminarayan et al. [8]
Remark 2: If we choose ¢(.) to be any other suit-

1), the cor-

relation coefficient p is given by p = ac’

1ogL(n,91,92,a;5,z)=no1og{(1—n)+ne*(“"*"2)(1+a(1—e*"'°)( "))} Za log(n)—gai (6,+6,)

log(x, !)—Zn:ai log(y, !)+Zn:ai log(l+0¢(e'Xi —e'glc)(e'

n

+§a log(6)+ zay,log( )-Ya

The mles of the parameters can be obtained by solving
dlogL OloglL 6logL_0 and

equations Z-2=_, =0,
q on 0 06, 06,

no{—1+e*(“’l*92>(1+a(1 e’)(1-e") )} ia.

able bounded function, we will have different form of
BZIPD. Some other possible functions can be
g(z)=a’, O<a<l; g(z)=e™" etc.

Remark 3: If =0, we get Bivariate Zero-Inflated
Poisson distribution based on two independent random
variables.

Estimation of the Parameters of BZIPD
Suppose (Xi’yi);i =1,2,---,n is a random sample ob-

served from BZIPD (n,6’1,6’2,a);i =1,2,---,n . Then the
likelihood function is given by
L(n,&l,ﬁz,a;g,x) =

n

H((l —m)+me 4 (1 + a(l _e e )(1 _e e )))l‘ai

i=1

[ne wl:jyﬁx'ﬁ % (l+a< = _e*ﬂ°)<e‘yi —e e ))JI
o (4.4)

where a =1 if (x,y;)#(0,0) and a =0 otherwise.
The corresponding log likelihood is given by,

(4.5)

Vi _ g0 ))

OloglL
oa
in the following:

=( simultaneously. These equations are given

ng(e"‘*”ﬂ){ac(l e e

J(1-e
(1-m)+me @) (1+a(1- %) (1-e ))

(

)

1-m+me (@) {1+a(1 g lc (1 g™ }

n

Zaix'
—(n—n)+-

+acZa[

non(ef("waz) ){ac(l —e )e"g2C - (l + a(l —efc )(1 —e e ))}

t-meme @ 14 g (1-e7) (1-67)

—(n—ny)+=—+ac) g

i=1

iay. : {
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' (4.6)
o
)
4.7)
e tc (e Vi _ —:920) )
1+a( X _a=0c )(e Yi _e—Hzc) -
(4.8)
g 0¢ (e_xi _efﬂlc) i
1+a<e'xi _e*HIC)(e—yi _efﬁzc) -
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[ [
1-n+me (@) {1+0!(1—e"9'°)(1_e—920 )}
[ e e

+§ai 1+a(e-xi _e—ﬁlc)(e—yi _efﬁzc) =0

(4.9)

From the above equations, it is clear that Equations
(4.6) to (4.9) are non-linear in nature. Solving these
equations is computationally cumbersome. Laxminara-
yan et al. [7], adopt method of moments for the model
without inflation parameter (i.e. m=1). In their model
they have used estimates based on Method of Moment
Estimators (MME), which coincide with Maximum
Likelihood Estimators (MLE) of the marginal distribu-
tions. This is not the case for the joint distribution. We
have to solve four equations simultaneously in order to
get the MLEs. In the following we obtain maximum like-
lihood estimators for the following example and test for
goodness of fit.

5. An Application

The data set in Table 1 reported by Arbous and Kerrich
[10], represents accidents sustained by 122 railway men
in consecutive periods of 6 and 5 years.

X is the accident distribution of 122 railway men dur-
ing 1937-1942 and Y is the accident distribution of 122
railway men during 1943-1947.

By assuming marginal distributions of X is ZIPD
(m,6,). The MLEs of X data are #=0.8938 and
6, =1.2564 Similarly assuming marginal distribution of
Y is ZIPD (m,6,). The MLEs of Y data are & =0.8494
ginal distribution of X to ZIPD_we get Chi square statis-
tic = 0.74843 and P value = 0.3869. If we fit the data

Table 1. Bivariate accident distribution of 122 railway men
during two periods.

S0 12 3 4 s 6 7 Toml
0 20 14 8 1 44

1 17 12 08 3 1 14
2 6 9 2 2 2 21

3 o1 3 31 9

4 1 3 4

5 2 2

6

7

Total 46 39 21 11 4 1122
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6, =1.3221 Using these mles we fit the data of the mar-

of the marginal distribution of Y to ZIPD we get Chi
square statistic = 0.6065 and P value = 0.4360. The table
value of ;(2@0‘05) = 3.841. Therefore, ZIPD fits well for
Xand Y data.

Thus now we can test whether data is coming from
BZIPD (m,6,,6,). Maximizing the log likelihood in the
Equation (4.5) using MATLAB RI12 software we get
maximum likelihood estimators of the parameters as
n=0940, 6=1210, 6,=120, a=1220. With
these parameters we fit Bivariate Zero-Inflated Poisson
Distribution to the above data. The expected frequencies
are as shown in the Table 2.

From the chi-square goodness of fit, we observed that
calculated y* =4.102062 , is less than the table value of
;(2(4,0_05) =9.488. The P value is 0.392369. Hence we
conclude that Bivariate Zero-Inflated Poisson Distribu-
tion fits well for the data.

Remark 4: There can be many ways to define k-vari-
ate ZIPSD by extending the above defined BZIPSD. One
of the ways is given below.

A k-variate Zero-Inflated Power Series Distribution
can be defined as

Py, (X.,6,) is probability mass function of Power Se-
ries Distribution.

Inference related to the parameters involved in this
model can be attempted similarly.

In the present work we introduced a new bivariate
zero-inflated power series distribution. This distribution
can accommodate number of zero-inflated bivariate dis-
crete distributions. Further work under consideration is
testing of independence for BZIPSD. Application of the
proposed model for some other distributions like Bivari-
ate Zero-Inflated Negative Binomial Distribution or
k-variate zero inflated Poisson distribution can also be

Table 2. Expected frequencies using BZIPD.

Y

X 0 1 >2 Total

0 21.1914 11.5500 8.7747 41.5161
1 11.6746 15.1344 14.5680 41.3770
>2 8.9933 14.7627 15.3421 39.0981
Total 41.8593 41.4471 38.6848 121.9912

AM



P. M. KRISHNA ET AL. 829

considered. These models are useful to model zero-in-
flated bivariate data.
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