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Abstract 
 
Many researchers have discussed zero-inflated univariate distributions. These univariate models are not 
suitable, for modeling events that involve different types of counts or defects. To model several types of de-
fects, multivariate Poisson model is one of the appropriate models. This can further be modified to incorpo-
rate inflation at zero and we can have multivariate zero-inflated Poisson distribution. In the present article, 
we introduce a new Bivariate Zero Inflated Power Series Distribution and discuss inference related to the 
parameters involved in the model. We also discuss the inference related to Bivariate Zero Inflated Poisson 
Distribution. The model has been applied to a real life data. Extension to k-variate zero inflated power series 
distribution is also discussed. 
 
Keywords: Bivariate Zero-Inflated Power Series Distribution, Bivariate Zero-Inflated Poisson Distribution, 

K-Variate Zero-Inflated Power Series Distribution

1. Introduction 

In a manufacturing process there may exist several types 
of (say m) defects—for example, solder short circuits, 
solder voids, absence of solder etc. on one printed circuit 
board. These defects cause different types of product 
failure and generate different types of equipment prob-
lems. In the above example there can be only one type of 
defect which occurs more frequently and the other de-
fects occurs very rarely. Another situation could be both 
types of defects occur rarely and so on. To model several 
types of defects, multivariate Poisson model is one of the 
appropriate models to use. This can further be modified 
to incorporate inflation at zero and we can have multi-
variate zero-inflated Poisson (MZIP) distribution. There 
are several ways to construct MZIP distributions. In the 
literature, Chin-Shang et al. [1] have discussed various 
types of MZIP models and investigated their distribu-
tional properties. Deshmukh and Kasture [2] have stud-
ied bivariate distribution with truncated Poisson marginal 
distributions. Gupta et al. [3] have considered inflated 
distributions at the point zero and studied the structural 
properties of the inflated distribution. Gupta et al. [4] 
have discussed score test for zero-inflated generalized 
Poisson regression model. Holgate [5] described the es-

timation of covariance parameter of bivariate Poisson 
distribution by iterative method. Lambert [6] considered 
zero-inflated Poisson regression model. Laxminarayana 
et al. [7] have studied bivariate Poisson distribution and 
the distributional properties of the model. Patil and 
Shirke [8] studied testing parameter of the power series 
distribution of a zero-inflated power series model. Patil 
and Shirke [9] also studied equality of inflation parame-
ters of two zero-inflated power series distributions. It 
appears that majority of the study in the literature is re-
stricted to Poisson distribution and its extension to mul-
tivariate set up. Relatively less has been reported for the 
family of distributions containing other distributions. 

In this article, we introduce a new Bivariate Zero-In-
flated Power Series Distribution (BZIPSD) and discuss 
inference related to the parameters involved in the same. 
The rest of the paper is organized as follows. Section 2, 
introduces the BZIPSD along with moments of the same. 
Section 3, deals with inference related to the parameters 
involved in the BZIPSD. In Section 4, we discuss infer-
ence related to Bivariate Zero-Inflated Poisson Distribu-
tion (BZIPD). The data set reported by Arbous and Ker-
rich [10] is modeled by Bivariate Zero Inflated Poisson 
Distribution. The paper concludes with generalization to 
multivariate setup. 
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2. Bivariate Zero-Inflated Power Series 

Distribution 

Let X  and Y  be two random variables with probabil-
ity mass functions 
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distribution for a suitable choice of   . Based on the 
distribution (2.1), in the following ntroduce three 
types of BZIPSD. 
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Type-II BZIPSD: When there is inflation at X  component only, we define the BZIPSD as  

            (2.3) 

Type-III BZIPSD: When there is inflation at  component only, we define the BZIPSD as  

         (2.4) 
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Therefore, we have 
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3. Estimation of the Parameters of BZIPSD 

Let ,




 , 1, 2,3,i iX Y i n    be a random sample ob-
served from BZIPSD  1 2π, , , .    The likelihood 
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Solving Equations (3.3) to (3.6) simultaneously we get 
maximum likelihood estimators of the desired four pa-
rameters. We note that all the four likelihood equations 
are non-linear in nature and do not have clo
lution. Now, we discuss a particular case
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It is clear from the expressions of moment generating 
functions of X  and that the marginal distributions 
of X and Y are univariate zero-inflated power series dis-
tributions with param ters 

Y  

e  1π,  and  2π,  respec-
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of the marginal distribution of Y to ZIPD we get Chi 
square statistic = 0.6065 and P value = 0.4360. The table 
value of = 3.841. Therefore, ZIPD fits well for 
X and Y dat

Thus now we can test whet
BZIPD 

  (4.9) 

From the above equations, it is clear that Equations 
(4.6) to (4.9) are non-linear in nature. Solving these 
equations is computationally cumbersome. Laxminara-
yan et al. [7], adopt method of moments for the model 
without inflation parameter (i.e. ). In their model 
they have used estimates based on Method of Moment 
Estimators (MME), which coincide with Maximum 
Likelihood Estimators (MLE) of the marginal distribu-
tions. This is not the case for the joint distribution. We 
have to solve four equations simultaneously in order to 

et the MLEs. In the following we obtain maximum like-
lihood estimators for the following example and test for 
goodness of fit. 

5. An Application 

The data set in Table 1 reported by Arbous and Kerrich 
[10], 
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X is the accident distribution of 122 railway men dur-
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In the present work we introduced a new bivariate 
zero-inflated power series distribution. This distribution 
can accom e number of zero-inflated bivariate dis-
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sting of independence for BZIPSD. Application of the 
proposed r some other distributions like Bivari-
ate Zero-Inflated Negative Binomial Distribution or 
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Table 2. Expected frequencies using BZIPD. 

Y
X

0 1 
 

0 5500 8.7747 41.5161 21.1914 11.

1 11.6746 15.1344 14.5680 41.3770 

≥2 8.9933 14.7627 15.3421 39.0981 

Total 41.8593 41.4471 38.6848 121.9912 
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