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Abstract 
In this paper we compare recently developed preliminary test estimator called Preliminary Test 
Stochastic Restricted Liu Estimator (PTSRLE) with Ordinary Least Square Estimator (OLSE) and 
Mixed Estimator (ME) in the Mean Square Error Matrix (MSEM) sense for the two cases in which 
the stochastic restrictions are correct and not correct. Finally a numerical example and a Monte 
Carlo simulation study are done to illustrate the theoretical findings. 
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1. Introduction 
To overcome the multicollinearity problem arises in the Ordinary Least Squares Estimation (OLSE) procedure, 
different methods have been proposed in the literature. One of the most important estimation methods is to con-
sider biased estimators, such as the Ridge Estimator (RE) by Hoerl and Kennard [1], the Liu Estimator (LE) by 
Liu [2], and the Almost Unbiased Liu Estimator (AULE) by Akdeniz and Kaçiranlar [3]. Alternative method to 
solve the multicollinearity problem is to consider parameter estimation with some restrictions on the unknown 
parameters, which may be exact or stochastic. When the stochastic restrictions are available in addition to sam-
ple model, Theil and Goldberger [4] introduced the Mixed Estimator (ME). Replacing OLSE by ME in the Liu 
Estimator, the Stochastic Restricted Liu Estimator (SRLE) has been proposed by Hubert and Wijekoon [5]. 
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When different estimators are available, the preliminary test estimation procedure is adopted to select a suitable 
estimator, and it can also be used as another estimator with combining properties of both estimators. The pre-
liminary test approach was first proposed by Bancroft [6], and then has been studied by many researchers, such 
as Judge and Bock [7], Wijekoon [8] and Arumairajan and Wijekoon [9]. By combining OLSE and ME, the Or-
dinary Stochastic Preliminary Test Estimator (OSPE) was proposed by Wijekoon [8]. Recently, Arumairajan 
and Wijekoon [9] introduced the Preliminary Test Stochastic Restricted Liu Estimator (PTSRLE) by combining 
the Stochastic Restricted Liu Estimator and Liu Estimator. In their study, they compared PTSRLE with SRLE 
by using the Mean Square Error Matrix (MSEM) and Scalar Mean Square Error (SMSE) criterions. 

In this research we further compare the mean square error matrix of PTSRLE with OLSE and ME. The rest of 
the paper is organized as follows. The model specification and estimation are given in section 2. In section 3, the 
mean square error matrix comparisons between PTSRLE with OLSE and ME are performed. A numerical ex-
ample and a Monte Carlo simulation are used to illustrate the theoretical findings in section 4, and in section 5 
we state the conclusions. 

2. Model Specification and Estimation 
First we consider the multiple linear regression model 

( )2,  ~ 0,y X N Iβ ε ε σ= + ,                                       (1) 

where y is an n × 1 observable random vector, X is an n × p known design matrix of rank p, β is a p × 1 vector of 
unknown parameters and ε is an n × 1 vector of disturbances. 

In addition to sample model (1), let us be given some prior information about β in the form of a set of m in-
dependent stochastic linear restrictions as follows; 

( )2, ~ 0,r Rβ δ υ υ σ= + + Ω                                       (2) 

where r is an m × 1 stochastic known vector R is a m × p of full row rank m p≤  with known elements, δ  is non 
zero m × 1 unknown vector and υ is an m × 1 random vector of disturbances and Ω  is assumed to be known and 
positive definite. Further it is assumed that υ is stochastically independent of ε. i.e. ( ) 0E ευ′ = . 

The Ordinary Least Squares Estimator (OLSE) for model (1) and the Mixed Estimator (ME) (Theil and 
Goldberger [4]) due to a stochastic prior restriction (2) are given by 

1ˆ
OLSE S X yβ − ′=                                       (3) 

and 

( ) ( )11 1ˆ ˆ ˆ
ME OLSE OLSES R RS R r Rβ β β

−− −′ ′= + Ω + −                            (4) 

respectively, where S X X′= . 
The expectation vector, and the mean square error matrix of β̂  are given as 

( )ˆ
OLSEE β β=                                               (5) 

and 

( ) 2 1ˆ
OLSEMSE Sβ σ −=                                        (6) 

respectively. 
The expectation vector, dispersion matrix, and the mean square error matrix of ˆ

MEβ  are given as 

( )ˆ
MEE Hβ β δ= + ,                                        (7) 

( ) ( )2 1ˆ
MED S Gβ σ −= −                                            (8) 

and 
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( ) ( )2 1ˆ
MEMSE S G H Hβ σ δδ− ′ ′= − +                                    (9) 

respectively, where, ( ) 11 1 1G S R RS R RS
−− − −′ ′= Ω + , ( ) 11 1H S R RS R

−− −′ ′= Ω +  and ( )E r Rδ β= − . Note that 
when the stochastic restrictions are correct then ( ) 0E r Rδ β= − = , and consequently the Mixed Estimator be-
comes an unbiased estimator. 

The Liu Estimator (Liu, [2]) is given as 

( ) ( ) ( )1ˆ ˆ where for 0 1LE d OLSE dd F F S I S dI dβ β −= = + + < < .                    (10) 

Replacing OLSE by ME in the Liu Estimator, Hubert and Wijekoon [5] introduced the Stochastic Restricted Liu 
Estimator (SRLE), and is given by 

( )ˆ ˆ .SRLE d MEd Fβ β=                                          (11) 

when different estimators are available for the same parameter vector β  in the linear regression model one must 
solve the problem of their comparison. Usually as a simultaneous measure of covariance and bias, the mean square 
error matrix of β̂  is used, and is defined by 

( ) ( )( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ,MSE E D B Bβ β β β β β β β β ′ ′= − − = + 
 

,                      (12) 

where ( )ˆD β  is the dispersion matrix, and ( ) ( )ˆ ˆB Eβ β β= −  denotes the bias vector. We recall that the Scalar  

Mean Square Error of β̂  ( ) ( )( )ˆ ˆ, ,SMSE trace MSEβ β β β= . 

For two given estimators 1̂β  and 2β̂ , the estimator 2β̂  is said to be superior to 1̂β  under the MSEM crite-
rion if and only if 

( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆ, , , 0M MSE MSEβ β β β β β= − ≥ .                             (13) 

Let us now turn to the question of the statistical evaluation of the compatibility of sample and stochastic in-
formation. The classical procedures is to test the hypothesis 

0 1: 0 against : 0H Hδ δ= ≠                                       (14) 

under linear model (1) and stochastic prior information (2). 
The Ordinary Stochastic Preliminary Test Estimator (OSPE) of β  (Wijekoon [8]) is defined as 

0

1

ˆ    if   : 0ˆ
ˆ  if   : 0.

ME
OSPE

OLSE

H

H

β δ
β

β δ

 == 
≠

                                      (15) 

Further, we can write (15) as 

( )) ( ) ( ) ) ( )
, ,0, ,

ˆ ˆ ˆ
m n p m n pOSPE ME OLSEF F

I F I F
α α

β β β
− −  ∞ 

= + ,                             (16) 

where, 

( ) ( ) ( )11

2

ˆ ˆ

ˆ
OLSE OLSEr R RS R r R

F
m

β β

σ

−−′ ′− Ω + −
=                                (17) 

which has a non-central , ,m n pF λ−  distribution under 1 : 0H δ ≠ , with non-centrality parameter 

( ) ( ) ( )11
2

2

ˆ ˆ
ˆwith ,

2
OLSE OLSEY X Y XRS R

n p

β βδ δ
λ σ

σ

−− ′− −′ ′Ω +
= =

−
                     (18) 

and ( )) ( )
,0, m n pF

I F
α−

 and 
( ) )

( )
,,Fm n p

I F
α ∞−

 are indicator functions which take the value one if F  falls in the sub-  
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scripted interval, and zero otherwise. ( ),m n pF α−  is the upper α-level critical value from the central F distribution 
, ,0m n pF − . 
The expectation vector, dispersion matrix, and the mean square error matrix of ˆ

OSPEβ  are derived by Wije-
koon [8], and given by 

( ) ( )ˆ 2 ,OSPEE h Hλβ β δ= +                                       (19) 

( ) ( ) ( ) ( ) ( )2 1 2 2ˆ 2 2 2 4 2OSPED S h G h h h H Hλ λ λ λβ σ σ δδ−   ′ ′= − + − −                       (20) 

an 

( ) ( ) ( ) ( )2 1 2ˆ 2 2 2 4OSPEMSE S h G h h H Hλ λ λβ σ σ δδ− ′ ′= − + −                            (21) 

respectively, where, ( ) ( )2
,,

2Pr   for m n pm

n p

mF
h

n p
λ

λ

αχ
χ

−+

−

 
= ≤ ∈Ν  − 



  . 

Recently, Arumairajan and Wijekoon [9] proposed the Preliminary Test Stochastic Restricted Liu Estimator 
(PTSRLE) by combining the Liu Estimator and Stochastic Restricted Liu Estimator, and is given by 

0

1

ˆ     if   : 0
ˆ   if   : 0.

d ME
PTSRLE

d OLSE

F H

F H

β δ
β

β δ

 == 
≠

                                     (22) 

Note that the PTSRLE can be rewritten as follows: 

( ) ( )) ( ) ( ) ) ( )
, ,0, ,

ˆ ˆ ˆ .
m n p m n pPTSRLE d ME d OLSE d OSPEF F

d F I F F I F F
α α

β β β β
− −  ∞ 

= + =                  (23) 

By using Equations (19), (20) and (21), Arumairajan and Wijekoon [9] derived the expectation vector, bias 
vector, dispersion matrix and mean square error matrix of PTSRLE as follows: 

( ) ( )ˆ 2PTSRLE d OSPE d dE d F E F h F Hλβ β β δ   = = +   
 ,                              (24) 

( ) ( )( ) ( )11 2PTSRLE dB d d S I h F Hλβ β δ−  = − + + 
 ,                                (25) 

( )
( )2 1 2

ˆ

                       2

PTSRLE d OSPE d

d d d d d d

D d F D F

F S F h F GF F H H Fλ

β β

σ σ ξ δδ−

   ′=   
′ ′ ′ ′ ′= − +



                     (26) 

and 

( ) ( )

( )( ) ( ) ( )( ) ( )

2 1 2

1 1

2

 1 2 1 2

PTSRLE d d d d d d

d d

MSE d F S F h F GF F H H F

d S I h F H d S I h F H

λ

λ λ

β σ σ ξ δδ

β δ β δ

−

− −

  ′ ′ ′ ′ ′= − + 

′   + − + + − + +   



       (27) 

respectively, where ( ) ( ) ( )22 2 4 2 0h h hλ λ λξ = − − ≥ . 

3. Mean Square Error Matrix Comparisons 
In this section we compare the PTSRLE with OLSE and ME in the mean square error matrix sense for the two 
cases in which the stochastic restrictions are correct and not correct. 

3.1. Comparison between the PTSRLE and OLSE 
The mean square error matrix difference between OLSE and PTSRLE can be written as 

( ) 1 1
ˆ

OLSE PTSRLEMSE MSE d D d dβ β    ′− = −  
                             (28) 
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where, ( ) 1 2
ˆ

OLSE PTSRLED D D d D Dβ β   = − = −  
  

with ( )2 1 2 1 2
1 2d d d dD S F S F h F GFλσ σ σ− − ′ ′= − + , 2 d dD F H H Fξ δδ ′ ′ ′=  and ( )( ) ( )1

1 1 2 dd d S I h F Hλβ δ−= − + + . 
Now the following theorem can be stated 
Theorem 1: 
1) When the stochastic restrictions are true (i.e. 0δ = ), the PTSRLE is superior to OLSE in the mean square 

error matrix sense if and only if * * 1 *
1 1 1 1d D d−′ ≤ , where ( )( ) 1*

1 1d d S I β−= − + , 
( )*

* 2 1 2 1 2
1 2d d d dD S F S F h F GF

λ
σ σ σ− − ′ ′= − + , and ( )2h

λ∗
 is the value of ( )2hλ  when 0δ = . 

2) When the stochastic restrictions are not true (i.e. 0δ ≠ ), and if the maximum eigenvalue of 1
2 1D D−  is less 

than one, the PTSRLE is superior to OLSE if and only if 1
1 1 1d D d−′ ≤ . 

Proof: 
1) If stochastic restrictions are correct then ( ) 0E r Rδ β= − = , and the equation (28) reduced to 

( )*
2 1 2 1 2 * *

1 12d d d dS F S F h F GF d d
λ

σ σ σ− − ′′ ′− + − . 

To apply lemma 2 (Appendix), we have to show that 

( )*
* 2 1 2 1 2
1 2 0d d d dD S F S F h F GF

λ
σ σ σ− − ′ ′= − + > . 

Since ( ) ( )1
dF S I S dI−= + +  for 0 1d< <  we have 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 1 2 1

1 12 1 2 1

1 12 1 1

1 12 11 2 1

d dS F S F

S S I S dI S S dI S I

S I S I S S I S dI S S dI S I

d S I I d S S I

σ σ

σ σ

σ

σ

− −

− −− −

− −− −

− −−

′−

= − + + + +

 = + + + + + + + 

 = − + + + + 

 

Hence ( )2 1 2 1
d dS F S Fσ σ− − ′−  is positive definite matrix for all 0 1d< < . According to lemma 1 (Appendix), 

*
1D  is positive definite matrix since ( )2 1 2 1

d dS F S Fσ σ− − ′−  is positive definite matrix and ( )2 2 d dh F GF
λ

σ ∗ ′  is 
nonnegative definite matrix. By applying lemma 2 (Appendix), * * *

1 1 1 0D d d ′− ≥  if and only if * * 1 *
1 1 1 1d D d−′ ≤ . 

Therefore the PTSRLE is superior to OLSE in the mean square error matrix sense when stochastic restrictions are 
correct if and only if * * 1 *

1 1 1 1d D d−′ ≤ . 
2) If stochastic restrictions are not correct then ( ) 0E r Rβ− ≠ , and consequently with respect to the MSE 

matrix criterion ( )PTSRLE dβ  is superior to ˆ
OLSEβ  if and only if 1 1 0D d d ′− ≥ . To apply lemma 2 (Appendix) in 

order to prove that 1 1 0D d d ′− ≥ , one required condition is that 0D > . 
We have already proved that ( )2 1 2 1 2

1 2 0d d d dD S F S F h F GFλσ σ σ− − ′ ′= − + > . Also 2 d dD F H H Fξ δδ ′ ′ ′=  is 
positive definite since 0H Hδδ ′ ′ > , 0dF >  and 0ξ > . Now according to lemma 3 (Appendix), 

( ) 1 2
ˆ 0OLSE PTSRLED D d D Dβ β   − = − >  

  if and only if ( )1
max 2 1 1D Dλ − < , where ( )1

max 2 1D Dλ −  is the maxi-  

mum eigenvalue of 1
2 1D D− . Now according to lemma 2, ( )ˆ 0OLSE PTSRLEMSE MSE dβ β   − ≥  

  if and only if 
1

1 1 1d D d−′ ≤ . This completes the proof. 

3.2. Comparison between the PTSRLE and ME 
The mean square error matrix difference between ME and PTSRLE is 

( ) 1 1 1 1
ˆ

ME PTSRLEMSE MSE d C c c d dβ β    ′ ′− = + −  
                              (29) 

where 1 3C D D= −  with ( )2 1 2 1 2
1 2d d d dD S F S F h F GFλσ σ σ− − ′ ′= − + , 2

3 d dD G F H H Fσ ξ δδ ′ ′ ′= + , 1c Hδ=  
and ( )( ) ( )1

1 1 2 dd d S I h F Hλβ δ−= − + + . 
Now we can give the following theorem. 
Theorem 2: 
1) When the stochastic restrictions are true (i.e. 0δ = ), and if the maximum eigen value of * * 1

3 1D D −  is less 
than one, the PTSRLE is superior to ME in the mean square error matrix sense if and only if * * 1 *

1 1 1d C d−′ ≤  where 
* * *

1 3C D D= −  with ( )* 2 1 2 1 2
1 2d d d dD S F S F h F GF

λ
σ σ σ ∗

− − ′ ′= − +  and * 2
3D Gσ= . 
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2) When the stochastic restrictions are not true (i.e. 0δ ≠ ), and if the maximum eigen value of 1
3 1D D −  is less 

than one, the PTSRLE is superior to ME in the mean square error matrix sense if and only if ( ) 1
1 1 1 1 1d C c c d−′ ′+ ≤ . 

Proof: 
1) When stochastic restrictions are true then ( ) 0E r Rδ β= − = , and hence * 2

3D Gσ= , which is clearly a 
nonnegative matrix. We have already proved that *

1D  is positive definite matrix. Now according to lemma 3, 
* * *

1 3 0C D D= − >  if and only if the maximum eigen values of * * 1
3 1D D −  is less than one. Now according to 

lemma 2, the PTSRLE is superior to ME if and only if * * 1 *
1 1 1d C d−′ ≤ , and if * * 1

3 1D D − . 
2) When stochastic restrictions are not true (i.e. 0δ ≠ ), ( )ˆ 0ME PTSRLEMSE MSE dβ β   − ≥  

  if and only if  

1 1 1 1 0C c c d d′ ′+ − ≥ . To prove that 1 1 1 1 0C c c d d′ ′+ − ≥  lemma 4 (Appendix) can be used. To use this lemma first 
we prove that C is positive definite. According to lemma 3, C is a positive definite matrix if and only if the 
maximum eigenvalue of 1

3 1D D −  is less than one. By applying lemma 4, we can prove that 1 1 1 1 0C c c d d′ ′+ − ≥  if 
and only if ( ) 1

1 1 1 1 1d C c c d−′ ′+ ≤ . This completes the proof. 
According to theorem 1 and 2 it is clear that PTSRLE is superior to OLSE and ME under certain conditions. 

4. Numerical Illustrations 
In this section the comparison of PTSRLE with OLSE and ME are demonstrated using a numerical example, 
and a simulation study. 

4.1. Numerical Example 
To illustrate our theoretical result, we consider the data set on Total National Research and Development Ex-
penditures as a percent of Gross National product due to Gruber [10]. This data set is used by Akdeniz and Erol 
[11], Li and Yang [12] and Wu and Yang [13] to verify the theoretical results. Data shows Total National Re-
search and Development Expenditures as a Percent of Gross National Product by Country: 1972-1986. It 
represents the relationship between the dependent variable y the percentage spent by the United States and the 
four other independent variables 1 2 3, ,x x x  and 4x . The variable 1x  represents the percent spent by France, 

2x  that spent by West Germany, 3x  that spent by Japan, and 4x  that spent by the former Soviet Union. The 
data set is given below: 

1.9 2.2 1.9 3.7 2.3
1.8 2.2 2.0 3.8 2.2
1.8 2.4 2.1 3.6 2.2
1.8 2.4 2.2 3.8 2.3
2.0 2.5 2.3 3.8 2.4

,
2.1 2.6 2.4 3.7 2.5
2.1 2.6 2.6 3.8 2.6
2.2 2.6 2.6 4.0 2.6
2.3 2.8 2.8 3.7 2.7
2.3 2.7 2.8 3.8 2.7

X y

  
  
  
  
  
  
  
  = =
  
  
  
  
 
 
 
  

.














 
 
 



 

The four column of the 10 × 4 matrix X comprise the data on 1 2 3, ,x x x  and 4x  respectively, and y is the re-
sponse variable. From this data, we obtain the following results: 

1) The eigen values of X X′ : 302.9626, 0.7283, 0.0447, 0.0345. 
2) The OLS estimator of ( )ˆ: 0.6455,0.0896,0.1436,0.1526OLSEβ β ′= . 
3) The OLS estimator of 2 2ˆ: 0.0015σ σ = . 
4) The condition number of X X′ : 8781.53. 
The condition number implies the existence of multicollinearity in the data set. We consider the following 

stochastic restrictions (Li and Yang, [12]) 

( ) ( )2 ˆ ˆˆ1, 2, 2, 2 , 0, ~ 0, 0.0015 andR r r Rυ σ δ β′= − − − = = = − . 
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Further the significance level is taken as α = 0.05. Figure 1 is drawn by using the SMSE obtained by using 
Equations (6), (9) and (27). 

Based on Figure 1, we can say that the SMSE of PTSRLE is larger than the SMSE of both ME and OLSE when 
d is small. But the PTSRLE has the smallest SMSE than both ME and OLSE for 0.6029 0.9386d< < . Moreover 
the ME is always superior to OLSE. 

4.2. Monte Carlo Simulation 
To illustrate the behavior of our proposed estimators, we perform the Monte Carlo Simulation study by consi-
dering different levels of multicollinearity. Following McDonald and Galarneau [14] we generate explanatory 
variables as follows: 

( )1 22
, 11 ,  1, 2, , ,   1, 2, , ,ij ij i px z z i n j pγ γ += − + = =   

where ijz  is an independent standard normal pseudo random number, and γ  is specified so that the theoretical 
correlation between any two explanatory variables is given by 2γ . A dependent variable is generated by using the 
equation. 

1 1 2 2 3 3 4 4 ,  1, 2, , ,i i i i i iy x x x x i nβ β β β ε= + + + + =   

where iε  is a normal pseudo random number with mean zero and variance 2
iσ . Newhouse and Oman [15] have 

noted that if the MSE is a function of 2σ  and β, and if the explanatory variables are fixed, then subject to the 
constraint 1β β′ = , the MSE is minimized when β is the normalized eigenvector corresponding to the largest 
eigenvalue of the X X′  matrix. In this study we choose the normalized eigenvector corresponding to the largest 
eigenvalue of X X′  as the coefficient vector β, n = 100, p = 4 and 2 1iσ = . Four different sets of correlations are 
considered by selecting the values as γ = 0.9, 0.99, 0.999 and 0.9999, and the significance level is taken as α = 
0.05. The condition numbers for γ = 0.9, 0.99, 0.999 and 0.9999 are 19.49, 223.67, 2297.89 and 23137.88 re-
spectively. Figures 2-5 are drawn by using the SMSE obtained by using Equation (6), (9) and (27). 

According to Figure 2, the PTSRLE has the smallest SMSE than ME except d is small. However the OLSE has 
the smallest SMSE than ME and PTSRLE. From Figure 3, the SMSE of PTSRLE is larger than the SMSE of both 
OLSE and ME when d is small. From Figure 4 and Figure 5, we can notice that most of the cases, the PTSRLE 
has the smallest SMSE than ME and OLSE. 

5. Conclusion 
In this paper we have shown that the Preliminary Test Stochastic Restricted Liu Estimator is superior to Mixed 
Estimator and Ordinary Least Square Estimator in the mean square error matrix sense under certain conditions.  
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Figure 1. Estimated SMSE for PTSRLE, ME and OLSE. 



S. Arumairajan, P. Wijekoon 
 

 
347 

0.2 
0.

0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

Shrinkage parameter d 

PTSRLE 

Es
tim

at
ed

 S
M

SE
 v

al
ue

s 

OLSE 
ME 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 
Figure 2. Estimated SMSE for PTSRLE, ME and OLSE when γ = 0.9. 
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Figure 3. Estimated SMSE for PTSRLE, ME and OLSE when γ = 0.99. 
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Figure 4. Estimated SMSE for PTSRLE, ME and OLSE when γ = 0.999. 
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Figure 5. Estimated SMSE for PTSRLE, ME and OLSE when γ = 0.9999. 

 
From the simulation study and the numerical illustration we notice that the PTSRLE has the smallest SMSE than 
ME and OLSE when multicollinearity among the predictor variables is large. 
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Appendix 
Lemma 1: (Rao and Touterburg, [16]) 

Let A and B be (n × n) matrices such that A > 0 and 0B ≥ . Then 0A B+ > . 
Lemma 2: (Farebrother, [17]) 
Let A > 0 be an (n × n) matrix, b an (n × 1) vector. Then 1 1 0A b b′− ≥  if and only if 1

1 1 1b A b−′ ≤ . 
Lemma 3: (Wang et al., [18]) 
Let n × n matrices M > 0, N > 0 (or 0N ≥ ), then M > N if and only if ( )1

1 1NMλ − < . where ( )1
1 NMλ −  is 

the largest eigenvalue of the matrix 1NM − . 
Lemma 4: (Trenkler and Toutenburg, [19]) 
Let 1̂β  and 2β̂  be two linear estimator of β̂ . Suppose that ( ) ( )1 2

ˆ ˆD D Dβ β= −  is positive definite then 
( ) ( )1 2

ˆ ˆMSE MSEβ β∆ = −  is nonnegative definite if and only if ( ) 1
2 1 1 2 1b D b b b−′ ′+ ≤ , where jb  denotes the 

bias vector of ˆ , 1, 2j jβ = . 
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