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Abstract 
 
We introduce a general framework for the log-time sampling of continuous-time signals. We define the zeta 
transform based on the log-time sampling scheme, where the signal  x t  is sampled at time instants 

. The zeta transform of the log-time sampled signals can be described by a linear 
combination of Riemann zeta function, which firmly joins the log-time sampling process to the number the-
ory. The instantaneous sampling frequency of the log-sampled signal equals 

log ,  1,2,nt T n n  

,  1,2,nf n T n   , i.e. it in-
creases linearly with the sampling number. We describe the properties of the log-sampled signals and discuss 
several applications in nonuniform sampling schemes. 
 
Keywords: Sampling, Z-Transform, Zeta Function 

1. Introduction 
 
Data acquisition techniques are usually based on the 
sampling of the signal  x t  at equidistant time instants 

, where T is the sampling period. This 
yields the discrete-time signal 

,  nt nT n N 
   x n x nT , which is 

usually treated using the z-transform 
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The z-transform is an important tool in designing dis-
crete-time signals and systems similarly as the Laplace 
transform in continuous-time domain. The variable z in 
the z-transform and the variable s in the Laplace-trans- 
form are related as esTz  , which however, does not 
allow unique mapping between the complex z and s 
planes.  

In this work we consider the log-time sampling 
scheme, where the discrete samples are measured at 
logarithmically spanned sampling instants lognt T n , 

. This paper serves as a general framework for 
the log-time sampling process and we only discuss ap-
plications. We first describe the z-transform of the 
log-time sampling process and show the connection be-
tween the Riemann zeta function. Then we introduce the 
zeta transform and deduce the zeta transform of the con-

tinuous-time waveforms. Further, we show that the 
log-time sampled signals obey the convolution property 
and discuss the potential applications related to nonuni-
form sampling schemes. 

1,2,n  

 
2. Theoretical Considerations 
 
2.1. Log-Time Sampling Scheme 
 
The log-time sampling of the continuous-time causal 
signal   ,  0x t t   is based on the convolution 
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where the Dirac distribution is defined as 
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By shortly denoting  the 
integral transform of (2) yields 

 log ,  1, 2,nx x T n n  
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where s C  is the transform variable. In number the-
ory the Riemann zeta function   ,  s s C   is defined 
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as  
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Due to close relationship with (5) we call (4) the zeta 
transform of the log-time sampling sequence  

 log ,  1, 2,nx x T n n    
 
2.2. Zeta Transform for Continuous Waveforms 
 
Let us consider the log-time sampling of the exponential 
signal   e tx t  . We obtain 
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Table 1 gives the zeta transforms for some common 
continuous-time waveforms, which shows that the sig-
nals can be described by the linear combination of zeta 
functions. The direct computation of the  over the 
whole complex plane has the difficulty that the zeta func-
tion 

 R s

 s  does not converge in the range  e s0 R 1 . 
This obstacle can be avoided by first computing the 
Dirichlet eta function  
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which is convergent for . The zeta function is 
then obtained from the simple relation 
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We may note that both the zeta and eta functions have 
a single pole at s = 1. 
 
2.3. Instantaneous Frequency of the  

Log-Sampled Signals 
 
The change of the sampling instant with the sampling 
number equals  
 

Table 1. Zeta transforms for continuous signals. 
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On the other hand, the instantaneous sampling fre- 
quency comes from 

d
1
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which indicates an interesting result that  the instanta-
neous sampling frequency increases linearly with the 
sampling number.  

The present log-time sampling scheme can be easily 
modified to fit a special application. For example in se-
quence   

  log ,  1, 2, , 1n kx x T n k k n           (11) 

the sampling rate decreases linearly. In sequence  

  log ,  1, , 1n kx x T n k k n n            (12) 

the sampling rate first increases to the maximum sf n T , 
then decreases.  
 
2.4. Logarithmic Time Delay 
 
We may define the logarithmic time delay operator as  

  log 1
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k
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which produces a time delay . 
The delayed signal is then  

log ,  1,2,3,t T k k  
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2.5. Convolution of the Log-Time Sampled  

Signals 
 
Let us consider the convolution of the two log-time sam-
pled signal sequences  log ,  1, 2,nx x T n n    and 

 log ,  1, 2y y T k k
c

, 
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k . We obtain the zeta trans-
form of the sequence ,   
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where  
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0sT T j T sT T j T         

This is an important result indicating that the log-time 
sampled signal sequences obey the convolution property. 
This allows the fast computation of the convolution of 
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the log-sampled sequences by the FFT algorithm. 
 
3. Discussion 
 
The present work shows several features of the log-time 
sampled signals. Probably the most crucial property is 
that the zeta transform of the analytic waveforms can be 
described by a linear combination of the Riemann zeta 
functions (Table 1). This firmly joins the log-time sam-
pled signals to the number theory, where the zeta func-
tion has a privileged role. There are a vast number of 
algorithms for computation of the zeta functions [1]. 
Usually they are based on the accelerated zeta series or 
recursions. The application of the algorithms in micro-
processor environment gives rise to a new kind of dis-
crete-time filters for processing of log-time sampled sig-
nals.  

In communication system analysis the transmission 
zeros have an important role. Let us suppose that the 
logarithmic sampling yields a sequence  lognx x T n

 

, 
, which has the zeta transform R(s). Due to the 

Riemann hypothesis the zeta function 
1,2,n  

s  has non-
trivial zeros in the complex plane only at a single line in 

1 2 ,  s jy y R   . For example, the discrete zeta trans-
form of the sinusoidal waveform 0cos t  consists of the 
sum of two zeta functions having arguments 0sT j T  
(Table 1). The transmission zeros can be solved by 
equalizing 0 1 2sT j T jy   . The knowledge of the 
transmission zeros helps the analysis and design of the 
log-sampled signal processes, e.g. the analysis of the 
cross-talk between neighbouring channels. In parallel 
multi-channel information systems the transmission ze-
ros, which are too close to each other may give rise to the 
distortion and interference.  

In this work we observed that the log-time sampled 
signal sequences obey the convolution property (15-16). 
This yields a plenty of tools for analysis. For example, 
the convolution of the two log-sampled sequences can be 
effectively computed by the FFT algorithm. Due to the 
log-time sampling the number of the measured data 
points and the computation time can be significantly re-
duced compared with the FFT of the equidistantly sam-
pled data sequence. 

An interesting result (10) in this work is the observa-
tion that the instantaneous frequency of the log-time 
sampled signals increases linearly with the sampling 
number. In time-frequency analysis of the log-time sam-
pled signals the frequency scale is linearly increasing, 
which more dense compared with the wavelet analysis, 
where the frequency scale increases in octave scale. 

The log-time sampling of several types of signals has 
clear advantages compared with the equidistant sampling 
scheme. The measurement of fast impulses is not man-

ageable using equidistant sampling. A scheme based on 
the sampling with finite rate of innovation (FRI) has 
awoken interest in signal processing society [2,3]. The 
FRI methods are based on the idea that the signal is 
measured with an analog circuit network. The output of 
the sampling kernel is measured with an analog-to-digital 
converter and the original signal is reconstructed from 
the discrete samples. A competing approach for meas-
urement of impulses would be the log-time sampling 
scheme. As an example we may consider the measure-
ment of the short pulses in wireless ultra wide band 
(UWB) transmission system. The UWB impulses are 
measured with a network consisting sequential RC-filters 
[4]. By using the log-time sampling scheme the ampli-
tude of the impulse is sampled with maximum rate, but 
the tail is sampled with slowing rate. This gives a con-
siderable savings in memory space and fastens the re-
construction. One promising approach is the parallel 
sampling scheme [5], where the signal is sampled with 
the aid of parallel RC-filters. The reconstruction of the 
signal can be made at log-time instants and the recon-
structed signal is readily allowed for treatment with zeta 
transform algorithms. 

In this work we have only shortly outlined the proper-
ties the log-time sampling scheme and its relation to 
number theory. The present sampling scheme may yield 
more and more advanced applications of digital signal 
processors and VLSI devices in measurement and recon-
struction of signals.  
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