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Abstract 
 
The present paper is devoted to the generalized multi parameters golden ratio. Variety of features like 
two-dimensional continued fractions, and conjectures on geometrical properties concerning to this subject 
are also presented. Wider generalization of Binet, Pell and Gazale formulas and wider generalizations of 
symmetric hyperbolic Fibonacci and Lucas functions presented by Stakhov and Rozin are also achieved. 
Geometrical applications such as applications in angle trisection and easy drawing of every regular polygons 
are developed. As a special case, some famous identities like Cassini’s, Askey’s are derived and presented, 
and also a new class of multi parameters hyperbolic functions and their properties are introduced, finally a 
generalized Q-matrix called Gn-matrix of order n being a generating matrix for the generalized Fibonacci 
numbers of order n and its inverse are created. The corresponding code matrix will prevent the attack to the 
data based on previous matrix. 
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1. Introduction 

During the last centuries a great deal of scientist’s at-
tempts has been made on generalizing the mathematical 
aspects and their applications. One of the famous aspects 
in mathematics is called golden ratio or golden propor-
tion has been studied by many authors for generalization 
from different points of view. In recent years there were 
a huge interest of modern science in the application of 
the Golden section and Fibonacci numbers in different 
area of engineering and science. An extensive bibliogra-
phy of activities can be found in a paper by Stakhov [1,2] 
who has investigated the generalized principle of Golden 
section and its vast area of applications. The main goal of 
his attention is to state the fundamental elements of this 
subject i.e. description of its basic concepts and theories 
and discussion on its applications in modern science. In 
this connection he explains the idea of the creation of a 
new mathematical direction called mathematics of Har-
mony that moved to intend for the mathematical simula-
tion of those phenomena and processes of objective 
world for which Fibonacci numbers and Golden Section 
are their objective essence which can influence on the 
other areas of human culture. Stakhov considers the 
harmony mathematics from sacral geometry point of 
view and its applications in this field [3]. Some authors 

consider the extension of the Fibonacci numbers to cre-
ate a generalized matrix with various properties suitable 
for the coding theory [4,5]. Even they established gener-
alized relations among the code matrix elements for all 
values of Fibonacci p-numbers with a high ability. Or-
der-m generalized of Fibonacci p-numbers for a matrix 
representation gives some identities [6] useful for further 
application in theoretical physics and Metaphysics [7-10]. 
Some authors determine certain matrices whose parame-
ters generate the Lucas p-numbers and their sums creates 
the continues functions for Fibonacci and Lucas 
p-numbers which is considered in [11-14] and their gen-
eralized polynomials and properties are also introduced 
in [15], based on Golden section the attempt of build up 
the fundamental of a new kind of mathematical direction 
is addressed in [3] which is the requirements of modern 
natural science and art and engineering, these mathe-
matical theories are the source of many new ideas in 
mathematics, philosophy, botanic and biology, electrical 
and computer science and engineering, communication 
system, mathematical education, theoretical physics and 
particle physics [16]. 

Other area of applications returns to the connection 
between the Fibonacci sequence and Kalman filter, by 
exploiting the duality principle control [17], finally nu-
merical results of generalized random Fibonacci se-
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quences which are stochastic versions of classical Fibo-
nacci sequences are also obtained [18]. Recently Edu-
ardo Soroko developed very original approach to struc-
tural harmony of system [19], using generalized Golden 
sections. He claims the Generalized Golden sections are 
invariant which allow natural systems in process of their 
self-organization to find the harmonic structure, station-
ary regime of their existence, structural and functional 
stability. 

Following the introduction, in Section 2 we establish 
multi parameters Golden Ratio and geometric applica-
tions. In Section 3 we generalized the Gazale formula. 
Sections 4 and 5 investigate the generalized hyperbolic 
functions and double parameters matrices and applica-
tions. 

2. Preliminaries 

In this paper we start a geometrical discussion which 
leads to a generalized form of golden ratio with multi 
parameters that for the case of single parameter it changes 
to the ordinary generalized form which has been consid-
ered by authors in the recent years. 

Suppose a line AB is to divided in two parts AC and 
CB (Figure 1) such that 

n
AB AC

a
AC CB

 
 


               (1) 

where  and a   are real positive numbers. Let  

AC
x

CB


 , then 

1
AB AC CB CB

a a a a a
AC AC AC x

               
 
 

 

Thus we obtain  

na
a x

x

   
 

 

or 
1nx ax b                  (2) 

where a b  . In a special case for  we intend to 
divide 

1n 
AB  such that 

AB A
a

C

AC CB


  

then we have 
2 0x ax b                (3) 

or 

2

1

4

2

a a b
x

 
               (4) 

and 
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Figure 1. Dividing the line AB in generalized Golden sec-
tion. 

 
2

2

4

2

a a b
x

 
                (5) 

We call the positive root of this equation the general-
ized two parameters golden ratio   ,a b

 
2

4
1

1
,

2 2

b

aa b a

 
 

  
 
  

 

for the case b = 1 it gives a uniparameter a  

 
2 4

,1
2 2a

a a b
a  

    

which is called generalized golden ratio and has been 
considered in recent years by some authors, for a = 1 
gives the famous historical golden ratio 

 1

1 5
1,1

2
   
    

where the ratio of the adjacent numbers in Fibonacci 
series and Lucas series tends towards this irrational 
number. 

Let us consider the properties of this golden ratio, for 
a = b we have 

4
1

1

2 2
aa

 
 

  
 
  

 

which is one solution of equation . Now 
other properties of the ratio can be considered. We have 

2 0x ax a  

b
a 


   

the generalized golden ratio   when a = 1 reduces to  

the well-known historical golden ratio 
1 5

2
 
  which  

has many properties and application in art, engineering, 
physics and mathematics. Similar properties can be es-
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tablished in the generalized case. For instance the gener-
alized   can be expressed in terms of itself, like 

1
a


   

that can be expanded into this fraction or nested roots 
equations that goes on for ever and called continued 
fraction or nested roots 

 

1 1 1

1 1 1

,

a a a a

a b b a b a b a







   

   

   







 

Using the   relation in term of itself we get the fol-
lowing continued fractions for  , a ,  respec-
tively 

 ,a b 

 

1
1

1
1

1
1

1
1

1

,

a a
a

a
a

b
a b a

b
a

b
a

a













 





 











 

Stakhov and Rozin [20,21] give some interesting re-
sults for  and , similar results are veri-
fied for different values of a and b, two dimension peri-
odic continued fractions are considered by some authors 
[22,23] using above formulas may generalize the appli-
cation in art and architecture. The above line AB can be 
divided in n sections and by the successive ratios a sys-
tem of equations will be created such that for a given 
value n, (1) be extended to multi parameters ratios to 
create a multi parameters Golden ratio. In this paper we 
concentrate on a generalized double parameters and ap-
plications of this ratio. 

2n  1a b 

If  in (3), thena b  
4

1
1

,
2 2

aa a a

 
 

  
 
  

, the  

generalized single parameter ratio different from  ,1a
 studied by Stakhov, actually (2) can be considered as a 

characteristic function of a difference equation of order n 
with parameters  and b  a

     2 1, ,n n nP a b aP a b bP a b  

which can be generalized to a multi parameters cases. 

,



 

  1 2 1 2
1

, , , , ,..., ,

2,3,

p

n p p i n p i p
i

P a a a a P a a a

p

  









 

Theorem 2.1 Let ADB  be an isosceles triangle with 
the vertex angle  , then the necessary and sufficient 
conditions for the angle equals to BAC   (see Figure 2) 
 0 π 2  , is dividing the  by  in general-
ized Golden ratio, such that  and 

BD
DC

C
a 1BC    

and 
1

BC CD a


.   

Proof Without losing the generality put 1b  , train- 
gle ADB  is isosceles and  ˆ ˆ π 2A B    , the condi-
tion is sufficient, because if and DC a 1CB   then 
DB CBDC   or  1DB a a    . For the trian-
gles ADC  and ADB  we have respectively 

 
 

2 2 2

2 2 2

2 . cos

2 . cos

AC DA DC DA DC

AB DA DB DA DB





  

  
 

or, 

 
 

2 2 2 2

2 2 2 2 2

2 . cos

2 . cos

AC a a a a

AB a a a a

  

    

  

  
 

If AB AC  then the ABC  will be an isosceles tri-  

angle and   π

2 2
ABC ACB


    and also  

  1
cos

2





 , so we will have  

 π π
π

2 2 2 2
BAC

                 
 . On the other hand 

the condition is necessary, because if BAC   then 

 π
π

2 2 2 2
ACB

π            
, hence AC AB  

and triangle ABC

a

 will be isosceles and we conclude 

easily DC  , 
1

CB


 . 

 
 

D

C 
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A

b


 

b
a 


   

α

α 

π

2 2




a

 

Figure 2. Dividing BD by point C in the generalized golden 
ratio. 
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The impossibility proofs are so advanced, that many 
people flatly refuse to accept the problem are impossible 
[24]. The proofs of impossibilities of certain geometric 
constructions like doubling the cube and squaring the 
circle, trisecting the angle is impossible and details can 
be found in some references [25], trisecting the angle is 
impossible that is there exist an angle that cannot be tri-
sected with a straightedge and compass. On the other 
hand there are some angles which may be trisected, some 
author give valuable discussion for ideal and classical 
trisection of an arbitrary angle [26]. Using generalized 
golden ratio one may establish the following criteria for 
trisection of a given angle. 

Now, we construct an isosceles triangle ADB  whose 
vertex angle is ADB   (Figure 3), hence the base  

angles are 
π

2 2

  
 

BD . By taking the line  and mark-  

ing  on the line in the generalized golden ratio, the 
angle 

C
BAC  , now we draw a circle with the center 

 and radiusD  1DA DB a a     , then the line 
AC  will contacts with this circle at a point say E , the 

arc 2BEEA  . By a similar way we divide  in 
generalized golden ratio and find such that 

DE
DCC a   

and 1C E   , now the line  will contact with the 
circle in a point say , joining we have 

BC
DEE  ADB   

 BDE  EDE  The procedure can be carried on to pro-
duce a desired polygon by a proper selection of the angle 
 . Thus we will have the following proposition for tri-
section of an arbitrary angle. 

Proposition For trisection of a given angle first con-
struct an isosceles triangle ADB  with vertex angle 3  
and side DB DA a   (Figure 4), then divide   DB
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A 

α 

α 
α 

α

α 
α 

E

C  1



1


 

C 

 

Figure 3. Trisecting the angle by using generalized golden 
section. 

D B 
C 

a 

C  

1



1



M 

M   
N 

N   
A  

Figure 4. Algorithm for trisecting the angle by using gener-
alized golden section. 
 
into two parts DC a  and 1CB  , and find M  
the middle point of , draw a line per pendicula to 

 from 
CB

CB M , which contact the circle at point say , 
connect  and  by segment , then divide 

 into two parts 

N
D N

DC
DN

DN   and  on golden ratio 
such that 

C N
DC a   and 1C N    again find the point 

M   the middle point of C N  draw a line perpendicular 
to C N  at point M  , extend  to contact the circle 
at point 

C N
N  , then draw , angle 3DN    will be tri-

sected by  and DN DN  . 
When  is divided into two segment  and DB a 1  ,  

then   1
cos

2





  we can easily calculate a with re- 

spect to  cos  , and we get 

 
 

2
1 2cos 1

2cos 1

b
a




 



 

having  , a  can easily be calculated, for given   
when the segments are  and a b   respectively, and 
are given in the Table 1 for  and some nominal 
values of 

1b 
 . 

3. Generalized Gazale Formula 

Let  and b  be any real positive number, and define 
a Generalized Gazale sequence n  

a
 , ,P a b P 0,1, 2,n    

if and only if  0 ,P a b 0  and  and for all 
 

 1 ,P a b 1
0n 

    2 1, ,n n nP a b aP a b bP a b   ,        (6) 

To attain the solution, using characteristics method 
gives the following quadratic equation 

2 0a b     

where 
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Table 1. Values of Cos (α), a and for the nominal values of α. 

1
cos

2
   60    a        

2
cos

2
   45    2a   2 1    

5 1
cos

4
 
  36    1a   5 1

2
 
  

3
cos

2
   30    3 3

2
a


  3 1

2
 
  

cos20 0.940  20    0.256a   1.136   

cos20 0.985  10    0.061a   1.031   

cos0 1  0    0a   1   
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a a b
r
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4

2

a a b
r

 


 
are the roots of characteristics function and the positive 
root can be written as 1r

 
2

1

4
1

1
,

2 2

b

ar a a b

 
 

   
 
  

 

where  is the Generalized Golden Ratio and  ,a b 

 
2

2

4
1

1

2 2 ,

b
bar a
a b

 
 

      
 
  

 

Hence the general solution of (1) can be written as 

     1 2, ,
,

n
n

n

b
P a b C a b C

a b



 

     
 

 

Looking at the two initial values 0  and 1 , the co-
efficients  and  can be determined, thus 

P P

1C 2C

     2

1
, , (

,4

n n
n

b
P a b a b

a ba b



     
   

)     (7) 

For , ,  1b    ,1n nP a P a  
21 4

,1
2 2a

a
a  

    

 
2

1

4

n

n
n a

a

P a
a




      
    

which is the Gazale formula for the Generalized Fibo-
nacci sequence, and if nF  is the ordinary Fibonacci 
sequence, the general solution to 

2 1n n nF F F    

will be 

  1
1

1 1
1

5

5 1 1 5
2 2

5

n

n
n n

n n

F P 


        
   

          
   

 

for the case 1a  , and for the case , 2a   2,1nP  
gives the John Pell (1610-1685) formula, and this for-
mula generates an infinite number of generalized Fibo-
nacci number of different orders for a and b. 

The following Theorem is a generalized aspect of 
theorems that have been established for Fibonacci and 
Lucas numbers. 

Theorem 3.1 If  and  are real positive 
numbers, then 

1n  ,a b

        12
1 1, , ,

n

n n nP a b P a b P a b b


          (9) 

and is independent of . a
Proof We have 

     

     

     
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1
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1

1
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2

1
, ,

,4

1
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1
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n

n
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n
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n
n

b
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b
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b
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









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
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


            

            
             


 

Then 

       

    
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2
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1
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n
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
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

 
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1 
          (8) 

Thus 
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Similar identities like the Askey’s and Catelan’s and 
d’Ocagne’s can be generalized. For instance in Osler and 
Hilburn [2] Askcy’s hyperbolic sine identity for ordinary 
Fibonacci sequence is given as 

2
sinh log

5
n n

F n i
i

            (10) 

and generalized form in [27,28] for real positive  
is 

0a 


2

2
sinh log

4
n an

G
i a

n i


        (11) 

If we generalize (11) for  ,nP a b  we obtain 
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4. Golden Hyperbolic Functions 

Similar to the Stakhov and Rozin hyperbolic functions 
[20], we can use the same approach and introduce the 
generalized hyperbolic functions of order (a,b) in the 
following form 

     

     

   

     

2

2

2

2

2

1
, ,

,4

1
, ,

,4

1 1 1
,

,4

,
,4

1 1

4

n

n
n

n

n
n

n
n

n

nn

n

n
n

b
P a b a b

a ba b

b
P a b a b

a ba b

a b
b a ba b

b b
a b

a ba b

b a b






















             
             

,

                  
               

    
  

   
,

,

n
b

a b
a b

       
   

 

Then we will have 

   1
, ,

n

n nP a b P a b
b

    
 

 

We define 

         

         

2 2

2 2

, ,

, ,

n n
n n

n n

n n
n n

n n

SP SP a b b a b b a b

CP CP a b b a b b a b

 

 

 

 

     

     

,

,
 

Then, n nSP SP   and . n nCP CP

   

 

2

2

2 1
,

2

n

n
n n

n

b SP n k
P a b

b CP n k

    
  

 

where 

 
2

4
1

1
,

2 2

b

aa b a

 
 

  
 
  

 
Theorem 4.1 Following recursive relation can be es-

tablished 
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The symmetric property is also satisfied, as we have 
for Fibonacci and Lucas hyperbolics sine and cosine. For 
example 
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Similar to the De’Moivre formulas for the double pa-
rameter generalized hyperbolic functions following rela-
tion is satisfied 
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5. Generalized Double Parameter Matrices 
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cci numbers by the fol-

lowing relation 

Hoggatt [3] introduced the following Q-matrix and The-
ory of Fibonacci Q-matrix 
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the procedure can be 
rameter

extended to the case of multi pa-
s, and we guess 



and also it maybe generalized to the multi dimension 
case which allows developing the application to the com- 
munication engineering specially to the coding theory[4,5] 

The inverse can also be calculated similar to the 
by induction. 
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