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Abstract

In this paper, an approximate analytical method to solve the non-linear differential equations in
an immobilized enzyme film is presented. Analytical expressions for concentrations of substrate
and product have been derived for all values of dimensionless parameter. Dimensionless numbers
that can be used to study the effects of enzyme loading, enzymatic gel thickness, and oxidation/
reduction Kinetics at the electrode in biosensor/biofuel cell performance were identified. Using
the dimensionless numbers identified in this paper, and the plots representing the effects of these
dimensionless numbers on concentrations and current in biosensor/biofuel cell are discussed.
Analytical results are compared with simulation results and satisfactory agreement is noted.
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1. Introduction

Biosensors and biofuel cells are commonly used for industrial, environmental and medical applications. Howev-
er there are no clear guidelines for the design of electrochemical biosensors or biofuel cells employing immobi-
lized enzymes that will produce a targeted linear range, limit of detection and sensitivity. Such guidelines can be
provided using analytical simulation tools that assess sensor feasibility prior to extensive development.
Biosensors and biofuel cell face increasing demand for selective and sensitive detection of different molecules
for industrial, environmental and clinical applications [1]-[4]. There are many affordable alternatives to labora-
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tory techniques that require trained personnel, expensive equipment and possibly delayed response time. Elec-
trochemical biosensors and biofuel cell especially desirable for use in field applications because of their compact
design, ease of manufacture, real time response, sensitivity and selectivity [3]-[6]. They are used in many appli-
cations ranging from glucose detection to detection of neurotoxic agents [1] [6] [7]. Here we focus on biosensors
and biofuel cell that employ immobilized enzymes and the electrochemical detection of the enzymatic reaction.
Some important parameters that affect these goals are listed and include transport of the substrate and the prod-
uct through the immobilized enzyme layer, oxidation/reduction kinetics at the electrode, enzyme activity and
loading and operating conditions such as pH and temperature. Of these parameters optimizing the enzyme load-
ing and activity has been a major challenge and it depends primarily on the enzyme immobilization method.
Different methods such as chemical modification of the electrode surface, entrapment in a membrane and phys-
ical absorption are commonly used to create enzyme layers on electrodes [8].

A mathematical model considering reaction and diffusion processes in biofuel cell or biosensor, contains a
system of non-linear partial differential equations. Numerical and analytical solutions to the reaction-diffusion
equations have been presented for different cases by many authors [9]-[14]. Analytical solutions are available
for limiting cases, whereas numerical solutions were used to determine and optimize a wide range of experi-
mental parameters [15]. Many of the earlier studies have focused on optimizing glucose biosensors where the
enzyme was entrapped in a redox hydrogel [16] [17]. Simple Michaelis-Menten kinetics was used to model the
enzyme kinetics, and first order kinetics between the mediator and the electrode were assumed [9] [17]. The ef-
fects of experimental parameters on the response at steady state and during a transient were studied [12]. Espe-
cially the behavior of the glucose sensor in the diffusion limited regime was analyzed since this leads to an ex-
tended linear range [16] [18]. Substrate and product inhibition in an enzyme with first order reaction kinetics
[19], diffusion through a semi-permeable outer membrane [20] [21] and data analysis to determine kinetic con-
stants and enzyme activity [22] were also studied by different groups.

Sachin [23] used a finite difference method for electrochemical biosensors with an immobilized enzyme layer.
Sachin described the general criteria using Michaelis-Menten rate equation and effect of gel thickness on the re-
sponse of this biosensor. To our knowledge no rigorous analytical solutions for non-steady-state concentration
and current have been reported. In this paper, we have derived the analytical expressions of concentration and
current using a new approach of Homotopy perturbation method [24]-[27]. The result of the Equations (2)-(3) in
immobilized enzyme system is relevant because its solution describes important applications such as biosensors,
bioreactors, and biofuel cells, among others.

2. Mathematical Formulation of the Problem

The chemical reactions in the layer are

E+S<ES—>E+P @
where E refers to the enzyme, S is the substrate, ES is a transitory complex assumed to be at a steady concentra-
tion, and P is the product. The schematic of the system modeled in this study is shown in Figure 1. An aqueous
drop containing substrate (S) is placed on the electrode with an immobilized enzyme layer. As the substrate dif-
fuses through the enzyme layer it reacts with the enzyme to form the product (P). The product then diffuses
through the layer, and if it is electroactive, is oxidized or reduced at the electrode. When modeling this system,
we used Michaelis-Menten equation to describe the kinetics within the enzyme layer and coupled it with Fick’s
law to describe the diffusion of the substrate and product as shown in Equations (2)-(3):
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where c,, ¢, D, and Dy represent the concentrations and diffusion coefficients of the product and the

substrate, respectively. k., is the catalytic rate constant in the Michaelis-Menten mechanism, [E] is enzyme
loading, and K is Michaelis constant for the substrate. In the above equations the initial and boundary condi-

tions are given by
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Figure 1. Schematic model of an enzyme-membrane electrodes.
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where z is the distance from the electrode surface and L is the enzyme layer thickness.
Cqux  epresents the concentration of substrate in bulk solution. Current i occurring at the electrode surface

due to reduction or oxidation of P is given by

oc
i=nFD, | —* 5
p( 82 jz—d ( )
Equations (2)-(3) were made dimensionless using the following dimensionless parameters:
2
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The Equations (2)-(3) in dimensionless form becomes as follows:
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From the Equation (4), the initial and boundary conditions in dimensionless form are given by
t"=0,0<z <1: ¢/ =0, ¢, =0
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Dimensionless current density becomes
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3. General Analytical Expression of Concentration of Substrate and Product under
Non-Steady State Condition Using Homotopy Perturbation Method (HPM)

In recent days, HPM is often employed to solve several analytical problems. In addition, several groups demon-
strated the efficiency and suitability of the HPM for solving nonlinear equations in electrochemical problems
[28]-[31]. He et al. [24], used HPM to solve the Lighthill equation, the Duffing equation [25] and the Blasius
equation [26]. HPM has also been used to solve non-linear boundary value problems [27], integral equation
[32]-[34], Klein-Gordon and Sine-Gordon equations [35], Emden-Flower type equations [36] and several other
problems. Laplace transform and Homotopy perturbation method are used to solve the non-linear differential
Equations (7)-(8) (Appendix A). The analytical expressions of non-steady state concentrations are as follows:

C: (Z*vt*) _ CZZ:h(E/jEZ)) _ni (_ml)n (2n +1) COS(%M*}_W* 11)
¢ (7,t)=1- cosh/az" peith cos/(ar/b)z’ _cosh( a(b—l)/bz*)
G cosh~/a cos,/(ar/b) cosh( a(b—l)/b)
+ﬂ " (_l)—n COS((Zn+1)TCZ*/Z)ei((znﬂ)znzhr)t*
= +1)[a—(b(2n +1y’ nz/zr)J (12)
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where m=a+ . s e, b=(1-r) (13)
Using (10) and (12), the current is given by
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When t* — oo (steady state), the above equation becomes
i
——=[vJ/atanh(«a ‘ 15
nFD, ‘\/_ (\/—) (15)

4. Discussion

Equations (11) (12) and (14) are the new and simple analytical expressions of concentrations of substrate,
product and current respectively. To show the efficiency of our non-steady-state result, it is compared with
numerical solution in Figure 2 & Figure 3. Satisfactory agreement is noted. The SCILAB/MATLAB program is
also given in Appendix B. Figure 2 shows the time-dependent normalized concentration profiles for the substrate
C. in the enzyme membrane. Figures 2(a)-(c) show dimensionless concentration ¢; versus the dimensionless

()
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Figure 2. Dimensionless substrate concentration c; versus distance from electrode surface Z" using Equation (11) for vari-
ous values of parameters @, t and Cq.

distance z". The concentration of substrate C; depends upon the dimensionless parameter “a”. The
dimensionless parameter “a” depends upon ¢, and c,. When Thiele modulus ¢, is small, the Kinetics
dominate and the uptake of the substrate are kinetically controlled. From Figure 2(a), it is evident that the value
of the substrate concentration . decreases when the Thiele modulus ¢, increases or Figure 2(b) illustrates
that, when t increases, the concentration of the substrate decreases. It is obvious from Figure 2(c) that when
initial substrate concentration c , increases, the concentration of substrate also decreases.

The normalized concentration of the product c; for various values of Thiele modulus ¢, , time t and ratio of
diffusion coefficient is plotted in Figures 3(a)-(c). From the Figure 3(a) & Figure 3(b), it is inferred that the
normalized concentration product increases with the decrease in the value of ¢, and time t. The product
concentration is increases when the ratio of diffusion coefficient decreases as shown in Figure 3(c).

The value of current i increases slightly when the Thiele modulus ¢, increases or electrode thickness
increases as shown in Figure 4(a). From Figure 4(b), it is inferred that the ratio of diffusion coefficient r
increases the current density is decreases. The current density increases as initial substrate concentration c,,

()
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Figure 3. Dimensionless product concentration ¢, versus distance from electrode surface Z" using Equation (12) for vari-
ous values of parameters @, t and r.

decreases.

5. Estimation of Kinetic Parameters
The current is dependent upon the parameters Thiele module ¢, and initial substrate concentration c,. When
r=1,(or D, =D,) Equation (15) can be written as

b = [tanh‘l(—i/nFDp)]2 (16)

1+c,,

Substituting the value of 4 and k in the above equation, we get

-1 H -2 Ds KSDs
[ tanh*(<i/nFD, )| :(W\Jcsmlk +W (7

cat cat

()
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Figure 4. Dimensionless current density i/nFD, versus time t using Equation (14) for various values of parameters @y, cq
andr.

-2
The plot of | tanh™(—i/nFD versus C gives the slope (D, /k_ [E]L?) and intercept
p Shulk s/ Mcat

&KS Ds/kcén [E]Lz) as shown in Figure 5. From these plots, we can obtain the value of kinetic parameters
s and (D, /Ky )

6. Conclusion

The theoretical behavior of biofuel cell/biosensor was analyzed. The coupled time dependent non-steady state
non-linear diffusion equations in biosensor or biofuel cell have been solved analytically and numerically. These
analytical results will be used in determining the kinetic characteristics of the biofuel cell or biosensor. The
analytical expressions for substrate, product concentration and transient current response are obtained using the
method of Laplace transformation and HPM. A good agreement with numerical simulation data is noticed.
Concentration of substrate, product and current depends upon Thiele modulus ¢, and initial concentration of
substrate which is discussed in this communication. Evaluation of Kinetic parametr from the response of the
steady-state current is also completely discussed. The theoretical model presented here can be used for the opti-

mization of the design of the biosensor.
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Symbols Symbols
@, Dimensionless ratio of the enzymatic reaction rate to diffusion rate of product, (none)
@, Dimensionless ratio of the enzymatic reaction rate to diffusion rate of substrate,(none)
a,b Dimensionless parameters (none)
Co Concentration of product, mol/cm®
[ Dimensionless product concentration, (none)
Cs Concentration of substrate, mol/cm?
c. Dimensionless substrate concentration, (none)
Cspulk Concentration of substrate in bulk solution, mol/cm?
Cshulk Dimensionless concentration of substrate in bulk solution, (none)
D, Diffusion coefficient of product, cm%s
D, Diffusion coefficient of substrate, cm?/s
F Faraday’s constant, C/mol

| Current density, A/lcm?

Ks Michaelis constant for reactant, mM
Keat Catalytic rate constant in Michaelis-Menten mechanism, s
L Thickness of enzyme layer, cm
n Number of electrons transferred in reaction, (none)
r Ratio of diffusion coefficients, (none)
t Time, s
t Dimensionless time, (none)
Vimax Product of the kinetic parameter and enzyme loading, mM/s
z Distance from the electrode surface, cm
7 Dimensionless distance from the electrode surface, (none)
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Appendix A
Solution of Equations (7) and (8) Using Complex Inversion Formula

In this appendix we indicate how Equations (11) and (12) are derived, by solving a differential equation of
second order with constant coefficients by using new homotopy approach and Laplace transform in Equations (7)
and (8), and the boundary conditions. The obtained solution of the Equation (7) as

— coshys+az’
*  scosh+/s+a

In this appendix we indicate how Equation (A1) may be inverted using the complex inversion formula. If
V(S) represents the Laplace transform of a function y(r), then according to the complex inversion formula
we can state that

(A1)

= ! ~ L fexp[sc]y(s)ds
y(r)_ZnLCTwexp[ST]V(s)ds 27Ti9cs plse]y(s)d )

oo

where the integration in Equation (A2) is to be performed along a line s=c in the complex plane where
s=x+1iy. The real number ¢ is chosen such that S=cC lies to the right of all the singularities, but is other-
wise assumed to be arbitrary. In practice, the integral is evaluated by considering the contour integral presented
on the right-hand side of Equation (A2), which is then evaluated using the so-called Bromwich contour. The
contour integral is then evaluated using the residue theorem which states for any analytic function F (z)

$F(z)dz=2riy Res[F(z)] (A3)
p =1,
where the residues are computed at the poles of the function F (Z) . Hence from Equation (A3), we note that
y(r)=> Res[exp[ST]V(s)]S:SO (Ad)

From the theory of complex variables we can show that the residue of a function F (z) at a simple pole at
Z=a isgiven by

Res[F(z)] . =lim{(z—a)F(2)} (A5)

Z—>a

Hence in order to invert Equation (A1), we need to evaluate
cosh (\/s + a) 7
scosh (\/s + a)

The poles are obtained from scosh+/s+a =0. Hence there is a simple pole at s =0 and there are infinitely
many poles given by the solution of the equation cosh+/s+a =0 and

~n?(2n+1)° ~4a
4
Hence we note that

Res

SO s, =

where n=0,1,2,---.

c. (z*,t) = Res[s cosh(ﬁ)} Lt Res[s cosh(\/m)} ) (AB)
The first residue in Equation (A6) is given by
| exp(st)cosh Js+a)X
Res[s cosh (M)LO = lim — (\/(Sﬂ) )
(A7)
_ cosh+/az’
- cosh~/a
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The second residue in Equation (A6) is given by

Res[scosh(\/ﬂ)lzsn — im exp(:ilzzs(ri/(;/_j)z
_ —eXp(St)cosh(M)z*_
= lim o
s %cosh (m )

00
n=0

m

[(—1)” m(2n +1)e’m‘os[(2r_1 +1)nz*/2]]

where m is defined as in Equation (13). Here we used cosh(if)=cos(#) and sinh(i¢)=isin(#). From
(AB), (A7) and (A8) we conclude that

X (z*,t) _ cosh/az" i [(—1)n n(2n+1)e™ cos[(Zn +1)m z*/2]] (A9)

" coshva S m
Similarly we can invert Equation (8) by using complex inversion formula.

Appendix B
Scilab/Matlab Program to Find the Numerical Solution of Equations (7) and (8)

function see5

m =0;

x =linspace(0,1);

t=linspace(0,5);
sol=pdepe(m,@pdex4pde, @pdexdic, @pdex4bc,x,t);
ul =sol(:,:,1);

u2 =sol(:,:,2);

%figure

%plot(x,ul(end,:))

Y%title('ul(x,t)")

%xlabel('Distance x")

%ylabel(‘time ")

%
figure
plot(x,u2(end,:))
title('u2(x,t)")
xlabel('Distance x")
ylabel('u2(x,2)")

%
function [c,f,s] = pdex4pde(x,t,u,DuDXx)
r=1,

¢ =[L;r];

f =[1;1].*DuDx;

e =0.5;

F=(e"2)*u(1)/(1+u(1));

s=[-F,F];

%
function u0 = pdex4ic(x)
uo =[0;0];
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%

function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t)
pl = [0;0];

ql = [1;1];

pr = [ur(1)-1;ur(2)-0];

qr = [0;0];



	Analytical Expression for the Concentration of Substrate and Product in Immobilized Enzyme System in Biofuel/Biosensor
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Formulation of the Problem
	3. General Analytical Expression of Concentration of Substrate and Product under Non-Steady State Condition Using Homotopy Perturbation Method (HPM) 
	4. Discussion
	5. Estimation of Kinetic Parameters
	6. Conclusion
	Acknowledgements
	References
	Nomenclature
	Appendix A
	Solution of Equations (7) and (8) Using Complex Inversion Formula

	Appendix B
	Scilab/Matlab Program to Find the Numerical Solution of Equations (7) and (8)


