Published Online June 2015 in SciRes. http://www.scirp.org/journal/apm http://dx.doi.org/10.4236/apm.2015.58044

A Characterization of Complex Projective Spaces by Sections of Line Bundles

Shuyu Liang, Yanan Gao, Yicai Zhao*

Department of Mathematic, Jinan University, Guangzhou, China

Email: *tzhaoyc@jnu.edu.cn

Received 11 May 2015; accepted 13 June 2015; published 16 June 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and $\dim H^0(M, L) = n + 1$, then M is biholomorphic to a complex projective space P^n of dimension n.

Keywords

Complex Space, Projective Space, Line Bundle, Complete Intersected

1. Introduction

Kobayashi and Ochiai [1] have given Characterizations of the complex projective spaces. Kobayashi-Ochiai Theorem [1] has been applied to obtain many important characterizations of the projective spaces, such as the proof of Frankel conjectures [2], the proof of Hartshorne conjecture [3], and many others [4]-[7]. In this note, we want to give a characterization of the complex projective spaces via sections of line bundles.

Results which can be found in [1] [8] and [9] are used freely often without explicit references. Let M be a complex space with a line bundle L. \mathcal{G} is the sheaf of germs of sheaf of holomorphic functions, $\mathcal{G}(L)$ is the sheaf of germs of holomorphic sections of a line bundle L. $H^0(M,L)$ means $H^0(M,\mathcal{G}(L))$.

2. Characterization of the Projective Spaces

In this paper, a characterization of the projective space will be given.

Definition. Let M be a compact complex space with a line bundle L. M is said to be completely intersected with respect to a line bundle L, provided that complex subspace $V(\varphi_1, \dots, \varphi_k)$ is irreducible for any linearly independent elements of $\varphi_1, \dots, \varphi_k$ of $H^0(M, L)$, where each φ_i is irreducible, and $V(\varphi_1, \dots, \varphi_k)$ is the

^{*}Corresponding author.

common zeros of $\varphi_1, \dots, \varphi_k$.

From the Lemma 1.1 [1] and the proof of theorem 16.2.1 [8], we have

Lemma 1. Let V be a compact irreducible complex space. Let F and L be line bundles over V. Let φ be an irreducible section of L and put $S = V(\varphi) = \{x \in V; \varphi(x) = 0\}$. The following sequence of sheaf homomorphisms is exact:

$$0 \to \mathcal{G}(F) \xrightarrow{\alpha} \mathcal{G}(F \otimes L) \xrightarrow{\beta} \mathcal{G}_{S}(F \otimes L) \to 0$$

where μ is the multiplication by φ , $\mathcal{G}_{S}(F \otimes L)$ is the sheaf defined by $\mathcal{G}_{S}(F \otimes L)|_{S} = \mathcal{G}(F \otimes L)|_{S}$ and $\mathcal{G}_{S}(F \otimes L)|_{V-S} = 0$, β is the restriction map.

Lemma 2. Let M be a n-dimensional compact complex space with a line bundle L. Let $\varphi_1, \dots, \varphi_k$ be linear independent elements of $H^0(M, L)$, such that each φ_i is irreducible. If M is completely intersected with respect to L, then there is an exact sequence:

$$0 \to (\varphi_1, \dots, \varphi_k) \to H^0(M, L) \xrightarrow{\beta} H^0(V_{n-k}, L)$$

where $(\varphi_1, \dots, \varphi_k)$ is the subspace of $H^0(M, L)$ spanned by the sections $\varphi_1, \dots, \varphi_k$ $(k \le n)$ and β is the restriction map.

Proof. The proof is by induction on k. The case k=0 is trivial. Since M is completely intersected with respect to L, $V_{n-k+1}=V\left(\varphi_1,\cdots,\varphi_{k-1}\right)$ and $V_{n-k}=V\left(\varphi_1,\cdots,\varphi_k\right)$ are irreducible. Assume the lemma for k-1, we have the exact sequence:

$$0 \rightarrow (\varphi_1, \cdots, \varphi_{k-1}) \rightarrow H^0(M, L) \xrightarrow{\beta} H^0(V_{n-k+1}, L)$$

If $V(\varphi_k) \subset V_{n-k+1}$, then $\varphi_k \in (\varphi_1, \cdots, \varphi_{k-1})$ from which it follows that $\varphi_1, \cdots, \varphi_k$ are linearly dependent, a contradiction. Thus, φ_k is nontrivial on V_{n-k+1} ; it follows that $V_{n-k} = V_{n-k+1} \cup V(\varphi_k)$ defined as the set of zeros of φ_k on V_{n-k+1} is an irreducible divisor.

We apply Lemma 1 to $V=V_{n-k+1}$, $F=\mathcal{G}$, $\varphi=\varphi_k$. Then, $S=V_{n-k}$. The exact sequence in Lemma 1 induces the following exact sequence

$$0 \to H^0\left(V_{n-k+1}, \mathcal{S}\right) \xrightarrow{\alpha} H^0\left(V_{n-k+1}, L\right) \xrightarrow{\beta} H^0\left(V_{n-k}, L\right)$$

This means that the kernel of the restriction map β is spanned by the restriction of φ_k to V_{n-k+1} . Combining this with the lemma for k-1, we obtain the lemma for k.

Now we give the main result of this paper.

Theorem. Let M be a n-dimensional compact irreducible complex space with a line bundle L. If $\dim H^0(M,L) = n+1$ and M is completely intersected with respect to L, then M is biholomorphic to a complex space P^n of dimension n.

Proof. Since dim $H^0(M,L) = n+1$, we can choose linearly independent sections $\varphi_1, \dots, \varphi_{n+1}$ from $H^0(M,L)$ with each φ_i irreducible. Put $D_i = V(\varphi_i) = \left\{x \in M \middle| \varphi_i(x) = 0\right\}, i = 1, \dots, n+1$.

Claim 1. Each D_i is an irreducible divisor of M.

First of all, D_i is nonempty. Indeed, if $D_i = \phi$ for some i, then $\varphi_i(x) \neq 0$ for all $x \in M$. Define map $h: M \times C \to L$ by $h(x,c) = c\varphi_i(x)$. It is clear that h is isomorphic, that is, L is a trivial line bundle over M. It follows that $\dim H^0(M,L) = 1$, which is contradictory to the hypothesis that $\dim H^0(M,L) = n+1 \geq 2$. Thus, each $D_i = \phi$. Since φ_i is irreducible, D_i is irreducible and $\dim D_i = n-1$ by [Corollary 14, Ch II, 3] and [Theorem 11, Ch III, 3]. Hence, D_i is an irreducible divisor.

Let $V_{n-i} = V(\varphi_1, \dots, \varphi_i)$ be the common zeros of $\varphi_1, \dots, \varphi_i$, then $V_{n-i} = D_1 \cap \dots \cap D_i$. By the hypothesis, M is completely intersected with respect to L; each V_{n-i} is irreducible.

Claim 2. $\dim V_{n-i} = n - i, i = 1, \dots, n$.

For i=1, $V_{i-1}=D_1$ is an irreducible divisor by Claim 1, thus $\dim V_{n-1}=n-1$. Assume that $\dim V_{n-i+1}=n-i+1$. If $V_{n-i+1}=V\left(\varphi_1,\cdots,\varphi_{i-1}\right)\subset D_i$, then $\varphi_i\in\left(\varphi_1,\cdots,\varphi_{i-1}\right)$ by Lemma 2. This induces that $\varphi_1,\cdots,\varphi_i$ are linearly dependent, a contradiction. Thus, φ_i is nontrivial on the irreducible complex subspace V_{n-i+1} . It follows by [Theorem 14, Ch. III, 3] that $\dim V_{n-i}=\dim V_{n-i+1}\cap D_i=\dim V_{n-i+1}-1=n-i$.

Claim 3. $H^0(M,L)$ is base point free.

By Claim 2, V_{n-i} is an irreducible complex subspace of dimension n-i. In particular, V_0 is one point. If φ_{n+1} vanishes at V_0 , then $\varphi_1, \dots, \varphi_{n+1}$ are linearly dependent by Lemma 2. Since $\varphi_1, \dots, \varphi_{n+1}$ are defined as

linearly independent sections in the beginning of this proof, it is a contradiction. Thus, φ_{n+1} does not vanish at V_0 . This shows that $\varphi_1, \dots, \varphi_{n+1}$ have no common zeros, that is, $H^0(M, L)$ is base point free.

Since $\dim H^0(M,L) = n+1$, we may let P^n be the complex projective space of dimension n defined as the set of hyperplanes through the origin in $H^0(M,L)$. For any point $x \in M$, put

 $\psi(x) = \{ \varphi \in H^0(M, L) | \varphi(x) = 0 \}$. Since $H^0(M, L)$ is base point free, $\psi(x)$ is a hyperplane through the origin in $H^0(M, L)$ and so $\psi(x) \in P^n$. We now obtain a holomorphic mapping $\psi: M \to P^n$.

Claim 4. The mapping ψ is bijective.

Giving a point y of P^n , it is a hyperplane through the origin in $H^0(M,L)$. Let $t_1, \dots, t_n \in H^0(M,L)$ be a basis for this hyperplane with each t_i irreducible. Then, y is the complex subspace spanned by t_1, \dots, t_n , that is, $(t_1, \dots, t_n) = y$. Let $T_i = V(t_i)$ be the set of zeros of t_i for $i = 1, \dots, n$. Since M is completely intersected with respect to L, $V(t_1, \dots, t_n)$ is irreducible and $\dim V(t_1, \dots, t_n) = 0$ by Claim 2, that is, $V(t_1, \dots, t_n)$ is a point. It follows that there exists a point x of M, such that $t_1(x) = \dots = t_n(x) = 0$.

Thus, $t_1, \dots, t_n \in \psi(x) = \{ \varphi \in H^0(M, L) | \varphi(x) = 0 \}$. By Lemma 2, we have the exact sequence

$$0 \to (t_1, \dots, t_n) \to H^0(M, L) \xrightarrow{\beta} H^0(V(t_1, \dots, t_n)L).$$

For any $\varphi \in \psi(x)$, we have $\varphi(x) = 0$. Since $V(t_1, \dots, t_n) = \{x\}$ and the above sequence is exact, it follows that $\varphi \in (t_1, \dots, t_n)$ and so $\psi(x) = (t_1, \dots, t_n) = y$. Thus, ψ is surjective.

On the other hand, let u and v be any two points of M. $\psi(u)$ is a hyperplane through the origin in $H^0(M,L)$. Let s_1,\dots,s_n be a basis for $\psi(u)$ with each s_i irreducible. By Claim 2, $V(s_1,\dots,s_n)$ is a single point and this induces that $V(s_1,\dots,s_n) = \{u\}$. If $\psi(u) = \psi(v)$, then $(s_1,\dots,s_u) = \psi(v)$. It follows that $v \in V(s_1,\dots,s_n) = \{u\}$, that is, v = u. Thus ψ is injective.

Consequently, we have shown that M is biholomorphic to a complex projective space P^n of dimension n. As an application of the theorem above, we give a proof for the famous Kobayashi-Ochiai Theorem [1].

Corollary ([Theorem 1.1 [1]). Let M be a n-dimensional complex irreducible complex space with an ample line bundle F. If $C_1(F)^n[M] = 1$ and $\dim H^0(M,F) = n+1$, then M is biholomorphic to a complex projective space P^n of dimension n.

Proof. By the theorem in this paper, it suffices to show that M is completely intersected with respect to F. Let $\varphi_1, \dots, \varphi_k$ be linearly independent elements of $H^0(M, F)$ with each φ_i irreducible. Let $V_{n-k} = V(\varphi_1, \dots, \varphi_k)$ be the common zeros of $\varphi_1, \dots, \varphi_k$ on M.

Assume that V_{n-k} is reducible, then write $V_{n-k} = V' + V''$ for some nontrivial V' and V''. Because $\varphi_1, \dots, \varphi_k$ are linearly independent elements of $H^0(M, F)$ with each φ_i irreducible, there are no common zeros of $\varphi_1, \dots, \varphi_k$ on $C_1(F)^k[M]$. And due to the definition of V_{n-k} , we have

$$C_{1}(F)^{n}[M] = C_{1}(F)^{k} C_{1}(F)^{n-k}[M] = C_{1}(F)^{n-k}[V_{n-k}]$$
$$= C_{1}(F)^{n-k}[V' + V''] = C_{1}(F)^{n-k}[V'] + C_{1}(F)^{n-k}[V'']$$

By the hypothesis, $C_1(F)^n[M] = 1$, and so

$$C_1(F)^{n-k}[V'] + C_1(F)^{n-k}[V''] = 1$$
.

Since F is ample, $C_1(F)^{n-k}[V']$ and $C_1(F)^{n-k}[V'']$ are positive integers. Thus, $C_1(F)^n[M] \ge 2$, a contradiction. It follows that V_{n-k} is irreducible. By the theorem above, M is biholomorphic to P^n .

References

- [1] Kobayashi, S. and Ochiai, T. (1973) Characterizations of Complex Projective Spaces and Hyperquadrics. *Journal of Mathematics of Kyoto University*, **13**, 31-47.
- [2] Siu, Y.T. and Yau, S.T. (1980) Complex Kahler Manifolds of Positive Bisectional Curvature. *Inventiones Mathematicae*, **59**, 189-204. http://dx.doi.org/10.1007/BF01390043
- [3] Mori, S. (1979) Projective Manifolds with Ample Tangent Bundles. Annals of Mathematics, 110, 593-606. http://dx.doi.org/10.2307/1971241
- Peternell, T. (1990) A Characterization of P_n by Vector Bundles. *Mathematische Zeitschrift*, 205, 487-490. http://dx.doi.org/10.1007/BF02571257

- [5] Fujita, T. (1989) Remarks on Quasi-Polarized Varieties. Nagoya Mathematical Journal, 115, 105-123.
- [6] Ye, Y. and Zhang, Q. (1990) On Ample Vector Bundles Whose Adjunction Bundles Are Not Numerically Effective. Duke Mathematical Journal, 60, 671-687. http://dx.doi.org/10.1215/S0012-7094-90-06027-2
- [7] Cho, K., Miyaoka, Y. and Shepherd-Barron, N.I. (2002) Characterizations of Projective Space and Applications to Complex Symplectic Manifolds. *Advanced Studies in Pure Mathematics*, **35**, 1-89.
- [8] Hirzebruch, F. (1966) Topological Methods in Algebraic Geometry. Springer Verlag, Berlin.
- [9] Gunning, R. and Rossi, H. (1965) Analytic Functions of Several Complex Varieties. Prentice Hall, Inc., Upper Saddle River.