Applied Mathematics, 2015, 6, 958-966 ":‘ Scientific

Published Online June 2015 in SciRes. http://www.scirp.org/journal/am "‘0 Research
i 9,¢ Publishing

http://dx.doi.org/10.4236/am.2015.66088 ¢

Numerical Approximation of
Quantum-Integrals Using the Appropriate
Nodes and Weights

S. M. Hashemiparast!?, D. A. Ghondaghsaz2, M. Maghasedi?

!School of Mathematics, KNT University of Technology, Tehran, Iran
2Department of Mathematics, College of Basic Sciences, Karaj branch Islamic Azad University, Alborz, Iran
Email: hashemiparast@kntu.ac.ir

Received 18 April 2015; accepted 30 May 2015; published 2 June 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, we present a procedure for the numerical g-calculation of the g-integrals based on
appropriate nodes and weights which are determined such that the error of g-integration is mini-
mized; a system of linear and nonlinear set of equations respectively are prepared to obtain the
nodes and weights simultaneously; the error of g-integration is considered to be minimized under
this condition; finally some application and numerical examples are given for comparison with the
exact solution. At the end, the related tables of approximations are presented.
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1. Introduction

Recently, much attention has been paid on g-calculus, especially on g-fractional calculus which finally most of
them have changed to g-integral not easy and even possible to be solved analytically [1]. Although some series
expansions have been developed for quantum integrals [2] and quantum differential equations and quantum dif-
ference equations [3]-[6] or g-fractional calculus [6] [7], but because of small fractional power in the series ex-
pansion, one will expect a high degree of error in the truncated series [7]-[9]. The nominal numerical methods
for approximating integrals do not seem to be appropriate for g-integrals. We could find less works for develop-
ing numerical procedures for accurate numerical solutions [9]-[14]. In this paper, we present a procedure for the
numerical g-calculation of the g-integrals based on appropriate nodes and weights which are determined such
that the error of g-integration is minimized. This study is organized such that in Section 2 we introduce the basic
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definitions and theorems related to the g-integrals; in Section 3, the main algorithm for the numerical approxi-
mation based on appropriate nodes and weights is introduced and the system of linear equations for the nodes
and also nonlinear equations for the weights are established; in Section 4, numerical examples for illustration of
the procedure are shown; finally, the related tables and graphs and conclusion are given.

2. Basic Definitions and Theorems

In this section we define the basic definitions and theorems related to the quantum integration
Jackson’s definition [15] for the g-integral is:

jf(x)dqx:z(l—q)if(q”z)q” 0<q<1 (1)
when z > o
Tf(x)dqx:(l—q)i f(a")a" 0<q<L. 2)

For the continuous function f in the interval [0, z] we have [8]:

&EOfOqux:ifOde 3)
and
b b a
[F () dgx = [ (x)dgx—[f (x)dx. (4)
a 0 0
The generalized g-integral for « e N is defined as:
jf(x)d‘;x=z(1—q“)2:20f(q“z)q”" 0<qg<l. (5)
0
Similarly
lim [ (x)dgx= [ (x)dgx. (6)

For the integer number n, the quantum integer is defined as a [n], (bracket n) such that

_1-9q

n

(@)
In [16], for q =1 g-derivative operator D, is defined as:

f0-f(@)
D, f(x)=1 (1-a)x ®)
£'(0) x=0

and the generalized g-derivative for « e N is defined as:
f(x)-f (xq“)

©
(L-a)x

D.. f(x)=

Similarly !ll_r)r} an =D,.

Analytical calculation of g-integrals similar to the ordinary integrals leads to extending these integrals as a se-
ries expansion, [10] applies g-taylor expansion, [17] introduces g-integrals inequalities and [16] takes advantage
of hypergeometricpolynomials to express the g-integralas a series expansion, the inequalities in [17] help to find
limit for q integrals, [12] generalizes the procedures of integral to some kind of g-integrals, and finally we gene-

ralize the procedure similar in [13] [18].
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3. Numerical Approximation of g-Integral
For a given value of q the following approximation can be established
N M 1
_[y ) f(x)d x = ;(Xi —a){ﬂ(X)Xf (x)d,x (10)

where 'z =1, x sand g;s are the nodes and weights respectively and must be determined. Similar to the
definition of precision degree for integral, we have for the g-integral

jy(x)f(x)dqx:i(x_’ja)jy(x)xf(x)dqx (11)
By calculating the limits in either side we get
'Z[,u(x)f(x)dx=i(x_!ﬁa)jy(x)xf(x)dx (12)

Similar to the algorithm used in [5] we have the following theorem:

Theorem: The g-normal equations for g, (x) =x";r=0,---,n and a=0,b=1, gives the following system
of equations

1 1
R e 0
1 1 1 L
WXOJFEXHHJFMJF—[HJFZ]Q xn:z[xf(x)dqx 13
1 | 1 | 1' 1 1

- x"f(x)d
(=1, [n+2], * Tnva],2ne] " X (x)dex

Proof: Without losing the generality, for f(x)=x';j=01--,n-1, > 1 =1, u(x)=1, [ab] = [0,1]

from (12) we have

1 n X
J'xjdqx=zﬁ.[x”ldqx; j=01--,n-1 (14)
0 i=L % o
Sy X i odno1 (15)
[J+1] ,1X|[j+2] Y
+2l, & .
= i '+; =O|1|'”1 _1' 16

Hence, we have the following system of equations
ety =1=y,
X+ Xy ok % = [2]0= 7

[3]

A =ﬁ=yz 17
q
/u/lxln—l_i_)u X n—l+‘“+lu X n-1_ [n+l]q =y
272 n"*n [n]q n-1
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This can be summarized as the following matrix form such that for [[inﬂq =75
q
QC=y (18)
where
Yo N —7o Co
Q= ¢ . i, y=| ¢ |[,C=|: (19)
Yonx 0 T ~7n1 Coa

is a Toeplitz matrix [10,11], whose entries are quantum numbers so, we call it quantum Toeplitz matrix, an
especial form of n-diameter quantum matrix and keeps the non-singularity or singularity properties of the origi-
nal matrix, because all elements of matrix have been changed simultaneously, positive Toplitz matrices, quan-
tum matrices and Inversion of Toeplitz matrices are considered in [19]-[23], so for having a unique solution, the
same conditions for the original system of equations (q = 1) must be satisfied (12) for the different values of q,
the elements of vector C and the nodes satisfy in the following characteristics equation [13]

CX" + X"+t X+C, =0. (24)

Now, the roots of above characteristics equations are the appropriate nodes, satisfying in the system of simul-
taneous equations, then having these nodes the weighs g; can be evaluated, and by applying these values in (12)
the system of Equation (13) will be obtained to evaluate the approximate values of the quantum integral, ob-
viously the unknown in the system of equations depend upon the quantum parameter ¢: 0<q<1.

In Section 3 we illustrate the algorithm for the numerical approximation of g-integral and some examples to
illuminate the exactness of the method.

4. Algorithm for the Numerical Solution

We start the algorithm by the small values of n and similar method can be extended to any value of n, let n = 2,
then for the evaluated values of x; s and y;

1 2 X
j x)d xzz i J'xf x)d,x (25)
0 i=0 Xi o
characteristic equation is
X’ +cx+1=0 (26)
The system of equations is:
_ j+2
Vs 72 )G N [J+1]q
_ql
[i], == 0<q<1 j=02 28)
-q

Then

2, Py -,
@, [, {H[Z]} )
ENE]

different approximation can be expected for the different values of g, which for some values of ¢, 0 < q < 1,
g-integral may have minimum error, if g — 0 then matrix entry », —1;i =1, 2, -~ and if q—1 then
7; — 0, for the other values of say g = 0.1 we have:
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1.009 11 e, ] [ -1

1.0009 1.009 || ¢, | |-1.1]
Co | [-2.42434]
¢, | | 1.31469 |

—2.42434x% +1.31469x +1=0.

This gives

Then the characteristic equation is

Gives the following roots
X, =-0.425994, x, =0.968283.

By solving the linear system we obtain ug, i,

Mt =1
14 (—0.425994) + 11, (0.968283) = [2]q =11

1y =-0.0944701 1, =1.09447.

And the numerical g-integration formula for g = 0.1 can be evaluated from

f(x)d, x~’uljxf )d x+42 jxf

X20

O ey

1 0.425994 0.968283

[f(x)dgx=-022176 [ xf(x)d,x+1.13032 [ xf(x)dx.

q
0 0 0

Let n = 3, then for the evaluated values of x;s and, x;s

j' .[xf dx+ X_[Z dx+ _[xf
0

0 2
Characteristics equations is
CX° +C,xX* +¢,x+1=0.
For n = 3, the system of equations is
Vs V2 |G 7
Vo 73 V2 ||G|=| N
Vs Vs V3]G =72

P
Téi; [51; [2], 1
5], [4, B8, [%| | ..
oaeRes i
o, [ [ |-
EE e
Similarly, for g = 0.1 numerical g-integration is
1.0009  1.009 11 ||c, -1
1.00009 10009 1.009 || ¢ |=| -1.1

1.000009 1.00009 1.0009 || c, -1.009
This gives

(30)

(31)

(32)

(33)

(34)

(35)

(36)

@37)

(38)

(39)

(40)
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And a characteristics equation is:

c,| [-11033.72
¢, |=| -1235072 |.
c, 101.00

—-11033.72x° —1235072x> +101.00x +1=0

With the roots as follows

X, =—-0.00891963 x, =0.0988891 x, =0.99999.
Now, for calculating g4, 1,, 14, the linear system should be solved

M+t =1
44, (~0.00891963) + 11, (0.0988891) + 11, (0.99999) =1.1
14 (~0.00891963)” + 41, (0.0988891)° + 1, (0.99999)" =1.009

And we will have

4 =—0.92889 1, =0.929047 1, =0.999843.
Finally the numerical g-integration for q = 0.1 takes the following form

~0.1(0.1)09]f (

0.00891963

=-10414 [ xf(x)d,x+9.39484 [ xf(x)d,x+0.9999 [ xf(x)d

0

x)dqx

0.0988891 0.9999

0 0

q

(41)

(42)

(43)

(44)

X.

Tables 1-3 give the g-integral approximation for n = 2, 3, 4 respectively and some values of g.

Table 1. Give g-integral approximation for n = 2 and different values of g.

0<qg=<1

ct—y

£ (x)dox =22 [xf (x)d.x+ 22 [xf (x)d
(9022 it (a4 2t (00

0.425994 0.968283

f(x)d,x=-0.22176 [ xf(x)d,x+113082 [ xf (x)d,x
0 0

ot—~

[f(x)dx=-03323 | xf(x)d,x+1.1933 | xf (x)d,x
0

q
0 0

[£(x)d,x=-0972855 [ xf(x)dx+1429637 [ xf(x)d,x
0 0 0

[f(0)dx=-235192 [ xf(x)d,x+164814 | xf(x)d.x
0

0 0

f(x)d,x=-2.08851 [ xf(x)d,x+1.74273 [ xf(x)d,x

q
0 0

ot—yp

f(x)d,x=-276961 [ xf (x)d,x+1.89569 | xf(x)d,x
0

0

oct—yp

f(x)d,x=-346192 | xf(x)dqx+2.03933'j xf (x)d,x
0

0

ot—

0.210175 0.862271

f(x)d,x=-4.16026 [ xf(x)d,x+217378 [ xf(x)d,x

q

ot—~

0 0

0.20059 0.86045

[F(x)dx=-488649 [ xf(x)d,x+230111 [ xf(x)d,x
0 0

0
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Table 2. Give the g-integral approximation for n = 3 and different values of g.

0<qg=<1 If(x)dx“ul‘[xf dx+”2J'xf dx+/‘3_[xf
1 0.00891963 0.0988891 0.9999

g=01 [f(x)dx=-10414 [ xf(x)d,x+9.39484 [ xf(x)dx+0.9999 [ xf(x)d,x
0 0 0 0
1 0.0192011 0.182476 0.999892

q=02 [f(x)d,x=-512789 [ xf(x)d,x+534473 [ xf(x)d,x+0.999815 [ xf(x)dx
0 0 0 0
1 0.0268083 0.249164 0.999173

q=03 [f(x)d,x=-40.3706 [ xf(x)dx+433208 [ xf(x)d,x+10037 [ xf(x)dx
0 0 0 0
1 0.0445189 0.313376 0.997668

q=04 [f(x)d,x=-24.8842 [ xf(x)dx+350782 [ xf(x)dx+1.01091 [ xf(x)dx
1 0.053713 0.357446 0.994861

q=05 [F(x)dx=-222718 [ xf(x)d,x+3.29942 | xf(x)dx+1.03103 [ xf(x)dx
0 0 0 0
1 0.0549073 0.37657 0.990456

q=06 [F(x)dx=-241157 [ xf(x)d,x+335099 [ xf(x)d,x+1.07248 [ xf(x)dx
0 0 0 0
1 0.0452327 0.631928 0.982296

q=07 [f(x)dx=-34.2422 [ xf(x)d,x+389172 [ xf(x)d,x+1.1609 [ xf(x)d.x
0 0 0 0

q=0.8 If( )d,x=-108.109 I xf (x)d,x+24.1038 J' xf (x)dqx+1.4553bjh xf (x)d,x
0 0 0
1 0.0484744 0.373827 0.975824

q=0.9 _[f (x)d,x=-37.2967 J' xf (x)d,x+4.12227 I xf (x)d,x+1.2983 j xf (x)d,x
0 0 0 0

Table 3. Give the g-integral approximation for n = 4 and different values of g.

1f dx~”1xfxdx+y2xf dx+ﬂ3 xf ( dx+y“xf
q I f (%) f f f
1 0.0004028 0.0999998 0.9999 0.99999999
q=0.1 If (x)d,x =-4570.232 I xf (x)d,x+95.5627 I xf (x)d,x+8.99935 j xf (x)d,x+1.00 J' xf (x)d,x
0 0 0 0
1 0.00250717 0.03748678 0.19997462 0.999999
q=02 If (x)d,x=-697.376 J' xf (x)d,x+25.2871 I xf (x)d,x+4.00305 I xf (x)d,x+1.000 J' xf (x)d,x
0 0 0 0 0
q=03 [F(x)dx=-269581 | xf(x)dx+13.0607 j xf (x)d,x+2.35509 [ xf(x)d,x+1.00000426 [ xf(x)d,x
0 0 0 0 0
q=04 _[f (x)dqx;—157.671> I xf (x)dqx+9.15825. J' xf (x)dqx+1.579> I xf (x)dqx+1.00011> I xf (x)d,x
0 0 0 0 0
q=05 If(x)dqxz—117.8161‘ I xf(x)dqx+7.62672>'[ xf (x)dqx+1.19075.J' xf(x)dqx+1.00123b J' xf (x)d x
0 0 0 0 0
1 2.99236007 0.052835 0.3716355 0.98999
q=0.6 Jf (x)d,x=5.785x10-7 J' xf (x)d,x—25.0433 f xf (x)d,x+3.35 _[ xf (x)d,x+1.08911 j xf (x)d x
0 0 0 0 0
1 0.019896 0.203338 0.5992 0.997813857
q=0.7 If (x)d,x=-101.568 I xf (x)d,x+6.94977 _[ xf (x)d,x+0.970088 J' xf (x)d,x+1.02864 f xf (x)d,x
0 0 0 0
q=08 [ (x)dx=-107.029 | xf(x)dqx+7.14685’j Xf (x)d,x+0.987319 [ xf (x)d,x+1.07176 [ xf(x)d,x
0 0 0 0 0

0.0202 0.212128 0.6217634 0.99297304

f(x)d,x=-116.69 J' xf (x)d,x+7.50049 I xf (x)d,x+1.03511 f xf (x)d,x+1.13054 '[ xf (x)d,x

0 0 0

o
I
o
©
c—
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Table 4. Give the g-integral approximation for n = 2 and almost extreme value of g = 0.99999 for three different integrants
in a specified interval.

o]
ot—yy

F(x)lx =22 fxf (x)dx-+22 [f (x)d
(992t (9042 et ()0

1 0.19371354 0.8603795
0.99999 [f(x)dx=-558107 [ xf(x)d,x+2.41885 [ xf(x)d,x
0 0 0
Value of integral forq =1 r N
Integral (ordinary integral) g-integral approximation Error
rsinx
Iqux 0.946083 0.918540689 0.02
0
ttan x
Td X 1.1491512305 1.2055660182 0.05

0
t1
J.—dqx 0.69314718 0.486661583 0.20
o X+1

5. Error Analysis and Application of g-Integral for Integral Approximation

The numerical values show for all values of n the error of g-integrations fluctuate for different values of g, it
seems g = 0.70 gives the worse error almost for all values of n, the errors decreases as q approaches to the ex-
treme values 0 and 1. Using this result and (3) the g-integral can be calculated for very large value of q ap-
proaching to 1 which will approximate the ordinary integrals whose g-integrals is easier than ordinary integrals
by using g-integral approximation for n = 2 and different values of q, as illustrated in Table 4 and following the
examples, where

lim Zf (x)dx = J'f (x)dx.

1
qﬁO

6. Conclusion

In this paper, a new algorithm for the numerical approximation of g-integration based on g-calculation of appro-
priate nodes and weights is introduced. The evaluation of nodes and weight is based on g-integral error minimi-
zation, as expected in the numerical examples which give a good approximation in comparison with exact solu-
tions for the given values of g and fixed n. As the g-fractional integration can be transferred to g-integrals, the
procedure is also applicable for g-fractional integration, and also improper integrals for the large values of q.
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