
Journal of Signal and Information Processing, 2015, 6, 180-189 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/jsip 
http://dx.doi.org/10.4236/jsip.2015.62017   

How to cite this paper: Ahmad, M.K., Didas, S., Hasanov, A. and Iqbal, J. (2015) Sharp Operator Based Edge Detection. 
Journal of Signal and Information Processing, 6, 180-189. http://dx.doi.org/10.4236/jsip.2015.62017  

 
 

Sharp Operator Based Edge Detection 
Mohammad Kalimuddin Ahmad1, Stephan Didas2, Alemdar Hasanov3, Javid Iqbal4  
1Department of Mathematics, Aligarh Muslim University, Aligarh, India  
2Hochschule Trier, Umwelt-Campus Birkenfeld, Fachbereich Umweltplanung/Umwelttechnik, Postfach 1380,  
Birkenfeld, Germany  
3Department of Mathematics and Computer Science, Izmir University, Izmir, Turkey  
4Department of Mathematics, Baba Ghulam Shah Badshah University, Rajouri, India  
Email: ahmad_kalimuddin@yahoo.co.in, s.didas@umwelt-campus.de, alemdar.hasanoglu@izmir.edu.tr,  
javid2iqbal@yahoo.co.in   
 
Received 3 October 2014; accepted 24 May 2015; published 28 May 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Ahmad et al. in their paper [1] for the first time proposed to apply sharp function for classification 
of images. In continuation of their work, in this paper we investigate the use of sharp function as 
an edge detector through well known diffusion models. Further, we discuss the formulation of weak 
solution of nonlinear diffusion equation and prove uniqueness of weak solution of nonlinear prob-
lem. The anisotropic generalization of sharp operator based diffusion has also been implemented 
and tested on various types of images. 
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1. Introduction 
Nonlinear diffusion filtering is a well-established tool for image denoising and simplification. Starting with the 
pioneering work by Perona and Malik [2] in 1990, it has attracted the attention of many researchers working in 
the domain of mathematics and image processing (see [3]-[9], for example). This filter class makes it possible to 
smooth images while the edges as main source of information are preserved. This leads to an adaptive sim- 
plification that can be useful for image understanding and interpretation. Among the most effective extensions 
of the basic method are the anisotropic filters [8] that offer the possibility to remove noise and enhance flow- 
like structures. 

The sharp function, on the other hand, is a well-known functional analytic concept to measure the oscillatory 
behaviour of functions. It goes back to the maximal function which was introduced by Hardy and Littlewood [10] 

http://www.scirp.org/journal/jsip
http://dx.doi.org/10.4236/jsip.2015.62017
http://dx.doi.org/10.4236/jsip.2015.62017
http://www.scirp.org
mailto:ahmad_kalimuddin@yahoo.co.in
mailto:s.didas@umwelt-campus.de
mailto:alemdar.hasanoglu@izmir.edu.tr
mailto:javid2iqbal@yahoo.co.in
http://creativecommons.org/licenses/by/4.0/


M. K. Ahmad et al. 
 

 
181 

in 1930 to solve a problem in the theory of functions of complex variables. Based on this idea, John and Nirenberg 
[11] introduced the concept of bounded mean oscillation (BMO) functions. In 1972, Fefferman and Stein [12] 
introduced the sharp function (denoted by #f ) and found that a function f BMO∈  was equivalent with 

#f L∞∈ . The theory of Hardy Spaces received impetus from the work of Fefferman and Stein. 
The idea of applying the sharp operator to measure the oscillation and classification of images was first 

proposed by Ahmad and Siddiqi [1] where it was used to find a suitable compression technique. 
In this paper, we propose an alternative way to steer nonlinear diffusion filters via the sharp operator without 

using derivatives to measure edges. We show that the results of these diffusion filters are comparable to classical 
versions while the underlying sharp operator has a rich theoretical background. Motivated by the available 
diffusion processes in image processing, we propose an extension of the sharp operator for measuring aniso- 
tropic structures. To use this to steer anisotropic diffusion processes, we show how a fast variant of it can be 
implemented and used in practice. 

The paper is organized as follows. Section 2 gives a review of classical nonlinear diffusion filters for image 
processing. In Section 3, we shortly describe the aspects of the theory for the maximal function, bounded mean 
oscillation functions, and the sharp function, which are necessary for this paper. The main idea of this paper, 
namely, the use of the sharp operator in nonlinear diffusion filters and its generalization to the anisotropic setting, 
is presented in Section 4. To evaluate the methods in practice, Section 6 describes some computational experiments. 
A summary and an outlook conclude the paper in Section 7. 

2. Classical Nonlinear Diffusion Filters  
Diffusion is interesting as image processing tool since it is a physical process that equilibrates concentration 
without creating or destroying mass. The idea behind the use of the diffusion equation in image processing arose 
from the use of Gaussian filter in multiscale image analysis. It can be founded by a system of several axioms 
like linearity, translational and rotational invariance, and average grey value preservation, that marks the begin- 
ning of the scale-space concept [13]-[16]. Convolving an image with a Gaussian filter Kσ ,  

2

2 2

1: exp
2π 2

x
Kσ σ σ

 
 = −
 
 

 

with standard deviation σ , is equivalent to the solution of the linear homogeneous diffusion equation  
,tu u∂ = ∆                                            (1) 

where the given image f is used as initial condition ( ),0u f⋅ = . We assume homogeneous Neumann boundary 
conditions 0nu∂ = , where n denotes the outer normal of the boundary of image domain Ω . The stopping time 
t has to be chosen as 2 2t σ=  for equivalence.  

Isotropic nonlinear diffusion. The major drawback of linear diffusion is the delocalisation and blurring of 
image edges. To circumvent this problem, Perona and Malik [2] introduced the nonlinear diffusion equation  

( )( )2div .tu g u u∂ = ∇ ∇                                    (2) 

The diffusivity g is chosen as a decreasing function of the edge detector u∇ . Examples for diffusivity 
functions can be found in [2] [17]-[19]. Catté et al. [3] introduced a regularisation of the gradient of u to make 
the process well-posed. They use the equation  

( )( )2divtu g u uσ∂ = ∇ ∇                                   (3) 

with ( ): .u K uσ σ∇ = ∇ ∗  A review of this filter class can be found in [20].  
Anisotropic nonlinear diffusion. Nonlinear isotropic diffusion often shows problems to remove noise close 

to image edges. It can be helpful to use an anisotropic diffusion filter  

( )( )divtu D u u∂ = ∇                                     (4) 

in such cases as proposed by Weickert [8]. The scalar diffusivity function g has been replaced by a matrix 
( )D u  here. Depending on the choice of D this allows for smoothing along edges while smoothing across edges 
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is avoided: the so-called edge-enhancing diffusion (EED). Another classical choice of D, depending on the struc- 
ture tensor [21] [22], makes enhancement of coherent flow-like structures possible. This process is known as 
coherence-enhancing diffusion (CED). Details on these filters and their numerical implementation can be found 
in [8] [23]. 

3. The Sharp Operator  
In this section, we give a short introduction to the sharp operator and its background. There is a rich theory 
behind it, and we point out the main results connected to it. 

The Hardy-Littlewood maximal function was developed to solve a problem in the theory of functions of 
complex variable. The analogue for integrals, which is required for the function theoretic applications, is derived 
in Hardy and Littlewood [10]. 

Definition 1. Let n  be the n-dimensional Euclidean space and ( )f x  be a real valued measurable 
function on n . For such a function f on n  its Hardy-Littlewood maximal function is defined by the formula  

( ) ( ) ( )
:

1sup d  : n
QQ x Q

Mf x f y y Q
Qλ∈

  = ⊂ 
  

∫                           (5) 

where the supremum ranges over all finite cubes Q in n  and ( )Qλ  is the Lebesgue measure of Q .  
Now we state a Hardy-Littlewood maximal theorem. 
Theorem 1. For each function ( )1 nf L∈   we have  

( ){ }( ) 1
1: 6 , 0.nx Mf x t t f tλ −> ≤ >  

Proof. See ([24], p. 142). 
The space BMO, i.e. bounded mean oscillation of functions is introduced by John and Nirenberg [11]. 
Definition 2. A measurable function f on n  has bounded p-mean oscillation, 1 p≤ < ∞ , if  

( ) ( )
1

1sup d ,
p

pp
QBMO QQ

f f x f x
Qλ

 
= − < ∞  

 
∫                         (6) 

where the supremum ranges over all finite cubes Q in n  and  

( ) ( )1 dQ Q
f f x x

Qλ
= ∫  

is the mean value of the function f on the cube Q.  
Fefferman and Stein [12] introduced the “sharp function” #f  that mediates between pBMO  and pL  

spaces. It is defined as follows. 
Definition 3. Let f be a locally integrable function on n . The sharp function ( )#f x  is represented by the 

formula,  

( ) ( ) ( )
1

#

:

1sup d .
pp

QQQ x Q
f x f y f y

Qλ∈

 
= −  

 
∫                           (7) 

Of course, pf BMO∈  is identical with #f L∞∈ . It is also observed that there are unbounded functions in 
( )pBMO  . 

Example 1. The function ( ) lnf x x=  on   is in ( )1BMO  .  

After calculation it comes out to be 
1

ln 2.
BMO

x ≤  So, the un-bounded function ln x  is in ( )1BMO  .  

It is important to note that it does not matter in which pL  norm we measure the oscillation. This is clear from 
the following corollary. 

Corollary 1. For each p, 1 p≤ < ∞ , there exists a constant pC  such that for each ( )n
pf BMO∈   we 

have  
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1 1p pBMO BMO BMOf f C f≤ ≤  

Proof. See ([24], p. 156). 
In view of the above corollary the spaces ( )n

pBMO   are equivalent for all p, 1 p≤ < ∞ . 

4. Nonlinear Diffusion with the Sharp Operator 
It is clear from the definition of the sharp function that for a pixel z, where f has almost uniform grey level 
region in an image, ( )#f z  will be of very small value. However, for the contrast region we get large values 
for ( )#f z . The idea is to accrue more diffusion in the regions of lower oscillation whereas to preserve the 
regions of higher oscillation. 

Many isotropic nonlinear diffusivity models in physics and mechanics are governed by the nonlinear 

parabolic equation ( ) ( )( )2,tu x t g u u= ∇ ⋅ ∇ ∇ , ( ), Tx t ∈Ω , ( ]: 0,T TΩ = Ω× , 2Ω∈ , where the diffusion 

coefficient ( )g η , 2: uη = ∇ , satisfying the condition  

( ) ( ) ( ) 2* *
0 1i   0 ,  0, , max ,

T
c g c uη η η η

Ω
< ≤ ≤ ∈ = ∇  

depends on the gradient of the function ( ),u x t . In the diffusivity model given in [2], the choice of the 
diffusivity coefficient ( )g η  is restricted to a subclass of the smooth monotonically decreasing functions with  
( )0 1g = . Further analysis of the nonlinear diffusivity model for the 1D diffusion equation ( )( )2

t x x x
u g u u=  

has been developed in [5]. In particular, rewriting this equation in the form  

( ) ( ) ( ) ( ]2 0, , 0,1 0, ,t x xx Tu c u u x t T− = ∈Ω = ×                         (8) 

where ( ) ( ) ( )2c g gη η η η′= + , 2
xuη = , Equation (8) is defined to be forward parabolic, when ( ) 0c η > , and  

backward parabolic one, when ( ) 0c η < . The assumption ( ) 0c η >  in the Perona-Malik diffusivity 1D model, 
leads to the following condition with respect to the diffusion coefficient ( )g η :  

( ) ( ) ( ) 0 0ii   2 ,  0.g gη η η γ γ′+ ≥ >  

First of all let us prove that if only the conditions (i)-(ii) hold, then the nonlinear diffusion operator 

( )( )2: x x x
Au g u u= −  is a monotone potential. For this, we define the nonlinear operator *:A →   as  

( )2, d d , , ,
T

x x xAu v g u u v x t u v
Ω

= ∈∫   

in an appropriate Banach space  . Introduce the functional  

( ) ( )
2

0

1 d d d , .
2

x

T

u
P u g x t uη η

Ω
= ∈∫ ∫   

Calculating the first derivative  

( ) ( )2; d d , , ,
T

x x xP u v g u u v x t u v
Ω

′ = ∈∫   

we conclude that ( ), ;Au v P u v′= , and hence the above defined functional :P →   is the potential of the 
nonlinear diffusion operator A. Further calculating the second Gateaux derivative  

( ) ( ) ( )2 2 2; , 2 d d , , , ,
T

x x x x x x xP u v h g u v h u g u v h x t u v h
Ω
 ′′ ′= + ∈ ∫   

and then substituting here h v= , we conclude that the second Gateaux derivative of the potential is positive, 
i.e.,  

( ) ( ) ( )2 2 2 2 2
0; , 2 d d d d , , ,

T T
x x x x xP u v v g u u g u v x t v x t u vγ

Ω Ω
 ′′ ′= + ≥ ∀ ∈ ∫ ∫   

if conditions (i)-(ii) hold. This means that the potential ( )P u  of the nonlinear diffusion operator is a convex 
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functional which implies the strong monotonicity of the nonlinear operator [25] ( )( )2: x x x
Au g u u= − , i.e., 

2
1, VAu Av u v u vγ− − ≥ − . 

Thus for the strong monotonicity of the nonlinear diffusion Equation (8), and hence solvability of an initial  
boundary value problem related to the nonlinear diffusion equation ( )( )2

t x x x
u g u u= , only the conditions (i)-(ii)  

are sufficient. However, these conditions are not sufficient for solvability of the corresponding problem related 
to the 2D diffusivity model. Specifically, one needs to impose the monotonicity condition: ( ) 0g η ≤ , as the 
theorem shows below. This condition and the above two conditions compose the set of admissible coefficients 
  satisfying the following conditions:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

*
0 1

0 0

*

i   0 ,  0, ;

ii   2 ,  0;

iii   0, 0, .

c g c

g g

g

η η η

η η η γ γ

η η η

 < ≤ ≤ ∈
 ′+ ≥ >
 ′ ≤ ∀ ∈

                                  (9) 

An analysis of the steady state diffusivity model governed by the nonlinear elliptic equation  

( )( ) ( )2g u u F x−∇ ⋅ ∇ ∇ =  in 2  has been given in Hasanov et al. [26]. Based on the results given here let us 

analyze now the 2D diffusivity (Perona-Malik) model  

( )( ) ( )( ) ( )

( ) ( ) ( ]
( )( ) ( ) ( ) ( ]

( ) ( )

1 2
1 2

2 2

1

2
2

2
0

0, , ;

, 0, , 0, ;

, , , 0, ;

,0 , .

t x x T
x x

u g u u g u u x t

u x t x t T

g u u u n x t x t T

u x u x x

ϕ

 − ∇ − ∇ = ∈Ω


= ∈Γ ×

− ∇ ∇ ∂ ∂ = ∈Γ ×

 = ∈Ω ⊂ 

                       (10) 

Here 2Ω ⊂   is the domain with the piecewise smooth boundary 1 2∂Ω = Γ Γ∪ , 1 2Γ Γ = ∅∩ , n is the unit 

outward normal to the boundary 2Γ . The negative sign in the Neumann condition ( )( ) ( )2 ,g u u u n x tϕ− ∇ ∇ ∂ ∂ =   

means that the diffusion flux ( ),x tϕ , across the part 2Γ  of the boundary ∂Ω , passes from a region of high 
concentration to one of low concentration. 

We will use weak solution theory for nonlinear PDE. For this, let us introduce the following well-known 
notations [25]. Let  

( )1:V H= Ω  and ( )0:H H= Ω  

where ( ) ( ) ( ) ( ) ( ) ( ]{ }1 1
1, : , 0, , 0,H u x t H u x t x t TΩ = ∈ Ω = ∈Γ × . Here ( )0H Ω  and ( )1H Ω  are the 

Sobolev spaces with the norms  

( ) ( ) 1 2

1 21 2 2 22 2 2 2
0 1d , d , : ,x xu u x u u u x u u u

Ω Ω
 = = + ∇ ∇ = + ∫ ∫  

respectively. 
Evidently, the norms 0u∇  and 1u  are equivalent due to the homogeneous Dirichlet condition in (10). 

Identifying the Hilbert space H with its dual we have the triple  *V H V  with dense continuous compact  
embedding. To define the weak solution of the nonlinear problem (10), we also need the following spaces 

( )2: 0, ;L T V= , ( )2 0: 0, ;L T H= , { }*: : tw w= ∈ ∈   , where the time derivative needs to be understood 
in sense of distributions. Evidently, W is the separable reflexive Banach space with the norm defined to be as  

*w w w= +
  

. Moreover, it is well-known that  *V   , the embedding  ( )0, ;W C T H  
i s  
continuous and the embedding     is compact. For the convenience we denote the duality in the Banach  
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space   (with its dual * ) and the norm as follows: ⋅


 and ⋅


, accordingly. 

Now we define the operators,  

( )( ) ( )( )1 2
1 2

2 2

: ;

: .

t

x x
x x

Lu u

Au g u u g u u

=

 = − ∇ − ∇

                         (11) 

It is known that the operator ( ) *:L D L ⊂ �  , with the domain ( ) ( ){ }0: 0D L u u u= ∈ = , is a 
maximal monotone operator (see, [25], Proposition 32.10, p. 855). 

For a given coefficient ( )g η ∈  we define the nonlinear operator *:A �   by the nonlinear functional  

( )2

0
, d d , , ,

T
Au v g u u v x t u v

Ω
= ∇ ∇ ⋅∇ ∈∫ ∫

                          (12) 

and the linear functional  

20
, d d , , ,

T
F v v x t u vϕ

Γ
= ∈∫ ∫

  

which is well defined for ( )( )0 0
20, ;H T H Γ . Within these definitions the weak solution of the nonlinear 

problem (10) can be defined as follows: find a function u∈  such that  

( )
2

2

0 0 0
d d d d d d , , .

T T T
tu v x t g u u v x t v x t u vϕ

Ω Ω Γ
+ ∇ ∇ ⋅∇ = ∀ ∈∫ ∫ ∫ ∫ ∫ ∫                 (13) 

Theorem 2. Let   be the set of admissible coefficients satisfying conditions (9) and ( )g η ∈ . Assume 

that ( )0u H∈ Ω  and ( )( )0 0
20, ;H T Hϕ ∈ Γ . Then the nonlinear problem (8) has a unique solution u∈  

defined by (13).  
Proof. Let us introduce the functional  

( ) ( )
2

0 0

1 d d d , ,
2

T u
P u g x t uη η

∇

Ω
= ∈∫ ∫ ∫   

and calculate the first Gateaux derivative. We have  

( ) ( )2

0
; d d , , .

T
P u v g u u v x t u v

Ω
′ = ∇ ∇ ⋅∇ ∈∫ ∫   

Hence ( ); ,P u v Au v′ =


, as (12) shows. Thus the above defined functional :P �   is the potential of  

the nonlinear diffusion operator A. Calculating the second Gateaux derivative ( ); ,P u v h′′  and then substituting 
here h v=  we obtain:  

( ) ( ) ( )2 2

0
; , 2  d d ,  , .

T
P u v v g u u v u v g u v v x t u v

Ω
 ′′ ′= ∇ ∇ ⋅∇ ∇ ⋅∇ + ∇ ∇ ⋅∇ ∈  ∫ ∫             (14) 

Since ( ) 0g η′ ≤ , ( )*0,η η∈ , we conclude  

( ) ( )
( ) ( ) ( ) ( ) ( )
( )

1 1 2 2

1 2 1 2

22 2

2 2 2 22

2 2 2

 

: ,  , .

x x x x

x x x x

g u u v u v g u u v u v

g u u u v v

g u u v u v

 ′ ′∇ ∇ ⋅∇ ∇ ⋅∇ = ∇ + 

   ′≥ ∇ + +      

′= ∇ ∇ ∇ ∈

 

Substituting this in (14) and using the condition (ii) of (9), we conclude  

( ) ( ) ( )2 2 2 2

0

2
0 0

; , 2 d d

d d ,  , .

T

T

P u v v g u u g u v x t

v x t u vγ

Ω

Ω

 ′′ ′= ∇ ∇ + ∇ ∇  

≥ ∇ ∈

∫ ∫

∫ ∫ 
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Thus the potential ( )P u  of the nonlinear diffusion operator A is a convex functional which implies the 
strong monotonicity of this operator. Hence L A+  is also the strong monotone the operator:  

( ) ( ) 1, , , .Lu Au Lv Av u v u v u vγ+ − + − ≥ − ∈


  

This implies the uniqueness of the weak solution of the nonlinear problem (13). Existence of the solution 
follows from the results given in [27] [28]. 

Remark 1. The assertion of the above theorem holds also for the case when 1Γ = ∅ .  
Since structures in images often have the highly anisotropic features, for example, lines or corners, we 

propose some generalization of the presented method to the anisotropic setting. We start with an anisotropic 
generalization of the sharp operator.  

5. Anisotropic Sharp Operator  
So far we have only used isotropic nonlinear diffusion filters. In the definition (7) of the sharp operator, all 
integration domains Q are cubes. Therefore, the sharp function only provides information about local variations 
of the function, but not about the direction of these local variations. In order to allow for a quantitative descrip- 
tion of local variations in a certain direction, we propose to use non-symmetric sets instead of cubes. With this 
concept, an anisotropic extension of the sharp function can be defined as follows: 

( )
( ) ( ) ( )( ) ( ) ( ) ( )

1

#
aniso

:

1, : sup  d .
pp

QQQ x Q
f x f y f y

Q ϕϕϕ ϕ
ϕ

λ ϕ∈

 
= −  

 
∫                   (15) 

The most important in this definition is the set ( )Q ϕ . We propose to use ellipses to measure the variation in 
several directions. So, one could alternatively define  

( )
( ) ( ) ( )( ) ( ) ( ) ( )

1

#
aniso

:

1: sup sup  d .
pp

QQQ x Q
f x f y f y

Q ϕϕϕ ϕ ϕ λ ϕ∈

 
= −  

 
∫                  (16) 

In this definition, we take the supremum over all angles ϕ . Therefore, with this measure one is not only be 
able to find out the direction of the variation, but can also find the largest variation in any existing direction. For 
our later experiments, we start with the model (15) since we want to find the angle of the largest variation in an 
image. 

5.1. Modifications of This Basic Model 
For practical calculations, depending on the number of directions ϕ  used, this measure is computationally very 
expensive. Thus we propose two simplifications in order to keep the motivation of the sharp operator while 
obtaining a fast measure of local variations. 

Analogously to definition (7), the value ( )Qf ϕ  is defined as the local mean value of f inside the integration 

domain ( )Q ϕ , i.e.  

( ) ( )( ) ( ) ( )1: d .Q Q
f f x x

Qϕ ϕλ ϕ
= ∫  

Instead of taking this mean value as function of ( )Q ϕ , we use a pre-smoothed version of the function f: 

( ) ( )
( )( ) ( ) ( )1 d .Q Q

f x f y x y
Qϕ ϕλ ϕ

= −∫                             (17) 

This changes the definition (15) to  

( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1

#
aniso

:

1, : sup  d .
pp

QQQ x Q
f x f y f y y

Q ϕϕϕ ϕ
ϕ

λ ϕ∈

 
= −  

 
∫                 (18) 
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We notice that in this definition, the difference in the integral is a difference between two functions. This 
offers the possibility to calculate the second function ( )Qf ϕ  in one step for the whole domain instead of 
calculating mean values for each set ( )Q ϕ  independently. We notice that with this change, we do not use the 
same set ( )Q ϕ  for both integrations. 

The second step is now to write this as a convolution. Instead of an elliptical set ( )Q ϕ , we prefer to use an 
anisotropic Gaussian kernel here and write:  

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1

#
aniso

:

1, : sup  d .
pp

QQ x Q
f x f y G f y y

Q ϕϕϕ ϕ
ϕ

λ ϕ∈

 
= −  

 
∫                (19) 

And lastly we replace also the outer integral with a convolution with an anisotropic Gaussian,  

( ) ( )
1

#,fast
aniso , : .

p pf x G f G fϕ ϕϕ = −                              (20) 

This measure can be evaluated in a very efficient way using the methods of Geusebroek et al. [29] for fast 
anisotropic Gaussian convolution. This makes it possible to incorporate it in an image processing tool as 
described in the following section. 

5.2. Anisotropic Diffusion with the Fast Sharp Operator 
Now we want to use the anisotropic variant of the sharp operator to steer an anisotropic diffusion process  

( )( )divtu D u u∂ = ∇  

as it has been proposed by Weickert [8]. In order to use this concepts for anisotropic diffusion in this formula- 
tion, we have to define a diffusion tensor based on the anisotropic sharp operator to obtain a process of the form  

( )( )#,fast
anisodiv .tu D u u∂ = ∇  

We define the diffusion tensor as follows: Let a point x∈Ω  in the image domain be given, then we search 
for the direction  

( )#,fast
max aniso: arg max , ,f xϕϕ ϕ=  

where the absolute value of the anisotropic sharp operator is maximal. The eigenvectors of the diffusion tensor 
are then the unit vectors pointing in this direction and the orthogonal one, i.e.,  

( )
( )

( )
( )

max max
1 2

max max

cos sin
: and : .

sin cos
v v

ϕ ϕ
ϕ ϕ

   −
= =      
   

 

The eigenvalues are defined analogously as for edge-enhancing diffusion:  

( ) 12
1 2: 1 , : 1,mλ λ

−
= + =  

where,  

( )#,fast
aniso: max ,m f x

ϕ
ϕ=  

is the maximal sharp value in the point x. 
Having these definitions for the diffusion tensor at hand, we can use classical discretisation for anisotropic 

diffusion filters as described in [8].  

6. Computational Experiments  
To compare the sharp operator based diffusion approach with classical derivative based methods, we show 
filtering examples in Figure 1. 

It is clear that the parameters of the anisotropic diffusion process have to be specified in practical situations. 
The time t is an inherent parameter in each diffusion process that controls the amount of simplification applied  



M. K. Ahmad et al. 
 

 
188 

 
Figure 1. Comparison between classical and sharp operator based anisotropic 
diffusion. First row: Noisy input images; Second row: Classical edge-en- 
hancing diffusion (EED); Third row: Sharp operator based diffusion.         

 
to the data. The variance of evolving image decreases monotonically to zero in time. The contrast parameter λ  
allows to steer the edge preservation properties by distinguishing between important edges that should be 
preserved and smaller edges that are removed. For our discrete sharp operator, there are number of directions as 
an artificial parameter. 

7. Summary and Outlook  
We have investigated the use of the sharp operator for image processing applications. We have used the sharp 
operator to steer diffusion filters. With the classical notion, it is suitable to be used inside the diffusivity of a 
Perona-Malik filter. For anisotropic filters, we have used fast anisotropic Gauss filters to extend the sharp 
operator to a fast directional-dependent measure of variation. With the help of this measure, we could construct 
an alternative diffusion tensor for an anisotropic diffusion process. The results are quite similar to classical 
anisotropic diffusion filters. We have seen that the sharp operator not only is of theoretical interest but also may 
be used in practical applications. 
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