
Advances in Pure Mathematics, 2015, 5, 367-376 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2015.56035  

How to cite this paper: Al Subaie, R.F. and Mourou, M.A. (2015) Equivalence of K-Functionals and Modulus of Smoothness 
Generated by a Generalized Dunkl Operator on the Real Line. Advances in Pure Mathematics, 5, 367-376.  
http://dx.doi.org/10.4236/apm.2015.56035  

 
 

Equivalence of K-Functionals and Modulus 
of Smoothness Generated by a Generalized 
Dunkl Operator on the Real Line 
Reem Fahad Al Subaie1, Mohamed Ali Mourou2 
1Department of Mathematics, College of Sciences for Girls, University of Dammam, Dammam, Kingdom of 
Saudi Arabia 
2Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia 
Email: rmalsubaei@uod.edu.sa, mohamed_ali.mourou@yahoo.fr 
 
Received 23 April 2015; accepted 25 May 2015; published 28 May 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper is intended to establish the equivalence between K-functionals and modulus of smooth- 
ness tied to a Dunkl type operator on the real line. 
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1. Introduction 
Consider the first-order singular differential-difference operator on the real line 

( ) ( ) ( ) ( ) ( )1 2 ,
2

f x f x f x
f x f x n

x x
α

− − − ′Λ = + + − 
 

 

where 1 2α > −  and 0,1,n =  . For 0n = , we regain the differential-difference operator 

( ) ( ) ( ) ( )1 ,
2

f x f x
D f x f x

xα α
− − ′= + + 

 
 

which is referred to as the Dunkl operator with parameter 1 2α +  associated with the reflection group 2  on 
 . Such operators have been introduced by Dunkl [1]-[3] in connection with a generalization of the classical 
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theory of spherical harmonics. The one-dimensional Dunkl operator Dα  plays a major role in the study of 
quantum harmonic oscillators governed by Wigner’s commutation rules [4]-[6]. 

The authors have developed in [7] [8] a new harmonic analysis on the real line related to the differential-dif- 
ference operator Λ  in which several classical analytic structures such as the Fourier transform, the translation 
operators, the convolution product, ..., were generalized. With the help of the translation operators tied to Λ , 
we construct in this paper generalized modulus of smoothness in the Hilbert space ( )2 12 ,L x dxα +


. Next, we 

define Sobolev type spaces and K-functionals generated by Λ . Using essentially the properties of the Fourier 
transform associated to Λ , we establish the equivalence between K-functionals and modulus of smoothness. 

In the classical theory of approximation of functions on  , the modulus of smoothness are basically built by 
means of the translation operators ( )f f x y→ + . As the notion of translation operators was extended to vari-
ous contexts (see [9] [10] and the references therein), many generalized modulus of smoothness have been dis-
covered. Such generalized modulus of smoothness are often more convenient than the usual ones for the study 
of the connection between the smoothness properties of a function and the best approximations of this function 
in weight functional spaces (see [11]-[13] and references therein). 

In addition to modulus of smoothness, the K-functionals introduced by J. Peetre [14] have turned out to be a 
simple and efficient tool for the description of smoothness properties of functions. The study of the connection 
between these two quantities is one of the main problems in the theory of approximation of functions. In the 
classical setting, the equivalence of modulus of smoothness and K-functionals has been established in [15]. For 
various generalized modulus of smoothness these problems are studied, for example, in [16]-[19]. It is pointed 
out that the results obtained in [16] emerge as easy consequences of those stated in the present paper by simply 
taking 0n = . 

2. Preliminaries 
In this section, we develop some results from harmonic analysis related to the differential-difference operator 
Λ . Further details can be found in [7] [8]. In all what follows assume 1 2α > −  and n a non-negative integer. 

The one-dimensional Dunkl kernel is defined by 

( ) ( ) ( ) ( ) ( )12 1
ze z j iz j iz zα α αα += + ∈
+

                          (1) 

where 

( ) ( ) ( ) ( )
( ) ( )

2

0

1 2
1

! 1

n n

n

z
j z z

n nα α
α

∞

=

−
= Γ + ∈

Γ + +∑   

is the normalized spherical Bessel function of index α . It is well-known that the functions ( )eα λ ⋅ , λ ∈ , 
are solutions of the differential-difference equation 

( ), 0 1.D u u uα λ= =                                    (2) 

Furthermore, we have the Laplace type integral representations: 

( ) ( ) ( )
1 21 2

1
1 1 e d ,zte z a t t t

α

α α

−

−
= − +∫                              (3) 

( ) ( ) 1 21 2
0

2 1 cos d ,j z a t zt t
α

α α

−
= −∫                                (4) 

where 

( )
( )

1
.

π 1 2
aα

α

α

Γ +
=

Γ +
                                    (5) 

The following properties will be useful for the sequel. 
Lemma 1 1) For all x∈ , ( ) 1e ixα ≤ . 
2) There is 0cα >  such that ( )1 e ix cα α− ≥  for all x∈  with 1x ≥ . 
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3) For all { }0x∈ − , ( ) 1e ixα ≠ . 
4) For all x∈ , 

( ) ( )
( )

1
1 .

π 3 2
e ix x xα

α

α

Γ +
− ≤ ≤

Γ +
 

Proof. Assertions (1) and (2) are proved in [16]. By (1), (4) and the fact that 

( ) 1 21 2
0

1 2 1 da t t
α

α

−
= −∫  

we have 

( ) ( ) ( ) ( )
1 21 2

0
1 1 2 1 1 cos d .e ix j x a t xt t

α

α α α

−
− ≥ − = − −∫  

Clearly the integral above is null only for 0x = , which proves assertion (3). Let us check assertion (4). Using 
(3) and the fact that 

( ) ( )
1 21 2

1
1 1 1 da t t t

α

α

−

−
= − +∫                                (6) 

1 e for alliz z z− ≤ ∈  

we get 

( ) ( ) ( )( )

( ) ( )

( ) ( )

1 21 2
1

1 21 2
1

1 21 2
1

1 1 1 1 e d

1 1 1 e d

1 1 d

ixt

ixt

e ix a t t t

a t t t

a x t t t t

α

α α

α

α

α

α

−

−

−

−

−

−

− = − + −

≤ − + −

≤ − +

∫

∫

∫

 

By (6), 

( ) ( ) ( ) ( )
1 2 1 21 12 2

1 1
1 1 d 1 1 da x t t t t a x t t t x

α α

α α

− −

− −
− + ≤ − + =∫ ∫  

Moreover, 

( ) ( )

( ) ( )
( )

1 21 2
1

1 21 2
0

1 1 d

1
2 1 d ,

1 2 π 3 2

a x t t t t

a x
a x t t t x

α

α

α α
α

α
α α

−

−

−

− +

Γ +
= − = =

+ Γ +

∫

∫
 

which concludes the proof. 
Notation 1 Put 

( )( )22 2

1 .
2 1

mα α α+
=

Γ +
 

We denote by 
 ( )2Lα   the class of measurable functions f on   for which 

( )( )1 22 2 1

2, d .f f x x xα

α

+= < ∞∫  

 ( )  the space of C∞  functions f on  , which are rapidly decreasing together with their derivatives, i.e., 
such that for all , 0,1,m n =  , 
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( ) ( ) ( ),
dsup 1 .
d

n
m

m n n
x

q f x f x
x∈

= + < ∞


 

The topology of ( )  is defined by the semi-norms ,m nq , , 0,1,m n =  . 
 ( )n   the subspace of ( )  consisting of functions f such that 

( ) ( ) ( )2 10 0 0.nf f −= = =  

 ( )′   the space of tempered distributions on  . 
 ( )n′   the topological dual of ( )n  . 

Clearly Λ  is a linear bounded operator from ( )n   into itself. Accordingly, if ( )nS ′∈   define ( )nS ′Λ ∈   
by 

( ), , , nS Sψ ψ ψΛ = − Λ ∈   

For 0,1,k =   and ( )S ′∈  , let ( )kx S ′∈   be defined by 

( ), , , .k kx S S xψ ψ ψ= ∈   

Definition 1 The generalized Fourier transform of a function ( )nf ∈   is defined by 

( )( ) ( ) ( ) 2 2 1
2 d , .n

nf f x e i x x xα
αλ λ λ+ +
+= − ∈∫   

 
Remark 1 If 0n =  then   reduces to the Dunkl transform with parameter 1 2α +  associated with the 

reflection group 2  on   (see [3]). 
Theorem 1 The generalized Fourier transform   is a topological isomorphism from ( )n   onto ( ) . 

The inverse transform is given by 

( )( ) ( ) ( ) ( )1 2
2 d ,n

ng x x g e i xαλ λ σ λ−
+= ∫


 

where 

( ) 2 4 1
2d d .n

nm α
ασ λ λ λ+ +
+=  

Theorem 2 1) For every ( )nf ∈   we have the Plancherel formula 

( ) ( )( ) ( )2 22 1 d d .f x x x fα λ σ λ+ =∫ ∫ 
  

2) The generalized Fourier transform   extends uniquely to an isometric isomorphism from ( )2Lα   onto 
( )2 ,L σ . 

Definition 2 The generalized Fourier transform of a distribution ( )nS ′∈   is defined by 

( ) ( ) ( )1, , , .S Sψ ψ ψ−= ∈     

Theorem 3 The generalized Fourier transform   is one-to-one from ( )n′   onto ( )′  . 
Lemma 2 If ( )2f Lα∈   then the functional 

( ) ( ) ( )2 1, d , ,fT f x x x xαα ψ ψ ψ+= ∈∫   

is a tempered distribution  . Moreover, 

( ) 2n
f gT Tα α +=                                      (7) 

with ( ) ( )( )2ng m fαλ λ+= − . 
Proof. The fact that ( )fTα ′∈   follows readily by Schwarz inequality. Let ( )ψ ∈  . It is easily checked 

that 
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( ) ( )1 1ψ ψ− −=    

where ( ) ( )ψ λ ψ λ= − . So using Theorem 2 we get 

( ) ( ) ( )( ) ( )( )

( )( ) ( )

( )( ) ( )

2 1 2 11 1

2 4 1
2

2 4 1 2
2

, d ( ) d

d

d , ,

f

n
n

n n
n g

T f x x x x f x x x x

m f

m f T

α αα

α
α

α α
α

ψ ψ ψ

λ ψ λ λ λ

λ ψ λ λ λ ψ

+ +− −

+ +
+

+ + +
+

= =

= −

= − =

∫ ∫
∫
∫



 





  





 

which completes the proof. 
Lemma 3 Let ( )nf ∈   and ( )nS ′∈  . Then for 1,2,k =   we have 

( )( ) ( ) ( )( )kk f i fλ λ λΛ =                                (8) 

( ) ( ) ( )kk S i SλΛ = −                                   (9) 

Proof. Identity (8) may be found in [7]. If ( )ψ ∈   then 

( ) ( ) ( ) ( )1 1, , 1 ,kk k kS S Sψ ψ ψ− −Λ = Λ = − Λ    

But by (8), 

( ) ( )( )1 1 kk iψ λ ψ− −Λ =   

So 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1 , 1 , 1 , ,k k k k k kk S S i S i i Sψ λ ψ λ ψ λ ψ−Λ = − = − = −     

which ends the proof. 
Notation 2 From now on assume 1,2,m =  . Let 2,

m
α  be the Sobolev type space constructed by the dif- 

ferential-difference operator Λ , i.e., 

( ) ( ){ }2 2
2, : , 1, 2, , .m jf L f L j mα α α= ∈ Λ ∈ =    

More explicitly, 2,
mf α∈  if and only if for each 1,2, ,j m=  , there is a function in ( )2Lα   abusively 

denoted by j fΛ , such that j
j

f f
T Tα α

Λ
Λ = . 

Proposition 1 For 2,
mf α∈  we have 

( )( ) ( ) ( )( ).mm f i fλ λ λΛ =                              (10) 

Proof. From the definition of 2,
m
α  we have 

m
m

f f
T Tα α

Λ
Λ =  

By (7) and (9), 

( ) ( ) ( ) 2mm n
f f gT i T Tα α αλ +Λ = − =   

with ( ) ( ) ( )( )2
m

ng m i fαλ λ λ+= − − . Again by (7), 

( ) 2
m

n
hf

T Tα α +
Λ

=  

with ( ) ( )( )2
m

nh m fαλ λ+= Λ − . Identity (10) is now immediate. 
Definition 3 The generalized translation operators xτ , x∈ , tied to Λ  are defined by 
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( ) ( ) ( )
( )

( )

( ) ( )
( )

( )

2 22
1

1 2 22 2

2 22
1

1 2 22 2

2
1 d

2 22

2
1 d

2 22

n
x

n

n

n

f x y xytxy x yf y A t t
x y xytx y xyt

f x y xytxy x y A t t
x y xytx y xyt

τ
−

−

+ −  − = +
 + −+ −  

− + −  − + −
 + −+ −  

∫

∫

 

where 

( ) ( )( ) 2 1 22
2 1 1

n

nA t a t t
α

α

+ −

+= + −  

with 2naα +  given by (5). 
Proposition 2 Let x∈  and ( )2f Lα∈  . Then ( )2x f Lατ ∈   and 

2
2,2,

2x nf x f
αα

τ ≤                                   (11) 

Furthermore, 

( )( ) ( ) ( )( )2
2

x n
nf x e i x fατ λ λ λ+=                              (12) 

3. Equivalence of K-Functionals and Modulus of Smoothness 
Definition 4 Let ( )2f Lα∈   and 0r > . Then 
 The generalized modulus of smoothness is defined by 

( )2, 2,0
, sup m

m h
h r

f r fα α
ω

< ≤
= ∆  

where 

( )2 ,
mm h n

h f h I fτ∆ = −  

I being the unit operator. 
 The generalized K-functional is defined by 

( ) { }2,2, 2, 2,
, inf : .m m

mK f r f g r g g αα α α
= − + Λ ∈  

The next theorem, which is the main result of this paper, establishes the equivalence between the generalized 
modulus of smoothness and the generalized K-functional: 

Theorem 4 There are two positive constants ( )1 1 , ,c c m n α=  and ( )2 2 , ,c c m n α=  such that 

( ) ( ) ( )2
1 22, 2,2,

, , ,mn m
m m mc f r r K f r c f rα αα

ω ω≤ ≤  

for all ( )2f Lα∈   and 0r > . 
In order to prove Theorem 4, we shall need some preliminary results. 
Lemma 4 Let ( )2f Lα∈   and 0h > . Then 

2
2,2,

3m m mn
h f h f

αα
∆ ≤                              (13) 

( )( ) ( )( ) ( )( )2
2 1

mm mn
h nf h e i h fαλ λ λ+∆ = −                      (14) 

Proof. The result follows easily by using (11), (12) and an induction on m. 
Lemma 5 For all 2,

mf α∈  and 0h >  we have 

( )2 1

2, 2,

m nm m
h f h f

α α

+∆ ≤ Λ                            (15) 
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Proof. By (10), (14), Lemma 1 (4) and Theorem 2 we have 

( )( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( )

22

2,

2 24
2

222 2 1

22 2 1

22 2 1

2,

d

1 d

d

d

m m
h h

mmn
n

mm n

m n m

m n m

f f

h e i h f

h f

h f

h f

α

α

α

λ σ λ

λ λ σ λ

λ λ σ λ

λ σ λ

+

+

+

+

∆ = ∆

= −

≤

= Λ

= Λ

∫

∫
∫

∫

















 

which is the desired result. 
Notation 3 For ( )2f Lα∈   and 0ν >  define the function 

( )( ) ( )( ) ( ) ( )2
2 dn

nP f x x f e i x
ν

ν αν
λ λ σ λ+−

= ∫   

Proposition 3 Let ( )2f Lα∈   and 0ν > . Then 
1) The function ( )P fν  is infinitely differentiable on   and 

( )( ) ( )( )( ) ( ) ( )2
2 dkk n

nP f x x f i e i x
ν

ν αν
λ λ λ σ λ+−

Λ = ∫                      (16) 

for all 0,1,k =  . 
2) For all 0,1,k =  , ( ) 2k P f Lν αΛ ∈  and 

( )( )( ) ( ) ( )( ) ( ) ,kk P f i fν νλ λ λ χ λΛ =                          (17) 

where 

( )
1 if ,

0 if .ν

λ ν
χ λ

λ ν

 ≤= 
>

 

Proof. The fact that ( ) ( )P fν
∞∈   follows from the derivation theorem under the integral sign. Identity 

(16) follows readily from (2) and the relationship 

( )2 2
2

n n
nx f x D fα +Λ =  

which is proved in [7]. Assertion (2) is a consequence of (16) and Theorem 2. 
Lemma 6 There is a positive constant ( ),c c nα=  such that 

( ) 2
12, 2,

m mn mf P f c fν να α
ν−− ≤ ∆  

for any ( )2f Lα∈   and 0ν > . 
Proof. By (17) and Theorem 2, we have 

( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 2 2

2,
1 d df P f f fν να λ ν

χ λ λ σ λ λ σ λ
≥

− = − =∫ ∫
   

By Lemma 1 (2) there is a constant 0c >  which depends only on α  and n such that 

( )21 ne i cα λ ν+− ≥  

for all λ ∈  with λ ν≥ . From this, (14) and Theorem 2 we get 

( ) ( ) ( )( ) ( )

( )( ) ( )

2 2 22
22,

2 22 4 2 4
1 1 2,

1 d

d

mm
n

m mn m m mn m

f P f c e i f

c f c f

ν αα λ ν

ν ν α

λ ν λ σ λ

ν λ σ λ ν

−
+≥

− −

− ≤ −

= ∆ = ∆

∫

∫
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which achieves the proof. 
Corollary 1 For all ( )2f Lα∈   and 0ν >  we have 

( ) ( )2
2,2,

,1m mn
mf P f c fν αα

ν ω ν−− ≤  

where c is as in Lemma 6. 
Lemma 7 There is a positive constant ( ),C C nα=  such that 

( ) ( )2 1
12, 2,

m nm m mP f C fν να α
ν +Λ ≤ ∆  

for every ( )2f Lα∈   and 0ν > . 
Proof. By (17) and Theorem 2 we have 

( ) ( )( ) ( )

( )
( ) ( )( ) ( )

2 22

2,

2
2 2

22
2

d

1 d
1

m m

m
m

nm
n

P f f

e i f
e i

ν
ν να

ν
αν

α

λ λ σ λ

λ λ ν λ σ λ
λ ν

−

+−
+

Λ =

= −
−

∫

∫




 

Put 

( )1 2

.sup
1t n

t
C

e itα≤ +

=
−

 

By L’Hôpital’s rule, 

( )
( )

0
2

lim 2 2 1 .
1t

n

t
n

e itα

α
→

+

= + +
−

 

This when combined with Lemma 1 (3) entails ∞<<0 C . Moreover, 

( )
( )

( )

( )
( )

22
2

2 2
2 2

2
22

2
1

2

sup sup
1 1

sup
1

mm
m

m m
n n

m
mm

m
t

n

e i e i

t C
e it

λ ν λ ν
α α

α

λ νλ ν
λ ν λ ν

ν ν

≤ ≤
+ +

≤
+

=
− −

= =
−

 

Therefore 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( )

2 2 22
22,

22 2 12
1

22 2 12
1

22 2 12
1 2,

1 d

d

d

mmm
n

m nm m

m nm m

m nm m

P f C e i f

C f

C f

C f

ν
ν ανα

ν
νν

ν

ν α

ν λ ν λ σ λ

ν λ σ λ

ν λ σ λ

ν

+−

+

−

+

+

Λ ≤ −

= ∆

≤ ∆

= ∆

∫

∫

∫






 

by virtue of (14) and Theorem 2. 
Corollary 2 For any ( )2f Lα∈   and 0ν >  we have 

( ) ( ) ( )2 1
2,2,

,1m nm m
mP f C fν αα

ν ω ν+Λ ≤  

where C is as in Lemma 7. 
Proof of Theorem 4. 1) Let ] ]0,h r∈  and 2,

mg α∈ . By (13) and (15), we have 
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( )
( )

( )

( )

2, 2, 2,

2 12
2, 2,

2 12
2, 2,

2
2, 2,

3

3

3

m m m
h h h

m nm mn m

m nm mn m

m mn m m

f f g g

h f g h g

r f g r g

r f g r g

α α α

α α

α α

α α

+

+

∆ ≤ ∆ − + ∆

≤ − + Λ

≤ − + Λ

≤ − + Λ

 

Calculating the supremum with respect to ] ]0,h r∈  and the infimum with respect to all possible functions 
2,
mg α∈  we obtain 

( ) ( )2
1 2, 2,

, ,mn m
m mc f r r K f rα α

ω ≤  

with 1 3 mc −= . 
2) Let ν  be a positive real number. As ( ) 2,

mP fν α∈  it follows from the definition of the K-functional and 
Corollaries 1 and 2 that 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

2, 2,2,

2 (2 1)
2, 2,

2
2, 2,

,

,1 ,1

,1 ,1 .

m m m
m

m mn m m m n
m m

mmn m m
m m

K f r f P f r P f

c f C r f

c f C r f

ν να αα

α α

α α

ν ω ν ν ω ν

ν ω ν ν ω ν

− +

−

≤ − + Λ

≤ +

≤ +

 

Since ν  is arbitrary, by choosing 1 rν =  we get 

( ) ( )2
2 2,2,

, ,mn m
m mr K f r c f r αα

ω≤  

with 2
m mc c C−= + . This concludes the proof. 
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