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Abstract 
In this paper, a novel neural network is proposed based on quantum rotation gate and controlled- 
NOT gate. Both the input layer and the hide layer are quantum-inspired neurons. The input is giv-
en by qubits, and the output is the probability of qubit in the state 1 . By employing the gradient 
descent method, a training algorithm is introduced. The experimental results show that this model 
is superior to the common BP networks. 
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1. Introduction 
In the eighties of the twentieth century, Benioff and Feynman proposed the concept of quantum computation, 
and then P.W. Shor gave the first quantum algorithm of very large integer factorization [1] in 1994 and L.K. 
Grover proposed a quantum algorithm which searches a marked state in an unordered list [2] in 1996. Quantum 
computation has been widely paid attention and become a challenging research line. Fuzzy logic, evolution cal-
culation, and neural networks are regarded as the most promising three important aspects in the artificial intelli-
gence field, which compose intelligence calculation (soft calculation) and have much comparability with quan-
tum computation. Therefore, the combination of them would bring promising research in theory. 

Some research results in the nineties of the twentieth century show that [3]-[5] the information processing of 
brain may be related to the quantum states; there may exists the effect of quantum mechanics in brain, and the 
quantum system has the same dynamics features as the biology neural networks. Fatt and Katz proved that in bi-
ology neuron, the neurotransmitter is released from the nerve terminals by the form of multi-molecule and small 
units, and they call this kind of small units quantum. Each of small units (quantum) describes the minimal unit 
that the neurotransmitter is released. In general, although the number of quantum in each synaptic response of 
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neurons may be different, the number of molecules in each quantum is the same. Therefore, the combination of 
quantum computation and ANN may preferably simulate the information processing of brain. 

However, as yet, there is little understanding of the essential components of artificial neural networks based 
on quantum theoretical concepts and techniques. The basal model and theory of quantum neural networks are in 
research. At present, there is not a set of perfect theory to direct the construction of model. Since Kak firstly 
proposed the concept of quantum neural computation [6] in 1995, the quantum neural networks have been paid 
attention, and many novel ideas and elementary model have been proposed. In 1997, N. B. Karayiannis et al. 
proposed the model of quantum neural networks with multilevel hidden neurons based on the superposition of 
quantum states in quantum theory. ZHU Da-qi et al. applied this model to fault diagnosis for photovoltaic radar 
electronic equipment, and acquired the satisfied results [7]. In 2000, Matsui et al. proposed a quantum neural 
networks model based on the single bit rotation gate and the 2-bit controlled-NOT gate, presented the algorithm 
of model, and investigated its performance on solving the 4-bit parity check problem and the function approxi-
mation problem [8]. In this model, the input is based on quantum bits (qubits). However, in many actual prob-
lems, the system input is the real vector in Hilbert space, and the method is not presented to transform the real to 
the quantum state in Ref. [8]. For the algorithm of model, the only two iterative equations in complex number 
are given based on the gradient descent algorithm. Neither the gradient computation formula nor the in-
put-output relationship of networks is presented. Therefore, it is not easy for the reader to simulate the algorithm 
and apply this model to actual problem. 

In this paper, based on the universality of the single qubit rotation gate and the two-qubit controlled-NOT gate, 
a quantum neuron model and three layers quantum back-propagation neural networks (QBP) model are pro-
posed. The learning algorithm in Ref. [8] is improved. A transform method from the real to the qubit is proposed. 
On the basis of the probability amplitude vector of qubits, the input-output relationship of the model is presented. 
To facilitate the practical application, the learning algorithm is deducted in detail and the implementing scheme 
is given. The continuity of this model is theoretically proved. Two application examples are designed, and the 
simulation results show that this model and algorithm are evidently superior to the conventional back-propaga- 
tion networks (CBP) in three aspects: convergence speed, convergence rate, and robustness. 

2. The Qubit and Quantum Gates 
2.1. The Qubit 
In the quantum computation, the term “qubit” is introduced as the counterpart of the “bit” in the conventional 
computation to describe the state of quantum computation. In quantum computation system two quantum physi-
cal states labeled as 0  and 1  express 1 bit information. 0  corresponds to the bit 0 of classical computa-
tion, while the 1  to the bit 1. The qubit state φ  maintains a coherent superposition of states 0  and 1  

0 + 1φ α β=                                      (1) 

where α  and β  are complex numbers called probability amplitude. That is, the qubit state φ  collapses 
into either 0  state with probability 2α , or 1  state with probability 2β , and 

2 2 1α β+ =                                       (2) 

Therefore, the qubit can also be described by the probability amplitudes as [ ]T,α β . 

2.2. The Quantum Gate 
The definition of single qubit rotation gate is described as follows 

( )
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The effect of the quantum NOT gate is exchange the two probability amplitudes of a qubit, and its definition 
is described as follows 

0 1
1 0

U  
=  
 

                                      (4) 

Using the method proposed in Ref. [8], the controlled-NON gate can be realized by Equation (5) 

( )
0 0

0 0

π πcos 2 sin 2
2 2
π πsin 2 cos 2
2 2

k k
C k

k k

θ θ

θ θ

    − − −        =
    − −    
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                        (5) 

According to the different value of the controlled parameter k , the controlled effect includes three cases as 
follows 

(1) If 1k = , then ( ) 0
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, which corresponds to reversal rotation; 
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, which corresponds to not rotation. In this case, the phase of the pro- 

bability amplitude of quantum state 1  is reversed. However, its observed probability is invariant so that we 
are able to regard this case as no-rotation; 

(3) If 0 1k< < , then 
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                             (6) 

3. The Quantum-Inspired Neural Networks Model 
3.1. The Quantum-Inspired Neuron 
On the basis of the universal quantum gates, the quantum neuron model proposed in this paper includes five 
parts: input, phase rotation, aggregation, reverse rotation and output, where the input is described by qubits, the 
output is given by the probability of the state in which 1  is observed, the phase rotation and the reverse rota-
tion are performed by quantum rotation gate ( )iR θ  and controlled-NOT gate ( )U γ , respectively. The quan-
tum neuron model is shown in Figure 1. 

Where the definition of ( )iR θ  is same as Equation (3). The ( )U γ  is defined as follows 

( ) ( )( )U C fγ γ=                                         (7) 

where f is a sigmoid function, and the definition of ( )C •  refers to Equation (5). Let [ ]Tcos sini i ix t t= , 
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∑ ∑ ∑ . The result of aggregation is defined as  

 

 
Figure 1. The quantum-inspired neuron model. 
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follows 

( ) [ ]T
1

cos sin
n

i i
i

R xθ θ θ
=

=∑                                  (8) 

The result of reverse rotation is given by 

( ) ( ) ( ) ( )
T
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π πcos sin
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i i
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U R x f fγ θ γ θ γ θ
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∑                      (9) 

The input-output relationship of quantum neuron is described as follows 

( ) ( ) ( )
1

π πsin sin arg
2 2
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3.2. The Quantum-Inspired Neural Networks 
The quantum neural networks are composed of some quantum neurons and conventional neurons according to 
the definite linking rule. The three layers feed-forward QBP model proposed in this paper is shown in Figure 2, 
where the input layer and the hidden layer has n, p quantum neurons, respectively, and the output layer has m 
conventional neurons. 

Suppose ix  are the networks input, jh  are the hide layer output, ky  are the networks output, ( )ijR θ  
are the quantum rotation gates to update qubits in the hide layer, jkw  are the link-weights between the hide 
layer and the output layer, ( )0C  and ( )jU α  are the controlled-NOT gates that are regarded as the transfor-
mation function of quantum neurons in the input layer and hide layer, respectively. The input-output relationship 
of each layer is described as follows 
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where 1,2, ,i n=  ; 1, 2, ,j p=  ; 1, 2, ,k m=  . 

4. Training Algorithm 

For the training samples described in the n-dimension Euclid-space ( )T
1 2, , , nX x x x=  , the transform formula 

to realize quantum state description of the training samples is defined as follows 
T

1 2, , , nX x x x =                                 (13) 
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Figure 2. Three layers quantum-inspired networks model.          
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In the QBP described by Figure 2, there are three groups of parameters, the rotation parameter ijθ , the re-
versal parameter jα  and the link-weights jkw , that need updating. The error function is defined as follows 

( )21
2

E Y Y= −                                    (14) 

where Y  and Y  are the normalized desired output and the practical output, respectively. 
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The parameter updating rules are as follows 

( ) ( ) ( )1ij ij ijt t tθ θ η θ+ = + ∆                              (19) 

( ) ( ) ( )1j j jt t tα α η α+ = + ∆                             (20) 

( ) ( ) ( )1jk jk jkw t w t w tη+ = + ∆                            (21) 

where η  is the learning coefficient. 

5. Simulation Comparisons 
To testify the validity of QBP, an actual example is designed and the QBP is compared with the CBP in this sec-
tion. To make comparison equitable, the QBP adopts the same structure and parameters as CBP in the simula-
tions. 

The XOR problem has been the typical example of the neural networks learning algorithm research. This 
problem is the simplest example for nonlinear classification problem, which the corresponding optimization 
surface is irregular, and exists some local minimum. In this simulation, The XOR problem is generalized from 
four points to sixteen points. The point set is shown in Figure 3. 

Firstly, we investigate how to change for the convergence rate when the learning coefficient changes. The 
networks structure is set to 2-10-1, the restriction error is 0.1, and the restriction iteration steps are 2000. The 
learning coefficient is from {0.1, 0.2, ···, 1.0}. This example is simulated 100 times for each learning coefficient 
by the QBP and the CBP, respectively. When the learning coefficient changes, the maximum of convergence 
rate of QBP is 87% and the minimum is 51%. However, the convergence rate of CBP changes in a large range 
when the learning coefficient changes. When the learning coefficient is less than 0.2, the convergence rate of 
CBP is 0%, and when the learning coefficient is more than 0.2, the maximum of convergence rate of CBP is  
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Figure 3. Sixteen points distribution on the plane.                        

 

 
Figure 4. The relation of the convergence rate and η .                    

 

 
Figure 5. The relation of the iteration steps and η .                       

 

 
Figure 6. The relation between the iteration steps and the restriction error. 

 
only 59%. The comparison result is shown in Figure 4. 
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the robustness. 
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QBP, the maximum is 336 steps, and the minimum is 27 steps. However, for the average iteration steps of CBP, 
the maximum is 7308 steps, and the minimum is 2021 steps; for the minimum iteration steps of CBP, the maxi-
mum is 4314 steps, and the minimum is 463 steps. The comparison result is shown in Figure 5. 

The comparison result shows that the QBP is evidently superior to the CBP in both the iteration steps and its 
fluctuation range when the learning coefficient changes. 

Finally, we investigate how to change for the iteration steps when the restriction error changes. The networks 
structure is set to 2-10-1. It is known from Figure 4 and Figure 5 that the performance of QBP and CBP is the 
best when the learning coefficient is set 0.9. Therefore, the learning coefficient is set 0.9. The restriction error is 
from {0.10, 0.09, ···, 0.01}. This example is simulated 100 times for each restriction error by the QBP and the 
CBP, respectively. The comparison result is shown in Figure 6. 

When the restriction error changes, for the average iteration steps of QBP, the maximum is 8575 steps, and 
the minimum is 431 steps; for the minimum iteration steps of QBP, the maximum is 1816 steps, and the mini-
mum is 30 steps. However, for the average iteration steps of CBP, the maximum is 17,100 steps, and the mini-
mum is 1304 steps; for the minimum iteration steps of CBP, the maximum is 14,525 steps, and the minimum is 
659 steps. Hence, when the restriction error changes, the iteration steps and its fluctuation range of QBP is far 
less than that of CBP, which takes on the preferable robustness. 

6. Conclusion 
On the basis of the qubits and the universal quantum gates, a quantum BP neural networks model is proposed; 
the learning algorithm of this model is designed; and the continuity of this model is proved. The simulation re-
sult shows that this model and algorithm are superior to conventional BP networks in three aspects: the conver-
gence speed, convergence rate, and robustness, by an actual example of pattern recognition and function ap-
proximation. 
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