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Abstract 
Circular data as any other types of data are subjected to contamination with some unexpected ob-
servations which are known outliers. In this paper, four tests of discordancy for circular data 
based on M, C, D, and A statistics are extended to the wrapped Cauchy distribution to detect possi-
ble outliers. The cut-off points and the power of performances are investigated via extensive si-
mulation study. Results show that tests perform better as the concentration of the samples is in-
creased. Two real circular data sets are analysed for illustration. 
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1. Introduction 
Circular data refer to a set of observations measured by angles and distributed within ( ]0,2π  radians and it can 
be presented on the circumference of a unit circle. Circular data need special statistical methods to be described 
and modeled rather than the conventional linear techniques. Circular data can be found whenever periodic phe-
nomena occur; it is the source of interest to scientists in many fields, including: biology, meteorology, physics, 
psychology, image analysis, medicine, astronomy, social sciences and earth sciences, see [1]. The existence of 
outliers is considered as one of the most common problems in statistical analysis. This can be extended to circu-
lar data due to the expected influence of outliers on the parameters estimates. Outliers in the context of circular 
data would be defined as a set of observations which is inconsistent with the rest of the sample. It is expected to 
lie far from the mean direction of the circular sample. Despite this, there are only a few numerical and graphical 
tests of discordancy in circular samples. The problem of outliers in different types of circular data including un-
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ivariate samples, regression, functional relationship models and circular time series are addressed by several au-
thors (see [2]-[7]).  

The rest of this paper is organized as follows: Section 2 describes the properties of the wrapped Cauchy dis-
tribution. Section 3 presents four discordance tests to detect possible outliers in circular univariate data. In Sec-
tion 4, the cut-off points for tests are obtained based on samples generated from the wrapped Cauchy distribu-
tion. The power of performances is investigated via simulation studies in Section 5. Lastly, we apply the statis-
tics on two real data sets for illustration in Section 6. 

2. Wrapped Cauchy Distribution 
A circular random variable Θ  can be obtained from any random variable on the real line X with probability 
density function ( )g x , and distribution function ( )G x  by defining 

[ ]mod 2πXΘ ≡ . 

That’s mean wrapping the original distribution on the real line around the circle to get the wrapped distribu-
tion. The Cauchy distribution on the real line with the density 

( )
( )22

1; , , , , 0 ,
π

g x x
x
σµ σ µ σ

σ µ
= −∞ < < ∞ <

+ −
                    (1) 

where µ  and σ  are the mean and standard deviation, respectively. Once we wrapped the ( ); ,g x µ σ  
around the circle, then we get to the wrapped Cauchy distribution with probability density function denoted by 

( ),WC µ ρ  and given by: 

( )
( )
2

2

1 1; , , 0 , 2π, 0 1,
2π 1 cos

f ρθ µ ρ θ µ ρ
ρ θ µ

−
= ≤ < ≤ <

+ − −
                  (2) 

where µ  is the mean direction and e σρ −=  is the concentration parameter that is called the mean resultant 
length. Then, the distribution function of the wrapped Cauchy is given by: 

( )
( ) ( )

( )

2

2

1 cos 21 , 0 , 2π, 0 1.
2π 1 2 cos

F
ρ θ µ ρ

θ θ µ ρ
ρ ρ θ µ

 − − −
 = ≤ < ≤ <
 + − − 

 

Reference [8] introduced the wrapped Cauchy distribution, and [9] illustrated that the wrapped Cauchy dis-
tribution can be obtained by mapping Cauchy distribution on to the circle by the transformation 12 tanx θ−→ . 
Reference [10] quantified the dispersion measure δ  for the wrapped Cauchy distribution by a concentration  

parameter ρ , and is given in the form 
( )2

2

1

2

ρ
δ

ρ

−
= , and he explained that as ρ  approaches 0, the distribution 

converges to the circular uniform distribution cU  with probability density function ( ) 1 , 0 2π
2π

f θ θ= ≤ < ;  

and as ρ  approaches one, the distribution tends to the point distribution concentrated in the direction µ . 
The ( ),WC µ ρ  distribution is unimodal and symmetric about µ , Reference [11] illustrated that the 
( ),WC µ ρ  distribution enjoys the additive property and the central limit theorem, on other words, the convolu-

tion of the wrapped Cauchy distributions ( )1 1,WC µ ρ  and ( )2 2,WC µ ρ  is the wrapped Cauchy distribution 
( )1 2 1 2,WC µ µ ρ ρ+ . One of the main features of the wrapped Cauchy distribution that has a heavy tail even for 

large concentrations, which make the detection of outlier a hard task. 

3. Discordance Tests for Circular Samples 
Suppose that we are given angles 1, , nθ θ  that are observations in a random circular sample of size n  from a 
circular population. We consider four discordance tests based on M, C, D, and A statistics to identify outliers in 
a univariate circular sample from the WC distribution. Under the null hypothesis that rθ  is not an outlier. 
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3.1. M Statistic 

The statistic was proposed by [12] and given in the following formulation, ( )1
min i

i

n R
M

n R
−− −  ′ =  −  

, where  

2 2R C S= +  is the resultant length and such that 
1
cos

n

i
i

C θ
=

= ∑  and 
1
sin

n

i
i

S θ
=

= ∑ , and ( )iR −  is the resultant 
length by excluding the ith observation. Reference [2] approximated the asymptotic distribution of the M ′  sta-
tistic for large values of the concentration parameter by a standard normal distribution after reformulation of the 
M statistic in terms of: 

( ) 1 11 max ,i r
i

R R R RM M
n R n R

− − +  − + ′= − = = − −  
                       (3) 

where ( ){ }maxr i iR R −= . 

3.2. C Statistic 
It was proposed by [2], and given by 

( )max ,i

i

R R
C

R
− − =  

  
                                  (4) 

where RR
n

=  is the mean resultant length of circular data set and ( )
( )

1
i

i

R
R

n
−

− =
−

 is the mean resultant length by 

excluding the ith observation. 

3.3. D Statistic 
It was derived based on the relative arc lengths between the ordered observations of a circular sample where 
( ) ( )1 nθ θ≤ ≤ . Let iT  be the arc length between consecutive observations and defined by ( ) ( )1i i iT θ θ+= − , 

1, , 1i n= −  and ( ) 12n nT π θ θ= − + . Define 
1

i
i

i

TD
T −

= , 1, ,i n=   and 0 nT T≡ . Let 
1

r
r

r

TD
T −

=  corresponds  

to the greatest arc containing a single observation rθ . The rD  is two tailed statistic, therefore, [2] suggested 
the consideration of the minimum value of rD  and its inverse 1

rD− , where 0 1D< < . 

3.4. A Statistic 
Reference [13] defined the circular distance between two angles iθ  and rθ  as ( )1 cos i rθ θ− − . Recently, [14]  

proposed a new test based on the summation of all circular distances ( )( )
1

1 cos , , 1, ,
n

r i r
i

d i r nθ θ
=

= − − =∑    

from the point of interest rθ  to all other points iθ , 1, ,i n=   and given in the form 

( )
max , 1, , ,

2 1
r

r

dA r n
n

  = = −  
                               (5) 

Furthermore, the approximated distribution of the A statistic was discussed in [15]. 
For the mentioned four tests of discordancy the cut-off points at three percentiles 10%, 5% and 1% are ob-

tained based on simulation studies for samples generated from von Mises distribution with various sample sizes 
and concentration parameters, and also for the wrapped normal distribution (see [5]). The values of statistics are 
then compared with the associated cut-off points, if the value of statistics is greater than the cut-off point, then 
the null hypothesis is rejected and the observation is labeled as an outlier. 

4. Cut-Off Points of the Discordance Tests 
In this section, we obtain the cut-off points for the four test statistics based on simulation studies. The percen-
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tage points of the null distribution of free outliers in the generated random circular samples from the wrapped 
Cauchy distribution, with mean direction zero and concentration parameter ρ , ( )0,WC ρ . We consider 12 
values of the concentration parameter ρ  in the range of 0.1 to 0.999 and 20 different sample sizes from 5 to 
150. For each generated random sample the values of the four considered statistics M, C, D and A are calculated 
based on the formulas in Section 3. 

For each combination of the sample size n and concentration parameter ρ , the process is repeated 3000 
times to ensure the convergence of the desired percentiles (cut-off points). The obtained statistics are sorted in 
ascending manner and then 10%, 5% and 1% upper percentiles of free outliers samples are obtained. Tables 1-4  
 
Table 1. The 5th percentile cut-off points for the test based on the M statistic. 

n 
ρ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.999 

10 0.40 0.43 0.46 0.53 0.60 0.69 0.76 0.86 0.94 0.98 0.99 1.00 

15 0.23 0.26 0.29 0.35 0.41 0.50 0.61 0.74 0.89 0.96 0.98 1.00 

20 0.16 0.18 0.21 0.25 0.30 0.38 0.48 0.65 0.84 0.93 0.97 0.99 

25 0.12 0.14 0.16 0.19 0.23 0.30 0.39 0.55 0.78 0.91 0.96 1.00 

30 0.10 0.12 0.13 0.16 0.19 0.24 0.33 0.46 0.71 0.87 0.94 1.00 

35 0.09 0.10 0.11 0.13 0.16 0.21 0.28 0.42 0.66 0.84 0.94 0.99 

40 0.07 0.08 0.09 0.11 0.14 0.18 0.25 0.35 0.61 0.82 0.92 0.99 

45 0.06 0.07 0.08 0.10 0.12 0.16 0.22 0.32 0.59 0.78 0.91 0.99 

50 0.06 0.06 0.07 0.09 0.11 0.14 0.19 0.29 0.52 0.76 0.90 0.99 

60 0.05 0.05 0.06 0.07 0.09 0.11 0.16 0.24 0.45 0.68 0.87 0.99 

70 0.04 0.04 0.05 0.06 0.07 0.10 0.14 0.21 0.40 0.68 0.84 0.99 

80 0.03 0.04 0.04 0.05 0.06 0.08 0.11 0.18 0.36 0.61 0.83 0.99 

90 0.03 0.03 0.04 0.05 0.06 0.07 0.10 0.16 0.31 0.57 0.80 0.99 

100 0.03 0.03 0.03 0.04 0.05 0.06 0.09 0.14 0.28 0.51 0.76 0.99 

150 0.02 0.02 0.02 0.03 0.03 0.04 0.06 0.09 0.19 0.36 0.63 0.99 

 
Table 2. The 5th percentile cut-off points for the test based on the C statistic. 

n 
ρ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.999 

10 1.41 1.32 0.95 0.72 0.52 0.42 0.35 0.29 0.25 0.22 0.15 0.00 

15 1.19 0.94 0.69 0.49 0.35 0.25 0.21 0.18 0.16 0.15 0.13 0.00 

20 0.98 0.69 0.50 0.33 0.23 0.18 0.15 0.13 0.12 0.11 0.10 0.00 

25 0.82 0.61 0.33 0.24 0.17 0.14 0.12 0.10 0.09 0.09 0.08 0.00 

30 0.77 0.53 0.29 0.19 0.14 0.11 0.10 0.08 0.08 0.07 0.07 0.00 

35 0.62 0.35 0.22 0.15 0.12 0.09 0.08 0.07 0.06 0.06 0.06 0.00 

40 0.64 0.35 0.19 0.13 0.10 0.08 0.07 0.06 0.06 0.05 0.05 0.00 

45 0.60 0.31 0.17 0.11 0.09 0.07 0.06 0.05 0.05 0.05 0.05 0.00 

50 0.53 0.26 0.15 0.10 0.08 0.06 0.05 0.05 0.04 0.04 0.04 0.00 

60 0.42 0.21 0.12 0.08 0.06 0.05 0.04 0.04 0.04 0.04 0.03 0.01 

70 0.42 0.17 0.09 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.00 

80 0.35 0.14 0.08 0.06 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.00 

90 0.32 0.12 0.07 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.00 

100 0.25 0.11 0.06 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.00 

150 0.17 0.06 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 
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Table 3. The 5th percentile cut-off points for the test based on the D statistic. 

n 
ρ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.999 

10 0.93 0.92 0.92 0.91 0.91 0.90 0.88 0.86 0.78 0.63 0.42 0.02 

15 0.93 0.93 0.93 0.92 0.93 0.91 0.90 0.88 0.82 0.71 0.55 0.03 

20 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.89 0.84 0.76 0.63 0.04 

25 0.93 0.93 0.93 0.93 0.92 0.93 0.92 0.91 0.86 0.80 0.67 0.04 

30 0.92 0.93 0.94 0.93 0.93 0.93 0.92 0.92 0.88 0.83 0.72 0.05 

35 0.93 0.94 0.93 0.92 0.93 0.92 0.92 0.92 0.89 0.84 0.75 0.06 

40 0.93 0.93 0.93 0.94 0.93 0.92 0.92 0.92 0.89 0.84 0.77 0.07 

45 0.93 0.93 0.93 0.93 0.92 0.93 0.93 0.92 0.90 0.85 0.80 0.08 

50 0.94 0.93 0.93 0.93 0.92 0.93 0.93 0.92 0.90 0.88 0.80 0.09 

60 0.93 0.93 0.93 0.93 0.93 0.93 0.91 0.93 0.90 0.89 0.80 0.12 

70 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.91 0.89 0.81 0.15 

80 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.90 0.84 0.15 

90 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.93 0.91 0.89 0.87 0.19 

100 0.93 0.93 0.94 0.93 0.93 0.92 0.92 0.92 0.92 0.90 0.87 0.19 

150 0.93 0.92 0.93 0.93 0.92 0.92 0.93 0.93 0.92 0.91 0.88 0.31 

 
Table 4. The 5th percentile cut-off points for the test based on the A statistic. 

n 
ρ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.999 

10 0.81 0.82 0.84 0.86 0.89 0.90 0.92 0.93 0.95 0.87 0.67 0.01 

15 0.75 0.77 0.80 0.84 0.87 0.89 0.91 0.94 0.95 0.94 0.85 0.01 

20 0.73 0.75 0.79 0.82 0.85 0.88 0.91 0.94 0.96 0.94 0.91 0.02 

25 0.70 0.74 0.78 0.81 0.85 0.88 0.91 0.94 0.96 0.96 0.93 0.02 

30 0.69 0.73 0.77 0.80 0.84 0.87 0.91 0.93 0.96 0.97 0.95 0.05 

35 0.69 0.72 0.76 0.80 0.84 0.87 0.90 0.94 0.96 0.96 0.96 0.05 

40 0.67 0.71 0.75 0.79 0.83 0.87 0.90 0.93 0.96 0.97 0.96 0.05 

45 0.66 0.70 0.75 0.79 0.83 0.86 0.91 0.94 0.96 0.97 0.97 0.09 

50 0.66 0.70 0.74 0.79 0.82 0.86 0.90 0.93 0.96 0.97 0.97 0.07 

60 0.65 0.69 0.73 0.78 0.82 0.86 0.90 0.93 0.96 0.97 0.98 0.18 

70 0.64 0.68 0.72 0.77 0.81 0.85 0.90 0.93 0.96 0.98 0.98 0.14 

80 0.63 0.67 0.72 0.77 0.81 0.86 0.89 0.93 0.97 0.98 0.98 0.18 

90 0.63 0.67 0.72 0.76 0.81 0.85 0.89 0.93 0.96 0.98 0.99 0.18 

100 0.62 0.66 0.71 0.76 0.80 0.85 0.89 0.93 0.96 0.98 0.98 0.24 

150 0.61 0.65 0.70 0.75 0.80 0.84 0.88 0.92 0.96 0.98 0.99 0.48 
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present part of the cut-off points at 5% percentiles. The comprehensive cut-off points are available upon request 
from the authors. From the obtained cut-off points we notice that: 

Firstly, as one would expect, there are an inverse relationship between the cut-off points and the level of per-
centiles. Secondly, for M statistic the increase of the concentration parameter ρ  increases the cut-off of points, 
while the increase the sample size n decreases the cut-off points. Thirdly, the cut-off points of D statistic are 
fluctuating slightly for 0.7ρ ≤ , and correlated indirectly with either sample size n or concentration parameter 
ρ  for 0.7ρ > . Fourthly, for C statistic the cut-off points are a decreasing function of the concentration para-
meter ρ  and there are an inverse relationship between the cut-off points and the sample size. Lastly, the 
cut-off points of A statistic keep increasing as the concentration parameter increase up to 0.95ρ ≈ , and then 
the cut-off points are rapidly approach zero for 0.95ρ > . Furthermore, the increase of sample size reflects on 
the concentration parameters as follows: 1) for small concentration parameter ( )0.6ρ <  the cut-off points de-
creases gradually; 2) for [ ]0.6,0.7ρ ∈  the cut-off points almost constant; 3) for high concentration parameter 
( )0.7ρ >  the cut-off points increases gradually. 

5. Performance of the Discordance Tests 
The power of performance of discordancy tests can be evaluated via several measures. References [16] [17] 
stated that a good test of discordancy should have: 1) a high power function; 1 1P β= −  where β  is the 
Type-II error; 2) a high probability of identifying a contaminating value as an outlier when it is in fact an ex-
treme value, where an extreme value is defined as a point with the maximum circular deviation, denoted by 3P ; 
and 3) a low probability of wrongly identifying a good observation as discordant, where 1 3P P− . 

To study the performances of the four discordancy tests, we use 3000 samples based on different sizes n and 
concentration parameter ρ . The samples are generated in such a way that ( )1n −  of the observations come 
from ( )0,WC ρ  and the remaining one observation comes from ( )π,WC λ ρ , where λ  is the degree of con-
tamination and 0 1λ≤ ≤ . The M, C, D, and A statistics in each random sample are then calculated based on 
corresponding equations as given in Section 3. Furthermore, the values of power performances are obtained. 

Figure 1 illustrates the behavior of power of performances of the tests for different cases. The main results 
can be summarized as follows: 

Firstly, the performance for all statistics increases when we increase the contamination value λ  (Figure 1(a) 
and Figure 1(d)) and tests outperform for 0.6λ >  (Figure 1(c) and Figure 1(d)). C and A statistics perform 
better than other statistics for large contamination levels ( )0.6λ ≥ , while M statistic is better for small conta-
mination level ( )0.6λ < . Secondly, there is an increasing function between the power of performances and the 
concentration parameter (see Figure 1(a) and Figure 1(c)). Thirdly: For any sample size, all considered discor-
dancy tests at moderate or less concentration parameter 0.6ρ ≤ , the values of P1 are very low (less than 0.1) 
regardless the contamination level λ  (Figure 1(a) and Figure 1(b)). The weak performances for small con-
centration parameter ( )0.6ρ ≤  is attributed to heavily tails of the wrapped Cauchy distribution, similar trends 
are observed for P3 and P5. Lastly, the difference between P1 and P3 generally are very closes to 0 for all cases. 

6. Real Data Analysis 
For illustration purposes, two real data sets following the wrapped Cauchy distribution are considered to be 
analyzed, and to apply the proposed tests of discordancy to illustrate their performance in real data as given in 
the following subsections. 

6.1. The Ants’ Direction Data 
Reference [10] randomly selected the directions chosen by 100 ants toward a black target when they are released 
in a round arena as a part from a study conducted by [18]. The wrapped Cauchy distribution has been shown to 
be the best distribution for the data [19]. The estimates of location parameters, namely circular mean and median 
are 183˚ and 180˚, respectively. Which are close to each other and reflects the symmetry of the data distribution. 
Two measures of dispersion inform that the data are moderately concentrated, where the estimates of mean re-
sultant length and concentration parameter are 0.61 and 0.65 respectively. 

Table 5 gives the actual values of each test statistics, the corresponding cut-off points for 100, 0.65n ρ= =
and 0.05α = , associated with the decision. None of the tests values is exceeded the associated cut-off points, 
thus we may conclude that the ant’s direction data set is free of any outliers. 
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Figure 1. Relative performances of discordancy tests for wrapped Cauchy distribution. 
 
Table 5. Results of discordancy tests on ants’ direction data. 

Test Observation Actual value Cut-off point Decision 

M 360˚ 0.051 0.073 Not an outlier 

C 360˚ 0.026 0.028 Not an outlier 

D 330˚ 0.667 0.92 Not an outlier 

A 360˚ 0.812 0.868 Not an outlier 
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6.2. Wind Data 
It consists of the wind direction at 6 a.m. and 12 noon were measured each day at the weather station in Mil-
waukee for 21 consecutive days. Reference [20] proposed a circular-circular regression model with error follow 
the wrapped Cauchy distribution. The curve is expressed as a form of the Mȍbius circle transformation. As an 
example, [20] used their model for regressing this data at 12 noon on that at 6 a.m. The maximum likelihood es-
timates of the parameters are 1.27

0 e iβ =  and 2.59
1 0.53e iβ = . The circular error that obtained from the circular 

regression model is consisted of 21 observations measured in radian and presented in Figure 2. 
The circular mean and median of circular error is very close to zero (−0.04) and 0.031, respectively, and the 

estimate of the mean resultant length and concentration parameter are 0.552 and 0.773 respectively. Reference 
[20] considered observations number 5, 7, 12, 17 and 20 as outliers without using any discordance test, and they 
stated that “Apart from five outliers, the proposed model seems to provide a satisfactory fit to the data”. We 
have implemented four discordancy tests M, C, D, and A to test whether the suspected five observations are out-
liers or not. 

Table 6 presents the actual values of the discordancy test statistics, their corresponding cut-off point and the 
decision, for 21, 0.77n ρ= =  and 0.05α = . Results show that in the first iteration, C statistic was able to 
detect observation number 5 with value 3.44 as an outlier, while other tests failed to identify any point as outlier. 

In order to detect any other outliers, observation number 5 is excluded and the descriptive statistics are 
re-estimated, the mean of circular error is −0.015 which gets closer to zero and the estimates of the mean resul-
tant length and concentration parameter are 0.62 and 0.8 respectively. Then, the four tests of discordancy are 
obtained as given in the second iteration in Table 6, for 20, 0.8n ρ= =  at 0.05 level of significance. The four 
tests of discordancy agreed to identify observation number 17 as a suspected outlying observation but none of 
them identified it as an outlier where the tests values are less than the corresponding cut-off points. 
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Figure 2. Circular plot of circular error of the wind data.  

 
Table 6. Results of discordancy tests on wind data. 

Iteration Test Observation value Actual value Cut-off point Decision 

I 

M 5 0.21 0.57 Not an outlier 

C 5 0.14 0.13 An outlier 

D 5 0.12 0.90 Not an outlier 

A 5 0.80 0.93 Not an outlier 

II 

M 17 0.24 0.65 Not an outlier 

C 17 0.12 0.13 Not an outlier 

D 17 0.06 0.89 Not an outlier 

A 17 0.80 0.94 Not an outlier 
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7. Conclusion 
In this paper four tests of discordancy M, C, D and A were extended for the wrapped Cauchy distribution; the 
cut-off points and the power of performances were investigated via extensive simulation study. It was noticed 
that for any sample size, all considered discordancy tests at moderate or less concentration parameter ( 0.6ρ ≤ ), 
the power of performances is very low (less than 0.1) regardless the contamination level λ due to the heavy 
tailed characteristics of the wrapped Cauchy distribution. Thus, it is recommended to propose various circular 
regression and functional relationship models with wrapped Cauchy error which is expected to be more robust to 
the existence of outliers. Moreover, the tests were applied on ants’ data set and wind direction data set. 
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