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Abstract 
Mixed models provide a wide range of applications including hierarchical modeling and longitu-
dinal studies. The tests of variance component in mixed models have long been a methodological 
challenge because of its boundary conditions. It is well documented in literature that the tradi-
tional first-order methods: likelihood ratio statistic, Wald statistic and score statistic, provide an 
excessively conservative approximation to the null distribution. However, the magnitude of the 
conservativeness has not been thoroughly explored. In this paper, we propose a likelihood-based 
third-order method to the mixed models for testing the null hypothesis of zero and non-zero va-
riance component. The proposed method dramatically improved the accuracy of the tests. Exten-
sive simulations were carried out to demonstrate the accuracy of the proposed method in com-
parison with the standard first-order methods. The results show the conservativeness of the first 
order methods and the accuracy of the proposed method in approximating the p-values and con-
fidence intervals even when the sample size is small. 
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1. Introduction 
Mixed models are a powerful tool with a wide range of applications including hierarchical modeling and longi-
tudinal studies. In a variety of applied statistical problems, there is a need for inference on variance component, 
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for example, the random effects ANOVA models, clustering [1] and homogeneity in stratified analyses [2]. 
To introduce our ideas, we focus on a simple but generic setting of random intercept mixed model: 

ij ij i ijy x bβ ε′= + + ,                                   (1) 

where ijy  is the response for member 1, , ij n=   of group 1, ,i m=  , ijx  is a vector of known covariates, 
β  is a vector of fixed effects, and ( )20,i bb N σ  is the group specific random effect, assumed to be indepen-
dently distributed from the residual error ( )20,ij N εε σ . Assembling the ijy  into a vector Y and the rows ijx′  
into a fixed effect regressor matrix X, the marginal distribution of response Y is: 

( )2,Y N X εβ σ ∆ , 

in which ( )2 2
N b NI ZZ I ZZεσ σ λ′ ′∆ = + = + , N is the total sample size and Z is the random effect regressor 

matrix. The parameter λ  can be considered as a signal-to-noise ratio since 2
bσ  determines the size of the 

“signal” given by ( )E Y b X Zbβ= + . This λ  is our parameter of interest. 
The inference for variance component in mixed models has long been a methodological challenge because the 

variance component is restricted to nonnegative values, one typically needs one-sided tests of the null hypothe-
sis especially when variance component is on the boundary, i.e.: 

( ) ( )2 2: 0 0     versus    : 0 0o b a bH Hλ σ λ σ= = > > . 

Using theory originally developed by Chernoff [3], Liang and Self [4] and Stram and Lee [5] proved that the 
likelihood ratio test for testing a zero variance component has approximately a 2 2

0 10.5 0.5χ χ+  mixture distribu-
tion under the null hypothesis where 2

0χ  represents a distribution with a point mass at 0. The p-value for the 
above one-sided test can be obtained from the mixture Chi-square distribution or equivalently from the standard 
normal distribution. 

The restricted or residual maximum likelihood method (REML), proposed by Patterson and Thompson [6], 
takes into account the loss of the degrees of freedom involved in estimating the fixed effects and reduces the 
downward bias of the maximum likelihood estimates of the variance component. However, simulation studies 
show that the likelihood ratio test based with the restricted maximum likelihood estimation is still conservative 
[7]. 

In this paper, we consider the problem of testing the null hypothesis of zero and non-zero variance component 
in a linear mixed model and show the conservativeness of the first-order methods: likelihood ratio test, Wald test 
and score test. The likelihood-based third-order method by Fraser et al [8] is proposed to improve the accuracy 
of the inference. Our simulation studies show that the proposed method provides accurate approximation of p- 
values and confidence intervals even when the sample size is small. The likelihood ratio test approach performs 
much better than the Wald test and score test. One of the key contributions of this paper is that it gives the first 
detailed investigation of the accuracy of the tests of variance component in linear mixed models by various me-
thods through extensive simulations with varying number of groups and group sizes. 

We describe the general setting of the likelihood-based third-order method in Section 2. In Section 3, the me-
thod is applied to the random intercept model and then extended to the random intercept and random slope 
mixed model. We apply the methods discussed in this paper to a real data set from Genetic Analysis Workshop 
(GAW 18) in Section 4. Simulation results to compare the accuracy of the methods discussed in this paper are 
presented in Section 5. Section 6 provides a conclusion and discussion. 

2. Likelihood-Based Third-Order Method 
We consider inference for a scalar parameter of interest ( )ψ ψ θ=  of a continuous statistical model with 
probability density function ( );f y θ , in which θ is a vector parameter. Let ( ) ( ); yθ θ=   be the observed 
log likelihood function. The two commonly used likelihood-based first-order methods are the Wald test and the 
signed log-likelihood ratio test. The Wald statistic for the parameter of interest is: 

ˆ
ˆ

q
ψ

ψ ψ
σ
−

=                                       (2) 

where ( )ˆψ̂ ψ θ= , θ̂  is the maximum likelihood estimate (MLE) of θ satisfying ( ) ˆ 0
θ θ

θ θ
=

∂ ∂ = , ψ  is the 
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hypothesized value of ( )ψ θ  and 2ˆψσ  is an approximated variance of ψ̂ , which can be obtained by the Delta 
method: 

( ) ( ) ( )2 1ˆ ˆ ˆˆ jψ θ θθ θσ ψ θ θ ψ θ−
′ ′=  

where 

( ) ( ) ( ) ( )2

ˆ ˆ

ˆ ˆ,     jθ θθ
θ θ θ θ

ψ θ θ
ψ θ θ

θ θ θ′

= =

∂ ∂
= = −

′∂ ∂ ∂


. 

The Wald statistic follows asymptotically a standard normal distribution with first-order accuracy, ( )1 2O n− . 
Hence the ( )100 1 %α−  confidence interval for ψ  can be approximated by ( )2 2ˆ ˆˆ ˆ,z zα ψ α ψψ σ ψ σ− +  where 
zα  is the ( )1 100α− th percentile of the standard normal distribution. 

The signed log-likelihood ratio statistic takes the form: 

( ) ( ) ( ) ( ){ } 1 2
ˆˆsign 2r r ψ ψ ψ θ θ = = − −  



                            (3) 

where θ  is the constrained maximum likelihood estimator of θ that maximizes ( )θ  subject to ( )ψ θ ψ= . 
Note that r also has a standard normal distribution with first-order accuracy. Hence, the ( )100 1 %α−  confi-
dence interval for ψ  is ( ){ }2: r zαψ ψ ≤ . 

In recent years, various adjustments to the first-order methods have been proposed. In this paper, we consider 
the modified signed log-likelihood ratio statistic r*, introduced by Barndorff-Nielsen [9] [10], which takes the 
form 

( ) 1 log rr r r
r Q

ψ∗ ∗= = − ,                                  (4) 

where r is the signed log-likelihood ratio statistic as defined in Equation (3), and Q is a quantity that requires the 
existence of an ancillary statistic. When Q exists, Barndorff-Nielsen [9] [10] showed that r* is asymptotically 
distributed as the standard normal distribution with third-order accuracy, ( )3 2O n− . Hence, the ( )100 1 %α−  
confidence interval for ψ  is ( ){ }2: r zαψ ψ∗ ≤ . However, it is well-known that the ancillary statistic may not 
exist, and even if it exists, it may not be unique. 

Fraser et al. [8] presented a systematic method to obtain Q without requiring the existence of an ancillary sta-
tistic. More specifically, Fraser et al. [8] show that Q is the standardized maximum likelihood estimate departure 
calculated in the canonical parameter space. To obtain Q, all it requires is the observed likelihood function 
( ) ( ); yθ θ=  , and the parameter of interest ( )ψ θ . Let ( )ϕ ϕ θ=  be the canonical parameter of an exponen-

tial family model. Then Q is a modification of q in Equation (2) that is calculated in ( )ϕ θ  scale, and it takes 
the form: 

( )
( ) ( )ˆ

ˆsign
ˆ

Q
χ

χ θ χ θ
ψ ψ

σ

−
= −



                               (5) 

where ( )χ θ  is a re-calibrated scalar parameter on the ( )ϕ θ  scale obtained from the gradient vector of ( )ψ θ  
at the constrained maximum likelihood estimator θ : 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
θ θ

θ θ

ψ θ ϕ θ
χ θ ψ θ ϕ θ ϕ θ ϕ θ

θ θ

−

−
′

=

∂ ∂  = =  ′∂ ∂  


  . 

Note that ( ) ( )ˆχ θ χ θ−   is the maximum likelihood departure ψ̂ ψ−  calculated in ( )ϕ θ  scale. And 2ˆχσ  
is an estimated variance of ( ) ( )ˆχ θ χ θ−  , which takes the form: 

( ) ( ) ( ){ } ( ) ( )
( ) ( )

2 1ˆ
ˆ

j
j

j

θθ
χ θ θθ θ

θθ

θ
σ ψ θ θ ψ θ

θ

′−
′ ′

′

=


   ,                           (6) 
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where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 22 ˆ ˆ ˆandj j j jθθ θ θθ θθθ θθθ θ ϕ θ θ θ ϕ θ
−−

′ ′′ ′= =    

The subscripts ( )θθ ′  indicate that the information has been recalibrated in terms of the new parameterization 
( )ϕ θ . 
The canonical parameter ( )ϕ θ  of a model may not be explicitly available; however, Fraser and Reid [11] 

show that it can be approximated by 

( ) ( ); y V
y

ϕ θ θ∂′ = ⋅
∂
                                   (7) 

where V are the tangent vectors constructed using a vector of pivotal quantities ( );z z y θ= : 

1

ˆ

z zV
y

θ θ
θ

−

=

 ∂ ∂ = −   ′ ′∂ ∂  
.                                 (8) 

A simple and easy choice of V is given by the successive distribution functions ( );z F y θ= , which are un-
iformly distributed. Thus, the quantity Q can be calculated by Equation (5) and p-value and the ( )100 1 %α−  
confidence interval for ψ  can be obtained from Equation (4). 

3. Third-Order Method For Linear Mixed Models 
In this section, we derive all the key equations of the first-order and third-order methods for the random inter-
cept mixed model and the random intercept and random slope mixed model. 

Third-Order Method for Random Intercept Mixed Model 
Consider Model (1), the log-likelihood function can be written as 

( ) ( ) ( ) ( )1
2 2

2

1, , log log
2 2 2

Y X Y XN
ε ε

ε

β β
θ β σ λ σ

σ

−′− ∆ −
= = − − ∆ −  .               (9) 

The maximum likelihood estimates ( )2ˆ ˆ ˆˆ, ,εθ β σ λ=  can be obtained from maximizing the log-likelihood  
function (Equation (9)). For a fixed λ, the constrained maximum likelihood estimate of θ is ( )2, ,εθ β σ λ= 

 . In  

particular, ˆˆ I ZZλ ′∆ = +  and I ZZλ ′∆ = + . Let Y Xδ β= − . The Wald statistic q can be obtained by Equa-
tion (2) where the observed information matrix evaluated at θ̂  is 

( ) ( )

( )

1 1 1
2 4 2

2
1 1 1

4 4 6 4
ˆ

2
1 1 1

2 4 2 21

1 1 1ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆ
1 1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆ ˆ2 2

1 1 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆ 22 2 ˆ1

m i
i

i

X X X X

Nj X

n
X

n

λ
ε ε ε

θθ λ
ε ε ε εθ

λ λ λλ
ε ε ε

δ δ
σ σ σ

θ
θ δ δ δ δ δ

θ θ σ σ σ σ

δ δ δ δ δ
σ σ σ λ

− − −

− − −
′

− − −
=

 
 

′ ′ ′∆ ∆ − ∆ 
 
 ∂

′ ′ ′= − = ∆ − + ∆ − ∆ ′∂ ∂  
 
 ′ ′ ′− ∆ − ∆ ∆ −
 + 

∑






 

where 1 1
λ λ− −∆ = ∂∆ ∂  and 1 2 1 2

λλ λ− −∆ = −∂ ∆ ∂  are the first and second derivatives of 1−∆ . 
The signed log-likelihood ratio statistic, r, defined in Equation (3) can be simplified to: 

( ) 1 2
2 2ˆ ˆˆsign log log log logr N Nε ελ λ σ σ = − + ∆ − − ∆ 



                      (10) 

The constrained information matrix ( )jθθ θ′
  that will be used for the third-order method can be simply calcu-
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lated by replacing ( )2ˆ ˆ ˆˆ, ,εθ β σ λ=  in ( )ˆjθθ θ′  by the constrained maximum likelihood estimate ( )2, ,εθ β σ λ= 

 . 
The usual form of the score test statistic is given by 

( ) ( )
12 2

2S
λ λ
λ λ

−
 ∂ ∂    = −   

∂ ∂      

 

, 

under the null hypothesis. Nuisance parameters are suppressed from notation. In the special case of testing zero 
variance component with in n≡ , the score test statistic is ([12]): 

( ) ( )
2

2

2 1 1

1 1with
2 2 1

m n
iji j

CmnS C
nC mn ε

δ
σ = =

−
= =

− ∑ ∑ 



. 

Similar to the signed likelihood ratio test statistic, the signed score test statistic is: 

( )ˆsigns Sλ λ= − .                                 (11) 

Patterson and Thompson [6] proposed restricted or residual likelihood method which takes into account the 
loss of degrees of freedom involved in estimating the fixed effects and reduces the downward bias of maximum 
likelihood estimates of variance parameters. The restricted log-likelihood function is defined as 

( ) ( ) ( )1
2 1

2

1 1log log log
2 2 2 2

RE Y X Y XN p X Xε
ε

β β
θ σ

σ

−
−

′− ∆ −− ′= − − ∆ − ∆ − .          (12) 

The signed log-likelihood ratio statistic and Wald statistic with the restricted maximum likelihood can be ob-
tained using the restricted log-likelihood function (Equation (12)) accordingly. 

To obtain the third-order inference for λ, we need to find the canonical parameter ( )ϕ θ . The canonical pa-
rameter ( )ϕ θ  is approximated by taking the sample space gradient at the observed data point in the directions 
of a set of vectors V (Equation (7)): 

( ) ( ); y V
y

ϕ θ θ∂′ = ⋅
∂
 . 

where the sample space gradient is 

( ) ( ) 1 1

2 2;
y X

y
y ε ε

β δθ
σ σ

− −′− ∆ ′∂ ∆
= − = −

∂
 .                          (13) 

Let 1 L L− ′∆ = . The tangent direction V is obtained from the pivotal quantity ( ) ( );z y L y X Lε εθ β σ δ σ= − =  
(Equation (8)): 

1
1

2
ˆˆ

ˆ ˆ
ˆ2

z z LV X L
y ε λ λθ θ

δ δ
θ λσ

−
−

==

  ∂ ∂ ∂   = − = − −       ′ ′∂ ∂ ∂      
.                   (14) 

Let A denotes 1

ˆ=

LL
λ λλ

− ∂ 
 

∂ 
 in Equation (14). Multiply Equations (13) and (14), we have the canonical pa- 

rameter ( )ϕ θ′ : 

( ) ( )
1 1 1

2 2 2 2

ˆ ˆ
,

ˆ2
X Ay V

y ε ε ε ε

δ δ δ δ δϕ θ θ
σ σ σ σ

− − − ′ ′ ′∂ ∆ ∆ ∆′ = ⋅ = −  ∂  
 . 

The Jacobian for ( )ϕ θ  is 
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( ) ( )

1 1 1
2 4 2

1 1 1
2 2 4 2 2 2

1 1 1
2 4 2

1 1 1

1 1 1ˆ ˆ ˆ
ˆ ˆ ˆ2 2 2

1 1 1ˆ ˆ ˆ

X X X X

X

A X A A

λ
ε ε ε

θ λ
ε ε ε ε ε ε

λ
ε ε ε

δ δ
σ σ σ

ϕ θ
ϕ θ δ δ δ δ δ

θ σ σ σ σ σ σ

δ δ δ δ δ
σ σ σ

− − −

− − −
′

− − −

 
′ ′ ′− ∆ − ∆ ∆ 

 
 ∂

′ ′ ′= = − ∆ − ∆ ∆ 
′∂  

 
 ′ ′ ′ ′ ′ ′∆ ∆ − ∆ 
 

. 

Thus Q can be obtained by Equation (5) and we have the third-order approximations for λ by Equation (4). 
All the equations and the maximizing problems can be programmed into R. 

4. Application: A Real Data Example 
We use a data set from the Genetic Analysis Workshop (GAW 18) to illustrate the application of our proposed 
method. The Genetic Analysis Workshops (www.gaworkshop.org), which began in 1982, were initially moti-
vated by the development and publication of several new algorithms for statistical genetic analysis, using dif-
ferent method of analysis. It is a collaborative effort among researchers worldwide to evaluate and compare sta-
tistical genetic methods, relevant to current analytical problems in genetic epidemiology and statistical genetics. 
The GAW 18 data set [13] was drawn from the San Antonio Family Study (SAFS) with a total of 959 partici-
pants from 20 families and it included the whole genome sequence data from all individuals. For each individual, 
age, sex, the use of hypertension diagnosis and antihypertensive medications (HTN) and tobacco smoking status 
(SMOKING) were recorded. 

Our goal was to test the homogeneity of baseline systolic blood pressure (SBP) among families and if a ge-
netic factor contributed to the variation of SBP among families. The test of homogeneity among families is a 
challenging task. The use of variance component of random effects in mixed models provides an efficient me-
thod to account for the heterogeneity among families. 

4.1. Test of Homogeneity of SBP among Families 
We first evaluated the homogeneity of SBP levels among families using a random intercept mixed model. We 
analysed the SBP levels with “AGE” as fixed effect in a random intercept mixed model accounting for the va-
riabilities of SBP among families. A non-zero variance of random intercept implies there exists a significant 
variation of SBP levels among families and the group specific random intercepts allow us to identify the families 
that deviate the most from the population average SBP levels at baseline. 

Let ijy  denote the SBP measurements for the ith individual in the jth family, the linear mixed model formula 
for GAW 18 data with random intercept can be written as 

0 0 1ij j ij ijy b AGEβ β ε= + + + ,                          (15) 

where 0 jb  is the random intercept for the jth family. 
To assess the variability of SBP, we obtain the 95% confidence interval of the variance component of random 

intercept λ. The 95% confidence intervals of λ obtained from third-order and first-order methods are recorded in 
Table 1. The third-order method yields a 95% confidence interval of ( )0.001,0.0802  containing no zero, sug-
gesting a significant variation of SBP levels among families oppose to the results from first-order methods. The 
simulation studies have shown the superior accuracy of the third-order method and the conservativeness of the 
first-order methods. Thus we conclude that there is a significant variation of SBP among the 20 families based 
on the result from the third-order method. Figure 1(a) is the normal quantile plot of the random intercept 0 jb  
for the 20 families. The normal quanitle plot also confirms the variability of SBP levels among families. 

4.2. Test of Homogeneity of SBP among Families in Relation to a Genetic Factor 
In a second step, we examine whether a combined genetic factor contributes to the variation of SBP levels 
among the 20 families using a random intercept and random slope mixed model. In a previous genome-wide as-
sociation study (GWAS) from GAW 18 data, we showed that four single-nucleotide polymorphisms (SNPs) listed 
in Table 2 from different regions were associated with systolic blood pressure levels adjusting for demographical  

http://www.gaworkshop.org/
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Table 1. The 95% confidence intervals of λ, test homogeneity of SBP among families. 

Method 95% CI 

Third-order (0.001, 0.0802) 

LRT-REML (0, 0.0753) 

LRT-ML (0, 0.0675) 

Wald-REML (0, 0.0503) 

Wald-ML (0, 0.0482) 

Score (0, 0.0488) 

 
Table 2. Four selected SNPs from GWAS study. 

POS GENE SNP GWAS P-value 

127,074,020 PLXNA1 rs11716834 0.0000011 

138,919,221 PISRT1 rs13100625 0.00000039 

173,866,797 NLGN1 rs11927722 0.0000017 

173,986,397 NLGN1 rs549641 0.00009 

 

 
Figure 1. Normal quantile plots of random intercept for Model (15) and random slope for 
Model (16). 

 
variables [14]. We use the average number of minor alleles from these four casual SNPs for each individual 
(denoted as SNPijgr ) was used as both as fixed effect and random slope in the model. To assess whether the 
effect of this combined genetic factor on SBP varies among families, we performed a test of variance component 
of the random slope in a random intercept and random slope mixed model. A non-zero variation of random slope 
implies significant variation of SBP levels among families due to the genetic factor. Backward elimination tech-
nique was used for model selection and led to the following random intercept and random slope mixed model: 

( ) ( )0 0 1 1 2 SEX SMOKING HTNSNP AGE SEX SMOKING HTNij j j ij ij ij ij ij ijy b b grβ β β β ε∗ ∗= + + + + + ∗ ∗ +   (16) 

where 0 jb  is the random intercept and 1 jb  is the random slope of the average number of minor alleles for the 
jth family and ( )SEX SMOKING HTNij ij ij∗ ∗  denotes the three-way interaction term including the lower order 
variables. The normal quantile plot of the random slope 1 jb  is shown in Figure 1(b) and displays substantial 
variability among families. The 95% confidence intervals of λ11 obtained from third-order method, LRT-REML 
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and LRT-ML are (0.1035, 1.1008), (0.0554, 1.0445) and (0.0457, 0.9658) respectively. Not surprisingly, result 
from the likelihood ratio test methods are more conservative than with the third-order method. 

Our two sets of analysis therefore demonstrated the interest of the third-order approach, the only method to 
find significant heterogeneity among families in terms of baseline SNP and change of SPB due to a combined 
genetic factor. 

5. Simulation Studies 
In this section, we present results from simulation studies for the random intercept mixed model and random in-
tercept and random slope mixed model to assess the improvement of the third-order method and examine the 
accuracy of the proposed third-order method compared to the following first-order methods: 

1) Third-order: the third-order method based on maximum likelihood; 
2) LRT-REML: the signed log-likelihood ratio statistic method with restricted maximum likelihood estima-

tion; 
3) LRT-ML: the signed log-likelihood ratio statistic method with maximum likelihood estimation; 
4) Wald-REML: Wald statistic with restricted maximum likelihood estimation. 
5) Wald-ML: Wald statistic with maximum likelihood estimation; 
6) Score: Score test with maximum likelihood estimation. 
The statistical software R (“nlme” package) was used to carry out all our analyses. 

5.1. Simulation Results for the Random Intercept Mixed Model 
We present simulation results for the null distribution of the zero variance component λ: 0 : 0H λ =  ( )2 0bσ =  
versus : 0aH λ >  ( )2 0bσ >  and for non-zero variance component λ: 0 : 4H λ =  versus : 4aH λ >  in a 
random intercept mixed model. 

5.1.1. 0 : 0λH =  versus : 0λaH >  
Balanced data sets with equal group size 10in n= =  were generated with fixed effect ( ) ( )0 1, 1, 2β β β= = , 

2 1εσ =  for the test of zero variance compoennt λ = 0. For each simulation configuration, 10,000 iterations were 
used for a number of groups m = 5, 10, 20, 50. 

Probability-probability plots (pp-plot), similar to a quantile-quantile (qq-plot) but on the p-value scale rather 
than on the scale of the test statistic [6], are used to examine the accuracy of the p-values obtained from the six 
methods. For a perfect approximation, the p-values line up on the 45˚ diagonal line. The nominal p-values cal-
culated from the six methods, are plotted versus the empirical p-values in Figure 2(a). Figure 2(b) shows only 
the 0 to 15th percentile of Figure 2(a), that allows us have a clearer look at the differences. Figure 2 shows that 
when group size n = 10, the third-order method is surprisingly accurate and consistent regardless of the number 
of groups m. The likelihood ratio test is the most accurate among the first-order methods while the likelihood ra-
tio test with restricted maximum likelihood estimation reduces the bias of maximum likelihood estimation. The 
approximations from Wald test and score test are poor, thus omitted for the rest of this paper. The figures also 
show that the proportion of point mass at 0 converges to 50% when sample size increases. 

To further examine the accuracy of the third-order and first-order approximations, a 3-dimensional plot is 
used to visualize the bias for a number of groups m varying from 3 to 40 and group size n from 5 to 40 (Figure 
3). The bias is calculated by subtracting the nominal p-value at the 5th percentile from its empirical (or true) 
p-value 0.05. A bias of zero implies perfect approximation and a positive bias implies conservativeness (greater 
than the true p-value). Figure 3 shows the same pattern as Figure 2: the third-order method is accurate and con-
sistent. The likelihood ratio test with restricted maximum likelihood estimation is more accurate than that of 
maximum likelihood estimation. We observe an interesting pattern that is for a given number of groups m, the 
bias is small when the group size n is small, it increases with group size n and then flattens down and decreases 
slowly. For a given number of group size n, the bias decreases with m. The phenomenon suggests that the accu-
racy of first-order methods depend on both number of groups m and the group size n. 

5.1.2. 0 : 4λH =  versus : 4λaH >  
In this section, we show simulation results for a non-zero variance component 0 : 4H λ =  versus : 4aH λ > . 
Balanced data sets with equal group size 10in n= =  were generated with fixed effect ( ) ( )0 1, 1, 2β β β= = ,  
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Figure 2. Probability-probability plot for testing λ = 0 vs. λ > 0 for number of groups m = 5, 10, 20, 50 with equal group size 
n = 10. For a perfect approximation, the p-values line up on the 45˚ diagonal line. This plot shows the conservativeness of 
the first-order methods. 
 

 
Figure 3. 3-D bias plots testing λ = 0 vs. λ > 0 for various number of groups m and group size n. The bias is calculated 
subtracting the nominal p-value from the five methods at the 5th percentile from its empirical (or true) p-value 0.05. A bias 
of zero implies perfect approximation and a positive bias implies that the approximation is conservative (greater than the true 
p-value). 
 

2 1εσ =  and λ = 4. For each simulation configuration, 10,000 iterations were used for a number of groups m = 5, 
10, 20, 50. Again, the pp-plot in Figure 4 confirms the superior accuracy of the third-order method. 

In addition, we examined the lower and upper error probabilities and the central coverage probabilities of 
third-order method and LRT methods. We generated data with m = 5, 10, 50 and n = 5, 10, 50 with 10,000 itera-
tions for each configuration and recorded the coverage probabilities in Table 3. The performance of a method is 
assessed by the following values: the central coverage probability is the proportion of intervals that contains the 
true λ (CCP), the lower error probability is the proportion of true λ that falls outside the lower bound of the con-
fidence interval (L) and the upper error probability which is the proportion of true λ that falls outside the upper 
bound of the confidence interval (U). The true CCP, L, and U are 0.95, 0.025 and 0.025 with standard errors  
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Figure 4. Probability-probability plot for testing λ = 4 vs. : 4aH λ >  for number of groups m = 5, 10, 20, 50 with equal 
group size n = 10. 
 
Table 3. Central coverage probabilities and error probabilities for testing 0 : 4H λ =  versus : 4aH λ > . The nominal val-
ues are 0.95 0.025, 0.025 with standard errors 0.0022, 0.0016 and 0.0016 for CCP, L and U respectively. 

m n Coverage Third-Order LRT-REML LRT-ML 
5 5 CCP 0.9465 0.9373 0.9026 
  L 0.0245 0.0195 0.0148 
  U 0.0290 0.0432 0.0826 

5 10 CCP 0.9486 0.9393 0.9002 
  L 0.0230 0.0173 0.0107 
  U 0.0284 0.0434 0.0891 

5 50 CCP 0.9505 0.9425 0.9030 
  L 0.0239 0.0165 0.0071 
  U 0.0256 0.0410 0.0899 

10 5 CCP 0.9553 0.9509 0.9353 
  L 0.0217 0.0188 0.0154 
  U 0.0230 0.0303 0.0493 

10 10 CCP 0.9505 0.9456 0.9312 
  L 0.0246 0.0199 0.0134 
  U 0.0249 0.0345 0.0554 

10 50 CCP 0.9503 0.9471 0.9255 
  L 0.0233 0.0166 0.0104 
  U 0.0264 0.0363 0.0641 

50 5 CCP 0.9517 0.9524 0.9499 
  L 0.0237 0.0207 0.0178 
  U 0.0246 0.0269 0.0323 

50 10 CCP 0.9518 0.9492 0.9468 
  L 0.0220 0.0206 0.0165 
  U 0.0262 0.0302 0.0367 

50 50 CCP 0.9497 0.9515 0.9472 
  L 0.0250 0.0200 0.0154 
  U 0.0253 0.0285 0.0374 
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0.0022, 0.0016 and 0.0016, respectively. The table shows that the third-order method has the best coverage 
probabilities. It is always accurate with symmetric lower and upper error coverage probabilities. The LRT- 
REML has good central coverage probabilities in some cases however the lower and upper coverage probabili-
ties are asymmetric with the lower error probabilities tends to be less than the true value and the upper probabil-
ities tend to be larger. 

5.2. Simulation Results for Random Intercept and Random Slope Mixed Model 
Testing zero variance component of random slope in a random intercept and random slope mixed model implies 
that we are testing both λ01 = 0 and λ11 = 0. The third-order method is currently limited to the test of a scalar pa-
rameter. Theoretical development for vector parameter using third-order approach has not been proposed yet. 
Instead of testing λ11 = 0, we could obtain the 95% confidence interval of λ11. Thus we show the the simulation 
results for the test of a non-zero variance component of random slope 0 11: 4H λ =  versus 11: 4aH λ > . We 
generated balanced data sets with equal group size 10in n= =  with fixed effect ( ) ( )0 1, 1, 2β β β= = , 2 1εσ = , 
λ00 = 1, λ01 = 1 and λ11 = 4, and a number of groups m = 5, 10, 20, 50. For each simulation configuration, 
10,000  iterations were used. Figure 5 is the pp-plot for 0 11: 4H λ =  versus 11: 4aH λ > . The third-order 
method has shown its superior accuracy and symmetric tail probabilities for the test of variance component of 
random slope in a random intercept and random slope mixed model. The LRT with REML is less conservative 
than LRT with ML. 

In this section, we presented simulation results for the tests of variance component in linear mixed models. 
The simulation results demonstrated that the third-order method is accurate and consistent. The LRT method 
perform the best among all first-order methods and the REML reduce the bias comparing the ML. The computa-
tion time for third-order p-values is fast and depends on sample size. It takes only a few seconds for a sample of 
40 group with group size of 40 on a personal computer with a Quad CPU @3 GHz and 8 GB RAM . 

6. Discussion 
A third-order likelihood-based method is proposed for the tests of zero and non-zero variance component in the 
random intercept mixed model and the random intercept and random slope mixed model. The third-order me-
thod requires only the observed likelihood function and derivation of the pivotal quantity and ancillary direction. 
The computation of third-order method is efficient. Our simulation studies show that the proposed third-order  
 

 
Figure 5. Probability-probability plot for testing λ11 = 4 vs. λ11 > 4 for 
number of groups m = 5, 10, 20, 50 with equal group size n = 10. 
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likelihood-based method provides substantial improvement over traditional first-order methods. It provides ex-
tremely accurate and consistent approximation for the tests of variance component in mixed models even when 
the number of groups and group sizes are as small as five and three respectively. The likelihood ratio test per-
forms the best among the first-order methods. The likelihood ratio test with restricted maximum likelihood es-
timation is less conservative than the maximum likelihood estimation. The likelihood ratio test with restricted 
maximum likelihood estimation is recommended for the test of variance component in mixed models whenever 
the first-order method is used. The application to the GAW 18 data illustrated the advantages of the third-order 
methods for the test of homogeneity among families in relation to a genetic factor. The simulation results also 
yielded a comprehensive evaluation of the accuracy of the first-order methods. The third-order method provides 
also opportunities for further applications in the context of longitudinal studies with repeated measurements and 
genetic studies. For example, there has been increased interest in genetic analysis to test the combined effect of 
several rare variants using random effects in the mixed model framework [14]. Since some popular approaches 
for this type of analysis are based on the score test of random effect, we think that the third-order approach could 
provide a more accurate alternative in this context, that we are planning to explore in future work. 

References 
[1] Britton. T. (1997) Tests to Detect Clustering of Infected Individuals within Families. Biometrics, 53, 98-109.  

http://dx.doi.org/10.2307/2533100 
[2] Liang, K.Y. (1987) A Locally Most Powerful Test for Homogeneity with Many Strata. Biometrics, 51, 259-264.  

http://dx.doi.org/10.1093/biomet/74.2.259 
[3] Chernoff, H. (1954) On the Distribution of the Likelihood Ratio. Annals of Mathematical Statistics, 25, 573-578.  

http://dx.doi.org/10.1214/aoms/1177728725 
[4] Self, S.F. and Liang, K.Y. (1987) Asymptotic Properties of Maximum Likelihood Estimator and Likelihood Ratio 

Tests under Nonstandard Conditions. Journal of the American Statistical Association, 82, 605-610.  
http://dx.doi.org/10.1080/01621459.1987.10478472 

[5] Stram, D.O. and Lee, J.W. (1994) Variance Components Testing in the Longitudinal Mixed Effects Model. Biometrics, 
50, 71171-1177. http://dx.doi.org/10.2307/2533455 

[6] Patterson, H.D. and Thompson, R. (1971) Recovery of Interblock Information When Block Sizes Are Unequal. Biome-
trika, 58, 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 

[7] Crainiceanu, D.M. and Ruppert, D. (2004) Likelihood Ratio Tests in Linear Mixed Models with One Variance Com-
ponent. Journal of the Royal Statistical Society: Series B, 66, 165-185.  
http://dx.doi.org/10.1111/j.1467-9868.2004.00438.x 

[8] Fraser, D.A.S., Reid, N. and Wu. J. (1999) A Simple General Formula for Tail Probabilities for Frequentist and Baye-
sian Inference. Biometrika, 86, 249-264. http://dx.doi.org/10.1093/biomet/86.2.249 

[9] Barndorff-Nielsen, O.E. (1986) Inference on Full and Partial Parameters, Based on the Standardized Signed Log-Like- 
lihood Ratio. Biometrika, 73, 307-322. http://dx.doi.org/10.2307/2336207 

[10] Barndorff-Nielsen, O.E. (1991) Modified Signed Log-Likelihood Ratio Statistic. Biometrika, 78, 557-563.  
http://dx.doi.org/10.1093/biomet/78.3.557 

[11] Fraser, D.A.S. and Reid. M. (1995) Ancillaries and Third-Order Significance. Utilitas Mathematica, 47, 33-53.  
[12] Verbeke, G. and Molenberghs, G. (2003) The Use of Score Tests for Inference on Variance Components. Biometrics, 

59, 254-262. http://dx.doi.org/10.1111/1541-0420.00032 
[13] Almasy, L., Dyer, T.D., Peralta, J.M., Jun, G., Fuchsberger, C., Almeida, M.A., Kent, J.W., Fowler, S., Duggirala, R. 

and Blangero. J. (2014) Data for Genetic Analysis Workshop 18: Human Whole Genome Sequence, Blood Pressure, 
and Simulated Phenotypes in Extended Pedigrees. BMC Proceedings, 8, S2.  

[14] Wu, Y.Y. and Briollais, L. (2014) Mixed-Effects Models for Joint Modeling of Sequence Data in Longitudinal Studies. 
BMC Proceedings, 8, S92.  
 

http://dx.doi.org/10.2307/2533100
http://dx.doi.org/10.1093/biomet/74.2.259
http://dx.doi.org/10.1214/aoms/1177728725
http://dx.doi.org/10.1080/01621459.1987.10478472
http://dx.doi.org/10.2307/2533455
http://dx.doi.org/10.1093/biomet/58.3.545
http://dx.doi.org/10.1111/j.1467-9868.2004.00438.x
http://dx.doi.org/10.1093/biomet/86.2.249
http://dx.doi.org/10.2307/2336207
http://dx.doi.org/10.1093/biomet/78.3.557
http://dx.doi.org/10.1111/1541-0420.00032

	Evaluation of Third-Order Method for the Tests of Variance Component in Linear Mixed Models
	Abstract
	Keywords
	1. Introduction
	2. Likelihood-Based Third-Order Method
	3. Third-Order Method For Linear Mixed Models
	Third-Order Method for Random Intercept Mixed Model

	4. Application: A Real Data Example
	4.1. Test of Homogeneity of SBP among Families
	4.2. Test of Homogeneity of SBP among Families in Relation to a Genetic Factor

	5. Simulation Studies
	5.1. Simulation Results for the Random Intercept Mixed Model
	5.1.1.  versus 
	5.1.2.  versus 

	5.2. Simulation Results for Random Intercept and Random Slope Mixed Model

	6. Discussion
	References

