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Abstract 

Linear canonical transform (LCT) is widely used in physical optics, mathematics and information 
processing. This paper investigates the generalized uncertainty principles, which plays an impor-
tant role in physics, of LCT for concentrated data in limited supports. The discrete generalized 
uncertainty relation, whose bounds are related to LCT parameters and data lengths, is derived in 
theory. The uncertainty principle discloses that the data in LCT domains may have much higher 
concentration than that in traditional domains. 
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1. Introduction 
In physics, the uncertainty principle plays an important role in elementary fields, and data concentration is often 
considered carefully via the uncertainty principle [1]-[8]. In continuous signals, the supports are assumed to be  
( ),−∞ +∞ , based on which various uncertainty relations [1] [2] [9]-[21] have been presented. However, in prac-
tice, both the supports of time and frequency are often limited. In such case, the support ( ),−∞ +∞  fails to hold  
true. In limited supports, some papers such as [22]-[25] have discussed the uncertainty principle in conventional 
time-frequency domains for continuous and discrete cases and some conclusions are achieved. However, none 
of them has covered the linear canonical transform (LCT) in terms of Heisenberg uncertainty principles that 
have been widely used in various fields [4]-[6]. Therefore, there has a great need to discuss the uncertainty rela-
tions in LCT domains. As the generalization of the traditional FT, FRFT [5] [6] [26]-[28] and so on, LCT has 
some special properties with more transform parameters (or freedoms) and sometimes yields the better result 
[29]. Readers can see more details on LCT in [6] and so on.  
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2. Preliminaries 
2.1. Definition of LCT 
Before discussing the uncertainty principle, we will introduce some relevant preliminaries. Here, we first briefly  
review the definition of LCT. For given continuous signal ( ) ( ) ( )1 2x t L R L R∈ ∩  and ( )

2
1x t = , its LCT [6] 

is defined as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
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where Zn∈  and i  is the complex unit, ( ), , ,a b c d  are the transform parameters defined as that in [6]. In 

addition, ( ) ( ) ( )( ) ( ) ( )( )2, 2, 2, 2 1, 1, 1, 1 , , ,a b c d a b c d a b c dF F x t F x t=  and 2 2 1 1
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, then ( ) ( )1, 1, 1, 1a b c dF •  and ( ) ( )2, 2, 2, 2a b c dF •  are the LCT transform pairs, i.e.,  

( ) ( ) ( )( ) ( )2, 2, 2, 2 1, 1, 1, 1a b c d a b c dF F x t x t= . Also, if ( ) ( ), , , 0,1, 1,0a b c d = − , we have the following equations: 
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However, unlike the discrete FT, there are a few definitions for the DLCT (discrete LCT), but not only one. In 
this paper, we will employ the definition defined as follows [6]: 
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Clearly, if ( ) ( ), , , 1,0,0,1a b c d = , (2) reduces to the traditional discrete FT [6]. Also, we can rewrite defini-

tion (2) as ˆ
A AX U X= �  with ( ), , ,A a b c d=  and 1A A I− = , where ( ),A A N N

U u k n
×

=    , ( )
1N

X x n
×

=   � � . 

For DLCT, we have the following property [5] [6]: 

22
ˆ 1A AX U X= =� . 

More details on DLCT can be found in [6]. 

2.2. Frequency-Limiting Operators 

Definition 1: Let ( )x t  be a complex-valued signal with ( ) ( )2 1
L R

x t =  and its LCT ( )AX u , if there is a 

function ( )AG u  vanishing outside AW  ( AW  is a measurable set) such that ( ) ( ) ( )2A A AL R
X u G u ε− ≤ , then 

( )AX u  is Aε -concentrated. 
Specially, if ( )1,0,0,1A = , then definition 1 reduces to the case in time domain [22] [23]. If ( )0,1, 1,0A = − , 

then definition 1 reduces to the case in traditional frequency domain [22] [23]. 
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Definition 2: Generalized frequency-limiting operator 
AWP  is defined as 

( )( ) ( ) ( )1 , d
A A

W A AW
P x t X u K u t u−≡ ∫ , ( ) ( )( )A AX u F x t= . 

If (1,0,0,1)A = , then definition 2 is the time-limiting operator [22] [23]. If ( )0,1, 1,0A = − , then definition 
2 is the traditional frequency-limiting operator [22] [23]. Definitions 1 and 2 disclose the relation between Aε  
and AW . For the discrete case, we have the following definitions. 

Definition 3: Let ( ) ( )2x n l R∈�  ( )1, ,n N= �  be a discrete sequence with ( ) ( )2 1
l R

x n =�  and its DLCT 

( )ˆAx k , if there is a sequence ( )ˆAx k′  satisfying ( )
0

ˆ Ax k Nα′ =  such that ( ) ( ) ( )2ˆ ˆA A Al R
x k x k ε′− ≤ , then 

( )x̂ k  is Aε -concentrated. Here, 0⋅  is the 0-norm operator that counts the non-zero elements. 

Definition 4: Generalized discrete frequency-limiting operator 
ANP  is defined as 

( )( ) ( ) ( )1
1

ˆ ,
A A

N

N N A
k

P x n x k u k nχ −
=

= ∑�  with ( )x̂ k  is the DLCT of ( )x n�  and 
ANχ  is the character function 

on ( )A AN N N≤ . 
Clearly, definitions 3 and 4 are the discrete extensions of definitions 1 and 2. They have the similar physical 

meaning. These definitions are introduced for the first time, the traditional cases [22] [23] are only their special 
cases. Definition 3 and 4 disclose the relation between Aε  and AN . 

3. The Uncertainty Relations 
3.1. The Uncertainty Principle 
First let us introduce a lemma. 

Lemma 3: 
1 2 2 1
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⋅
=

−
 

where 
F⋅  is the Frobenius matrix norm. 

Proof: From the definition of the operator 
A BN NP P  in definition 4, we have 

( )( ) ( ) ( ) ( )1
1 1

ˆ, ,
A B A B

N N

N N N A N B
k v

P P x n u k n x v u k vχ χ −
= =

= ∑ ∑� . 

Exchange the locations of the sum operators, we obtain  
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Hence, according to the definition of the Frobenius matrix norm [1] and the definition of DLCT, we have  
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In the similar manner with the continuous case, we can obtain 
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( )
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, thus, we get  

( )2
1 2 2 11A B A BN N N a b a bε ε⋅ ≥ ⋅ − − − . Therefore, we can obtain the following theorem 2. 

Theorem 2: Let ( )ˆAx k  ( )( )ˆBx k  be the DLCT of the time sequence ( ) ( )2x n l R∈� ( )1, ,n N= �  for 

transform parameter A ( )B , with ( )ˆAx k  ( )( )ˆBx k Aε ( )Bε -concentrated on index set N  ( )0A Bε ε ≠ . Let 

AN  ( )BN  be the numbers of nonzero entries in ( )ˆAx k  ( ( )ˆBx k  respectively). Then 
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1 , ;
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3.2. Extensions 
Set 0A Bε ε= =  in theorem 2, we can obtain the following theorem 3 directly. 

Theorem 3: Let ( )ˆAx k  ( )( )ˆBx k  be the DLCT of the time sequence ( ) ( )2x n l R∈� ( )1, ,n N= �  with  

length N. AN  ( )BN  counts the numbers of nonzero entries in ( )ˆAx k  ( ( )ˆBx k  respectively). Then 

1 2 2 1 1 1 2 2

1 1 2 2

, ;
1,      .

A B

A B

N N N a b a b a b a b
N N a b a b

 ⋅ ≥ ⋅ − ≠


⋅ ≥ =
 

Clearly, theorem 3 is a special case of theorem 2. Also, this theorem can be derived via theorem 1 in [25].  
Differently, we obtain this result in a different way. Here we note that since ( ) ( )2 1

l R
x n =� , there is at least one 

non-zero element in every LCT domain for 1 1 2 2a b a b= . Therefore, 1A BN N⋅ ≥  for 1 1 2 2a b a b= .  
Through setting special value for ( )1,0,0,1B =  in theorem 3, we have 
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We can obtain the following more general uncertainty relation associated with DLCT. 
Theorem 4: Let ( )ˆ

lAx k  ( )1,2, ,l L= �  be the DLCT of the time sequence ( ) ( )2x n l R∈�  ( 1, ,n N= �  

and N L> ) with length N  and ( ) ( )2 1
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l
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Proof: From the assumption and the definition of DLCT [6], we know 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11 21 2
1 2

1 1 2 2
1 1 1

ˆ ˆ ˆ, , ,
LL

L

N N N

A A L A LA A A
k k k

x n u n k x k u n k x k u n k x k− − −
= = =

= = = =∑ ∑ ∑� �  for 1, 2, ,n N= � . 

where 
( ) ( )

22

2

1

cot
2 2, 1 e e e

ll l l l

l l l

l

in dia k ik n
b Nb b N

l lA
u n k ib N

α

−

−−

= − ⋅  ( )1,2, ,l L= � . Therefore, let ( ) ( ) ( ) T
1 , 2 , ,X x x x N=   � � � �� , 

have [25] 

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

1
1

1
1

1 1 1

1
1

T

T
T

T

1,:

2,:
ˆ ˆ ˆ1 , 2 , ,

,:

l

l
l l l

l

A

A
A A A

A

u

u
X X x x x N

u N

−

−

−

 
 
 
  =    
 
 
  

� � �
�

 
( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )
( )

1
2

1
21 1 1

2 2 2

1
2

ˆ 1

ˆ 2
1,: , 2,: , , ,:

ˆ

l

l

l l l

l

A

A
A A A

A

x

x
u u u N

x N

−

−

− − −

−

 
 
        
 
 
 

�
�

 



G. L. Xu et al. 
 

 
150 

where 
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Using the triangle inequality, we have  
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From the definition and property of DLCT [6] we have 
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Hence, we finally obtain 1 2 LN N N N
L
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�

 with { }1 2 2 1
1 2

1 2
1 ,

inf l l l ll l L
l l

a b a bξ
≤ ≤
≠

= − . This theorem is the 

extension of theorem 3 and discloses the uncertainty relation between multiple signals. 

4. Conclusion 
In practice, for the discrete data, not only the supports are limited, but also they are sequences of data points 
whose number of non-zero elements is countable accurately. This paper discussed the generalized uncertainty 
relations on LCT in terms of data concentration. We show that the uncertainty bounds are related to the LCT 
parameters and the support lengths. These uncertainty relations will enrich the ensemble of uncertainty prin-
ciples and yield the potential illumination for physics. 
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