Journal of Signal and Information Processing, 2015, 6, 146-152 ’0:0 Scientific
Published Online May 2015 in SciRes. http://www.scirp.org/journal/jsip ":’0 sﬁgﬁg:ﬁ:g
http://dx.doi.org/10.4236/isip.2015.62014 ¢

Discrete Inequalities on LCT

Guanlei Xul, Xiaotong Wang?, Xiaogang Xu?

'Ocean Department of Dalian Naval Academy, Dalian, China
2Navgation Department of Dalian Naval Academy, Dalian, China

Email: xgl 86@163.com
Received 12 April 2015; accepted 12 May 2015; published May 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

Linear canonical transform (LCT) is widely used in physical optics, mathematics and information
processing. This paper investigates the generalized uncertainty principles, which plays an impor-
tant role in physics, of LCT for concentrated data in limited supports. The discrete generalized
uncertainty relation, whose bounds are related to LCT parameters and data lengths, is derived in
theory. The uncertainty principle discloses that the data in LCT domains may have much higher
concentration than that in traditional domains.
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1. Introduction

In physics, the uncertainty principle plays an important role in elementary fields, and data concentration is often
considered carefully via the uncertainty principle [1]-[8]. In continuous signals, the supports are assumed to be
(—oo, +oo) , based on which various uncertainty relations [1] [2] [9]-[21] have been presented. However, in prac-

tice, both the supports of time and frequency are often limited. In such case, the support (—oo, +oo) fails to hold

true. In limited supports, some papers such as [22]-[25] have discussed the uncertainty principle in conventional
time-frequency domains for continuous and discrete cases and some conclusions are achieved. However, none
of them has covered the linear canonical transform (LCT) in terms of Heisenberg uncertainty principles that
have been widely used in various fields [4]-[6]. Therefore, there has a great need to discuss the uncertainty rela-
tions in LCT domains. As the generalization of the traditional FT, FRFT [5] [6] [26]-[28] and so on, LCT has
some special properties with more transform parameters (or freedoms) and sometimes yields the better result
[29]. Readers can see more details on LCT in [6] and so on.
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2. Preliminaries
2.1. Definition of LCT
Before discussing the uncertainty principle, we will introduce some relevant preliminaries. Here, we first briefly

review the definition of LCT. For given continuous signal x(t) el (R)ﬁL2 (R) and "x(t)”2 =1, its LCT [6]

is defined as

X(a,b,c,d) (u) — F(asb,c,d) (x(t)) = J‘:x(t)K(a’b’c’d) (u,t)dt

idu2 —iut iaz‘2
ﬁ-efﬁeTeWx(z)dt, b#0,ad —bc=1; (1)
icdu2
Jd e 2 x(du), b=0.

where neZ and i is the complex unit, (a,b,c,d ) are the transform parameters defined as that in [6]. In

b a, b ||la b
ddition. Fle2622:42) platoea) _ plabed) dal = Y O ar
addition, (x(t)) (x(t)) an c d ¢, d,|l¢ d,

1 0 b b X .
N R , then F(“l’bl"l"“)(t) and Fle202<2d?) (-) are the LCT transform pairs, i.e.,
01 ¢, d,|l¢q d

Flozt2ezd2) plalbleld) (x(t)) =x(t). Also, if (a,b,c,d)=(0,1,-1,0), we have the following equations:

FOL0) (x(t)) - X(u)

x Ko 10 (ust)dt and x( \/7 Lﬂ
J_;ex ;
2n

However, unlike the discrete FT, there are a few definitions for the DLCT (discrete LCT), but not only one. In
this paper, we will employ the definition defined as follows [6]:

idk®>  —ikn ina

Xabye.d) ZW ¢ 2b o Nb g2bN° x( )
an (2)
:Z”(a,b,c,d)(k,n)~i(n), 1<nk<N.

n=l1

Clearly, if (a,b,c,d)=(1,0,0,1), (2) reduces to the traditional discrete FT [6]. Also, we can rewrite defini-
tion(2)as X,=U,X with A=(a,b,c,d) and A'A=1,where U, = [uA (k,n)]NxN, X = [f(n)]le.
For DLCT, we have the following property [5] [6]:
. =lvxl, =

More details on DLCT can be found in [6].

2.2. Frequency-Limiting Operators
Definition 1: Let x(t) be a complex-valued signal with "x(l)"L2 ® =1 and its LCT X, (u), if there is a

function G, (u) vanishing outside W, (W, is a measurable set) such that "X 4 (u)—G 4 (u)"L2 " <¢&,, then

X, (u) is &,-concentrated.

Specially, if 4 =(1,0,0,1), then definition 1 reduces to the case in time domain [22] [23]. If 4 =(0,1,-1,0),
then definition 1 reduces to the case in traditional frequency domain [22] [23].
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Definition 2: Generalized frequency—limiting operator B, is defined as
(B, x)(1) )=, X.( (w,t)du, X, (u)=F,(x(t)).

If A=(1,0,0,1), then definition 2 is the time-limiting operator [22] [23]. If 4 =(0,1,—1,0), then definition
2 is the traditional frequency-limiting operator [22] [23]. Definitions 1 and 2 disclose the relation between ¢,
and W, . For the discrete case, we have the following definitions.

Definition 3: Let )Nc(n)el2 (R) (n=1,---,N) be a discrete sequence with "i(n) =1 and its DLCT

1 (R)
X! (k)”o =N, such that "ch (k)-%, (k)

a

%,(k), if there is a sequence &/ (k) satisfying <¢g,, then

7 (R)
%(k) is &, -concentrated. Here, ||||0 is the 0-norm operator that counts the non-zero elements.
Definition 4: Generalized discrete frequency-limiting operator P, ~ is defined as
N
(PNA)E)(n): D xw X(k)u ., (k,n) with %(k) is the DLCT of %(n) and g, is the character function
k=1

on N,(N,<N).

Clearly, definitions 3 and 4 are the discrete extensions of definitions 1 and 2. They have the similar physical
meaning. These definitions are introduced for the first time, the traditional cases [22] [23] are only their special
cases. Definition 3 and 4 disclose the relation between &, and N, .

3. The Uncertainty Relations
3.1. The Uncertainty Principle

First let us introduce a lemma.

N, N
Lemma 3: "PNAPNB P m

where ||||F is the Frobenius matrix norm.

Proof: From the definition of the operator P, B, in definition 4, we have
N N
(PNA PNB)E)(n) = ZZNA u, (k,n)Z;(NBJQ(v)uB,I (k,v).
k=1 v=1

Exchange the locations of the sum operators, we obtain

N N

(PNA PNB)?)(n) = z XN, Xyt (k,n)fc(v)uB,l (k,v)

v=l k=1

ZNAﬁ:ZN,, (v ) (”’V)’

v=

Mz

=
Il

Hence, according to the definition of the Frobenius matrix norm [ 1] and the definition of DLCT, we have

N N ) 1/2
||PNAPNB F :[;lﬁ/,{ ;Mﬂ U, g (nsv)‘ j

_ | NiNy
N|a1b2 —a2b1| ’

Py Py
In the similar manner with the continuous case, we can obtain ” | x" &) >1-(&,+¢&). Since
X
"P " = sup "PNAPNBX(n) £ we have
N =" Ny N/;' 12 ()GIZ(R) ||5("(n)||12(R) 5
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) B, P, %(n)
N,y Ny =|| Pl > " “ ~NB @) >1—-(&, +¢&), thus, we get
N|a1b2 —a2b1| d "x(n)"lz(R)
N, -Ny2 N-(l—gA —&y )2 |a1b2 —a2b1| . Therefore, we can obtain the following theorem 2.
Theorem 2: Let %, (k) (J?B (k)) be the DLCT of the time sequence )?(n)el2 (R) (n=1---,N) for

transform parameter A (B), with %, (k) ()?B (k)) &, (&) -concentrated on index set N (g,6; #0). Let

N, (Ny) be the numbers of nonzero entries in %, (k) (X, (k) respectively). Then
. a /b iaz/bz;'
a, /b = a, [b,.

N, Ny2N-(1-¢,-¢,) |ab, - a,b,
N,-N, =1,

3.2. Extensions
Set &, =¢; =0 in theorem 2, we can obtain the following theorem 3 directly.

Theorem 3: Let %, (k) ()?B (k)) be the DLCT of the time sequence fc( )el (R) (n=1,---,N) with
length N. N, (N,) counts the numbers of nonzero entries in %, (k) (% (k) respectively). Then
{NA "N, > N~|a1b2 —a2b1|, a,/b #a,[b,;
N, N, >1, a, /b =a,/b,.
Clearly, theorem 3 is a special case of theorem 2. Also, this theorem can be derived via theorem 1 in [25].

Differently, we obtain this result in a different way. Here we note that since "fc(n)"l2 " = 1, there is at least one

non-zero element in every LCT domain for g, /b =a,/b, . Therefore, N, -N,>1 for a /b =a,/b, .

Through setting special value for B =(1,0,0,1) in theorem 3, we have
N,-Ny=N:|b| b=0
Corollary 1: with Ny =Ny 01 -
N, N, =1 b =0
We can obtain the following more general uncertainty relation associated with DLCT.
Theorem 4: Let X, (k) (/=1,2,---,L) be the DLCT of the time sequence )?(n) el (R) (n=1---,N

and N > L) with length N and ")?(n)"lz ® =1. N, counts the number of nonzero elements in (k)

Then
N,+N, +-+N, ) )
RAiCH L > [N-E with &= 1s}f,}fa{ |a,b, —a,b, |}
h#h
Proof: From the assumption and the definition of DLCT [6], we know
N N N
x(n)= ;um) (k)% (k)= kZ:lu(Az)_, (n,kz)ch2 (ky)=-= kzlu(AL)_, (n.k, )%, (k,) for n=12,---,N.
= 2= L=
—ia,k,zcomq ikn ‘i”zd/ T
2 ~
where - (k) =\=1/ipN e " e™e™™ (1=1,2,--,L). Therefore, let X =[¥(1),%(2),-+,%(N)] .
1
have [25]
[u™ (L) ] [z 1]
M(A/1> 1 ( ) x(*‘/z)il ( )
T A
cro . . A u (2,:) . . . x 1(2)
XX = |:XA/ (1)’XA11 (2)’ ’xAll (N):| (A[l) u(Azz)il (1")"’{(14[2)*1 (2")"“’1/!(,4,2)’1 (N’) (AIZ)
T . X N
M(A/I) I (N’.)_ x(AIz) l ( )_
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A),l(n,Z),---,u )l(n,N)} and

(All
T
u ),1 (n,:):{u(AI ),1 (n,l),u(AI ),1 (n,2),---,u(Al ),1 (n,N)} with n=1,2,---,N and [, =12,---,L with
2 2 2

(Alz
L #1.
Hence, we obtain

n=1 k=1
Ny Ny,
= M(h h) & le X4 (Sl )‘ X4, (52)
sp=1 sp=
Using the triangle inequality, we have
2 2
b () 5y () < F )
4 21 4, \°2 b
hence
From ")?(n)"2 =1 and Parseval’s principle [6], we obtain:
N 2 R 2
NZA’i X4 (s1) % X4, ()
=02 =2 2
Hence
- NA’zl NAI]l NA +NA
X'x< + e
(h:h) (22 Slzlz 1112 2
Therefore, we obtain
P xem,, Mt
(1.2) 2
P xem,, NN
(1.3) 2
15 N, | +N,
¥R SM(L,I 0 L 12 L
- . " 2 TS (L-1)-(N,+N,+---+N,) .
Adding all the above inequalities, we have I';-X X < sup {M(z . )} with
13111%;@ 12 2
L-(L-1 P
Fi = g 1 ) . Similarly, from "i(n)" =1 and Parseval’s principle [6], we obtain X' X =1, hence
X
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(L—1)~(N1+N2+--~+NL)> r;.

2 sup {M(MZ)} '

1<h,h<L
I

h#l
From the definition and property of DLCT [6] we have
1 —_—
o, —a,zb,]” N &

sup {M(zl,zz)}z sup K o (s.8,)
1<l L <L 1<s),5 <N (Azl) A
h#l 1<l <L, #y

sup
1<s),5<N
1<h L <L #1,

with ¢= inf {lab, —a,b|}.

1<l <L
L#l
. N +N,+--+N . . : :
Hence, we finally obtain — 2L L>N-& with &= inf {|a,l b, —a,b, | } This theorem is the
1<l h<L

L#l

extension of theorem 3 and discloses the uncertainty relation between multiple signals.

4. Conclusion

In practice, for the discrete data, not only the supports are limited, but also they are sequences of data points
whose number of non-zero elements is countable accurately. This paper discussed the generalized uncertainty
relations on LCT in terms of data concentration. We show that the uncertainty bounds are related to the LCT
parameters and the support lengths. These uncertainty relations will enrich the ensemble of uncertainty prin-
ciples and yield the potential illumination for physics.
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