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Abstract

By using the properties of modified Riemann-Liouville fractional derivative, some new delay in-
tegral inequalities have been studied. First, we offered explicit bounds for the unknown functions,
then we applied the results to the research concerning the boundness, uniqueness and continuous
dependence on the initial for solutions to certain fractional differential equations.
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1. Introduction

The common differential and integral inequalities are playing an important role in the qualitative analysis of
differential equations. At the same time, delay integral and differential inequality have been studied due to their
wide applications [1]-[3]. In recent years, the fractional differential and fractional integrals are adopted in var-
ious fields of science and engineering. In addition, the fractional differential inequalities have also been studied
[4]-[10]. We also need to study the delay differential equation and delay differential inequalities when dealing
with certain problems. However, to the best of our knowledge, very little is known regarding this problem [11].
In this paper, we will investigate some delay integral inequalities.
In 2008, Zhiling Yuan, et al. [3] studied the following form delay integral inequality

K (6)<a(t) +b() [, f(5)x(o(s)+a(s)X' ()+ [n(r)x" ()dr [ds. teR. )
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then they offered an explicit estimate for x(t) , and applied this result to research the properties of solution to

certain differential equations.
In 2013, Bin Zheng and Qinghua Feng [6] put forward the following form of fractional integral inequality

uP(t)ga(t)+%ﬁ(t—s) [a(s)u (s)+ [n(&)ur (£)d¢ |as, >0, @

and they applied the obtained results to study the properties of solution u (t) .
In this paper, combining (1) and (2), we will explore the following form of delay integral inequality

up(t)sk(t)+%ﬁ(t—s)ﬂ[f(s)uq(o-( )+ [(h(e)u" (c)dr ds, >0, ®)

Now we list some Definitions and Lemmas which can be used in this paper.
Definition 1. [6] The modified Riemann-Liouville derivative of order « is defined by

1 de, o a
—_— Faayaht-8) (FO-1(@)ds o<axt
(f(n)(t))(a_n)' n<a<n+l, nx1l

Definition 2. [6] The Riemann-Liouville fractional integral of order « on the interval [0,t] is defined by

18 () =—— [{(t=5)"" £ (s)ds.

()

Some important properties for the modified Riemann-Liouville derivative and fractional integral are listed as
follows [6] (the interval concerned below is always defined by [O,t] ).

r(l+ 7) t}/*a
I(l+y-a)

@ Df(f(1)g(t)=g(t)Dif(1)+f(1)Dfg(t),
@) D fla()]=f;[9(t)]Dra(t)=D;fa(t)](e'(1))".
@) |“(fo(t))=f(t)-f(o), Dy (147 (1)) = (1),
(5) 1°(g(t ( £(0)g(0)-1(f(t)Drg(1)).

Lemma 1. [3] Assumethat a>0, p>qg=>0,and p=0,then
q-

(1) Dt =

n

4 a-p _
a? <dk P ar P9k
p p
Lemma 2. [6] Let «>0, a(t), b(t), u(t) be continuous functions defined on t>0.
Then for t>0,

< le

for any K>0.

Dfu(t)<a(t)+b(t)u(t)

Implies
@ t*

u(t)<u(o )exp{jth)b((sl“(1+a))ijds}+r(la)I;(t—r)“'la(r)exp{—jrglj")b((sl“(l+a))flzjds}dr.

I'(l+a)

2. Main Results
Theorem 1 Assume that >0, u(t), k(t), a(t), f(t), g(t), h(t)eC(R,,R,), and k(t), a(t) are
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nondecreasing functionsin t>0. If u(t) satisfies the following form of delay integral inequality

u%0£k0)+aa)f0—ﬂ”{f@ﬁﬂ(( )+ [(h(e)u" (r)dr |ds, t=0, @)

[(a)®

with the initial condition

u(t)=¢(t), te[B.0],

#(o(t))<k? (1), for teR, with o(t)<0 )

where p#0, p>q>0, p=r>0, p=m=>0, p, g, r, m are constants, o(t)eC(R,,R), o(t)<t,
—o< g=inf{o(t),teR,}<0 and ¢(t)eC([B,0].R,), then we have

u(t)< {k(t)exp{a(t)jof(ia)Gl ((SF(1+ a))ins}
(6)

N QNN Hl(r)exp[—a(t)f Fii;“Gl[(sf(lw))iJdS}df}p' t=0.

q
P—0dy o P—r v tp—m
H,(t)=——K"f (t)+—KPg ~———K"h(z)dr
(=P KO+ E Tk () [ BT KOh()
q 9-p =p em =P
Gl(t)=BK P f(t)+EK P g(t) jFK P h(r)dz

Proof. Fix T >0, let

z(t):k(T)+ﬂﬁ(t—s)“_l[f(s)uq(a(s))+g(s)ur(s)+.f§h(r)um(r)dr}ds, teo,T], @)

I'(a)

a(T) d ,t

O 0(t_s)a*[f (s)u* (o (s))+ $)+ ['h(z) dr}ds

Since >0, u(t), k(t), a(t), f(t), g(t), h(t)eC(R*,R*), there’s exist a constant C >0, such
that

C:min{f(s)uq(a( (5)+ [ (r)u" ()],

and j;(t—s)“'l[f (s)u" (a(s) +9(s j h(z dr:|ds is convergence integral,

so we have

2'(t)= a(T)j;di(t_s)“-l[f (s)u* (o(5))+ g (s)u" (5)+ [{h()u" () e s




Z. M. Zhao, R. Xu

we have z (t) is a nonnegative and nondecreasing. From (4) and (7) we get

1

u(t)<z®(t), te[o,T], (8)
and
sz(t):a(T)[f(t) *(o(t))+ g (t)u" (£)+ [h(r)u" dr} te[0,T]. ©)
Sofor t>0 with o(t)>0, we have
u(o(t))<z?(o(t)) <2 (t), te[o,T], (10)
for t>0 with o(t)<0, we have
u(o(t))=¢(o(t)) <k’ (t)<k®(T)<z"(t), te[0T]. (11)
Combining (10) and (11), we obtain
u(a(t))ﬁz%(t), te[0,T], (12)
From (8), (9) and (12) we get
Dt“z(t)sa(T){f(t)z?’(o(t))+g(t)z:’(t)+ ;h(f)z?(f)df}, te[0,T], (13)

sa(T){p_qK f(t)+EK:’g(t)+_fsp—me h(f)df} (14)

=a(T)H,(t)+a(T)G,(t)z(t), te[0,T].
Since u(t), g(t), h(t) are continuous and there exists a constant M satisfies
‘f “(o(t))+ g (t)u (1) + [h(s)u ds‘<M
for te[0,&], where &>0. Then we get
[(t=s)"|f (s)u (o (s))+ s)+[th(r)u" (z)dz

so we have

ds <Mt“ te[O,g],
a

2(0)=K(T), (15)

Using Lemma 2 to (14) we get

468
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z(t)<k(T )exp{a(T )for(ia)Gl [(sl" (1+ a))ijds}

. (16)
+""(T)j‘(t—1)“’l H, (z)exp —a(T)JT(;”‘)Gl (sr(1+a))§ dspdz, te[0,T].
F(a)” o
Letting t=T in (16) and considering T >0 is arbitary, after substituting T with t, we get
t* 1
z(t)< k(t)exp{a(t)jof(lw)Gl((SF(1+ a))a)ds}
A7)

.20 [i(t—o) Hl(r)exp{—a(t)frff)GlG((Sr(lm))i)ds}df' t=0.

I'(a)

Combining (8) and (17), we get (6).

Remark 1. Assume k (t) =0, then the inequalities in Theorem 1 reduce to Lemma 5 in [6].

Theorem 2. Assume that o >0, u(t), k(t), a(t), f(t), g(t), h(t), o(t) are defined as in
Theorem 1. If u(t) satisfies the following form of integral inequality,

upa)skay+?83jyﬁ_sy*[f(gu (s)+L(s.u(o(s)))+ [(r) } t>0, (18)

where p>q>0, p>m>0, p>1, p, g m areconstantsand L, M eC(Rf,R) satisfy
0<L(t,x)-L(t,y)<M(ty)(x-y), x=y=>0, (19)

with the condition (5) in Theorem 1, then we have

u(t)<{k(t)+;((;))j;(tr)“H (z )exp{ [" (}“")G ((sl‘(1+a))ijds}dr} , 120, (20)
I(l+a)
where
=t P25 4 0 () [ 2=k h(s) - M h(s)k(s) Jas
Hz(t)_f(t)[ o K k(t)] I{ 5 K h(s) o K h(s)k( )Jd
+L{t,pT_1Kp+%Klppk(t)j, t>0,
T a()« [ K 7 n(s)a(s)dseM |t 2tk Lk T k() | LK P ag), t2
G,(1)=K " f(Da(y) LpK h(s)a(s)d M[L KP4k k@ﬂpK (t), t20
Proof. Let
1 a-1
z(t):mjo(t—s) [ £(s)u(s)+L(s.u(o(s)))+ [h()u" (r)dr Jas, t=0, (21)

Since u(t), f(t), h(t), L(t,s) are nonegative functions, z(t) is also nonegative and nondecreasing func-
tion, in addition, there exists a constant N satisfying

‘uo *(t)+ L(tu(o (1))« [h(s)u m%m

for te[0,&], where &>0. Then we get
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t a-1 q t m ﬁ a
[L(t=s)|f () )+ L(tu(o (1)) + [n(s)u (s)ds‘ﬁat . tefo,e],
so we can get z(0)=0.From (18) we have
u(t)<(k(t)+a(t)z(t)r, t=0, (22)
and
D7z(t)= f ()u (t)+ L(tu(o(1)))+ [h(s)u™ (s)ds, t=0. (23)
By Lemma 1 we get forany K >0,
L Lp
u(t)< p;1Kp+(k(t)+a(t)z(t))%K P, t20. (24)
Proceeding the similar proof of Theorem 3 in [3], we can get
L Lp
u(o-(t))spT_le+(k(t)+a(t)z(t))%K P, 20, (25)

From (23), (24), (25) and condition (19) we have

(26)

= H, (1)+6, (1)2(1)
By Lemma 2 we have
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z(t)gﬁ j;(t_r)“Hz(r)exp{_j”i%z ((sl‘(l+a))i]ds}dr, t20. 27)

I(l+a)

Combining (22) and (27), (20) can be obtained subsequently.
Theorem 3. Assume that a(t), b(t), k(? u(t)eC(R,,R,), >0, B(t)eC*(R,,R,) and A(t) is
t)

nondecreasing with S(t)<t for t>0.1f u satisfies
u(t)sk(t)+%j§(t—s)“‘ljf(s)b(g)u((g)dgds, t>0, (28)
then
u(t)<k(t)+ 1"(8105?1) [((t=7)"H, (r)exp{—jrj:f)es ((sl‘(a+2))al+ljds}dr, t>0), (29)
r(a+2)
where
Hy (1) =b(B (1) k(B(1))B'(t). Gs(t)=a(B(1))b(B(t)B'(1)
Proof. Let
2(t) :ﬁ [L(t=s)* ["*b(&)u(&)deds,
then we get
u(t)<k(t)+a(t)z(t), t=0. (30)

Since b(t), u(t) are both continuous functions, ff(s)b(f)u(cf)d.f is continuous and there exists a con-
stant M satisfying Uoﬁ(s)b(f)u(f)d(:
1

2(t) ) [b(t=s) [/"b(£)u(£)deas < =

<M for te[0,&], where &>0. Then we get

sowe get z(0)=0 and

By Lemma 2 we have

toz+1

1

z(t) < mj;(t—r)“ H, (r)exp{—jrfff)Q ((sl‘(a+2))al+ljds}dr, t>0. (31)

I'(a+2)

Combining (30) and (31), we get (29).
Remark 2. Considering ﬁ(t) =t in Theorem 3, proceeding the similar proof of Theorem 3, we can get

a+l
t 1

u(t)<k(t)+ F(aof?l) [(t=7) b(r)k(r)exp{-jfgf{a((sr(a+2))ajb[(sr(mz))iﬂds}dr, t>0.

I'(a+2)

Theorem 4. Assume that a(t), k(t), u(t)eC(R,,R,), a>0, B(t)eC'(R,,R,) and B(t) is nonde-
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creasing with g(t)<t for t>0, b(t,s)eC(R, xR,,R,) with (t,s)—>0db(t,;s)eC(R, xR,,R,). If u(t)
satisfies the following form of delay integral inequality

u(t)< k(t)+% [it=s)" ["b(s.&)u(£)deds, t=0, (32)
then
u(t)<k(t)+r(aof?l)r(t—r)aH ( )exp{—jfj:f>e4{(sr(mz))alu]ds}dr, t>0, (33)
[(a+2)
where
H, (1) =b(t, A1)k (B(1) & (t)+ [/"k(s)ab(t.s)ds,
G, (t)=a(B(t))b(t. A1) B'(t)+ [ “a(s)ab(t,s)ds
Proof. Let
1 A(s
2(t) = r(a)j(t—) [b(s.£)u(¢)deds, t20,
then we get

u(t)<k(t)+a(t)z(t), t=0, (34)
The assumptions on b(t), u(t) and g(t) imply that z(t) is nondecreasing and there exists a constant
M satisfying Moﬁ(s)b(s,g)u(g)dg <M for te[0,&], where £>0.

Then we get

M

I'(a+1)

2(1) =$J§(t—s)al ["%b(s,£)u(£)deds < t, 20,

sowe have z(0)=0.For t>0, we have

and
D"z (t)

=b(t,A(1)u(B(1) B'(1)+ ], "ab(t.s)u(s)ds

<b(t, B(1))[k(B(1))+a(B(1)z(B(1)]A (1) j Yab(t,s)[k(s)+a(s)z(s)]ds -
<b(t B[k (A1) +a(B(1)2(t)] B 1)+ ], 2b(t.s)[k(s)+a(s)z(t)]ds
=b(tAO)(BO)F O+ [ k(s)ab(ts)is+ [a(AO)b ()) (0)+"a(s)ep(t5)as (1)

—H, (1)+G, ()2(0).

Using Lemma 4 to (35), we can get

z(t)sﬁj;(t—r)aH (r )exp{ J'F(:E:G {(sl‘(a+2))al+ljds}dr, t>0. (36)

Combining (34) and (36), we get (33).
Remark 3. Considering o,b(t,s)=0 and A(t)=t in Theorem 4, we can get Remark 2.
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3. Applications

In this section, we will show that the inequalities established above are useful in the research concerning the
boundness, uniqueness and continuous dependence on the initial value for solutions to fractional differential
equations.

3.1. Consider the Following Fractional Differential Equation

u? (1) =u(0)+ 1°H (tu(t) u(o (1), [u° (s)as), t=0,
u(0)=C. (37)
with the condition
u(t)=¢(t), te[B.0],
B(oO)| <@, t>0 o(t)<0, (38)

where H(t,x,y,z)eC(Rf,R), p>1 isaconstant, o(t)eC(R,,R), o(t)<t, a>0,
And

—o< g=inf{o(t),teR, }<0, 4(t)eC([B.0,R.),
Example 1. Assume that H (t,x,y,z) satisfies

|H (t.x, y,z)|£ g(t)[x[+ f (t)]y|+]z]. (39)
where f(t), g(t) are nonnegative continuous functions on t>0, then we have the following estimate for
u(t),

lu(t)< {|C|exp“ iflG[(sr(Ha))ijds}
: (40)
t* p
1 oot et {ira) :
+F(a)I°(t ) M(r )exp{ J'F(LQ)G[(sF(ha)) ]ds]d } , 120,
where
M(t)—T "(f(t)+a(t) G(t)ZEK " (f(t)+a(1))
Proof. By Equation (37), we have
p — 1 _
u (t)—C+r(a)j(t ) (su( _[u ) t>0. (41)
By (39) and (41) we can get
o7 <16l oy b9 R (s0(s)u(o (5). o () s
(42)
1 ¢t a-1
S|C|+r(a)j0(t—s) [f(s)|u(a | (s)|u(s)|+ ju ]
With a suitable application of Theorems 1 to (42) (with m=p, q=r=1, k(t)=[C|, a(t)=1, h(t)=1), we

can obtain the desired result. This complete the proof of Example 1.

Example 2. Assume that
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|H (tixl!yllzl)_ H (th21y2’22)| < g(t)|x1p _X2p|+ f (t)|Y1p - y2p|+|zl—zz|, (43)

where f(t), g(t) are nonnegative continuous functions defined t>0, p is the quotient of two odd num-
bers. Equation (37) has a unique solution.
Proof. Suppose u, (t), u,(t) are two solutions of Equation (37), then we have

0 (0=C+ s (s,u1<s),u1<a(s>),J§uf (e)dg)s, t=0
ug (t)=(3+ﬁj;(t—s)“l H (s U, (s juz ) t>0.
Furthermore,
p by Lt a1 Sp
uf (0)=uf (1) = g hl=9) [ H {50 (5)w (o (5)). [07 ()42~ H (.0, (5) i, ((5)). [ () s
which implies
juP (t)-uf (1)
t a1 (44)
sﬁfo(t—s) [9(8)ja? (5)-u (3)+ T (5)|u (or(s (D|+[[]u (£)-uz (£)]a Jas,
Through a suitable application of Theorem 1 to (44) (with p=q=r=m=1, k(t)=0, a(t)=h(t)=1), we
can obtain

|Ulp (t)-u7 (t)| <0,

which implies u, (t)=u, (t). So Equation (37) has a unique solution.
Example 3. Suppose that u(t) is the solution of (37) and G(t) be the solution of the following fractional
integral equation,

0° (1) =0(0)+ 17H (£ (10(1).8(< (1), [0° (s)ds). t=0,
a(0)=C. (45)

If H (t,x, Y, z) satisfies the condition (43), then the solution of Equation (37) depends on the initial value
C continuously.
Proof. By Equation (45), we have

Up(t):é+ﬁﬁ(t—s)a4H(s,ﬁ(s),ﬁ(a(s)),jsap(§)d§)ds, t20, (46)
so we get
u’ (t)—a’(t)
< 1 a-1 P 1 1 Sap
:C—C+Ta)]'0(t—s) [H(s,u(s),u(a(s)),jou (£)d¢)-H (s.u(s).0(a(5)). [ (§)d§)}ds.
Furthermore

juP (t)—aP (1)
< 1 a-1 P 7P p TP S|P o
s|C—C|+mj0(t—s) [g(s)|u (s)-0"(s)|+ T (s)|u* (o (s)) - (o-(s))|+_[0|u (£)-a (§)|d§}ds.

Apply Theorem 1 to (47) (with p=g=r=m=1, h(t)=1, |C C| =1), we get

(47)
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juP (t)-a° (1) <|c —C|exp{jor(ia)6 [(sl‘(l+ a))i)ds] ,

where G(t)= f(t)+g(t)+t. This gives that the solutions of Equation (37) depends on the initial value C

continuously.
3.2. Consider the Following Fractional Differential Equation
B 05 {05
u(t)=u(0)+1°°[ su(s)ds, t=0,

u(0)=C.

Example 4. Assume that u(t) is a solution of Equation (48), then u(t) is bounded.
Proof. By Equation (48) we can get

1

t o5 0%
u(t):C+mL(t—s) [ cu(g)deds, t>0.
with a suitable application of Theorem 3 to (49) (with k(t)=C, a(t)=1, =05, b(t)=t,

A(t)=t* <t for t>0, H3(t)=%, Gs(t)zé),wehave

C t 05 2r(2.5) 1
u(t)<C+ o (15) _[O(t—r) exp{—j g Eds}dr

C

+—2r (1.5) I; (t - 1)0'5 dr
C

=C+————B(1,1.5)t"*
*aras) o)

B C{“ 2rt(1;5)}’

where we used exp {— [ zrf_i's)%ds} <1. This complete the proof of Example 4.

T
2r(25

=

Example 5. If u(t) isasolution of (48), then it has a unique solution.
Proof. Suppose u,(t), u,(t) are two solutions of Equation (48), then we have

((1)_5)J‘;(t_5)0'5 J‘so.scful(é)dfds, t>0,
n=e ﬁﬁ(t‘s)_osfio‘sfuz(é)déds, t20

ul('[)=C+r
+

Furthermore,
u, (t)—u, (t) :ﬁﬁ(t—s)“ j:o'sg[ul(e:)—uz (&)]deds,

which implies

1

oy (6)-u, (1)] < 05 [L(t=s) [ luy (&) ~u, ()] deds.

(48)

(49)

(50)

With a suitable application of 3 to (50) (with u(t)=|u, (t)-u,(t)|, k(t)=0, a(t)=1, @=05, b(t)=t,
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B(t)=t* <t for t>0), we can obtain
w()-u (1) <0,

which implies u, (t)=u, (t). So Equation (48) has a unique solution.
Example 6. Suppose that u(t) is the solution of (48) and G(t) is the solution of the following fractional

integral equation,
a(t)=a(0)+ |°-5j;°'ssa(s)ds, t>0,

i(0)=C. (51)

Then all the solutions of Equation (48) depend on the initial value C continuously.
Proof. By Equation (51), we have

R 1 et o5 s,
u(t)_C+r(O_5)j0(t s) [, £a(g)deds, t=0,
S0 we get
- = 1 gt 05 s -
u(t)—u(t):C—C+F(O-5)_|'O(t—s) [ &lu(¢)-u(¢)]deds, t>0
Furthermore
. < 1 05 s° -
|u(t)—u(t)|=|C—C|+m_[o(t—s) [ &lu(g)-a(g)|dgds, t=0. (52)
Apply Theorem 3 to (52) (with k(t)=|C-C|, a(t)=1, b(t)=t, @=05, B(t)=t"*<t for t>0,
|C—é| 1
H4(t):T’ G4(t)_z),weget
4. |c-C t -05 rtlzs5
|u(t)—l](t)|S|C—C|+2|r(1 5|)J'O(t_r) - exp{ J'T(l_s-)ld }dr
r(25)

(83)

t1.5
where we use the fact that exp —j Fr(ff)%ds <1
r(25)
This gives that u(t) depends on the initial value C continuously.
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